The present invention relates to a computer user interface for a digital microform imaging apparatus.
Microform images are useful in archiving a variety of documents or records by photographically reducing and recording the document in a film format. Examples of typical microform image formats include microfilm/microfiche, aperture cards, jackets, 16 mm or 35 mm film roll film, cartridge film and other micro opaques. For example a microfiche article is a known form of graphic data presentation wherein a number of pages or images are photographically reproduced on a single “card” of microfiche film (such as a card of 3×5 inches to 4×6 inches, for example). Any suitable number of pages (up to a thousand or so) may be photographically formed in an orthogonal array on a single microfiche card of photographic film. The microfiche film may then be placed in an optical reader and moved over a rectilinear path until an image or a selected page is in an optical projection path leading to a display screen. Although other electronic, magnetic or optical imaging and storage techniques and media are available, there exists an extensive legacy of film type records storing the likes of newspapers and other print media, business records, government records, genealogical records, and the like.
Past microfilm readers included an integral display which made the reader quite large, see for example U.S. Pat. No. 5,647,654. As the number of images that can be put on a standard size varies, and also the size of the record, for example a typical newspaper page is larger than a typical magazine page, images are recorded on film within a range of reduction ratios (original size/reduced size), and aspect ratio (ratio of height to width of the image, or vice versa). A typical microfilm reader may have a range of zoom or magnification available to accommodate a portion of the reduction ratio range; however, this zoom range is limited and does not accommodate all reduction ratios. Further, in a microfilm reader of the type in the '654 patent, the optical system is enclosed and relatively fixed, and cannot be modified by a user to accommodate a range of reduction ratios for which it is not designed. With the adoption of new storage media such as CDs and DVDs, and the prevalent use of desktop computers in libraries and other facilities which store records, it became apparent that a microfilm reader which acts as a peripheral device to a desktop computer and uses the computer's display for displaying the film's images has several advantages. Such a device is shown in U.S. Pat. No. 6,057,941, for example.
As previously stated, microforms contain micro images that have been formed using a wide variety of reduction ratios. Micorfilm readers or other digital microform imaging apparatus (DMIA) contain an imaging sensor of some finite size and also the optics for projecting the micro image onto this imaging sensor. Optical systems of the DMIAs can be designed with an optical zoom function accommodating the wide variety of reduction ratios of micro images. When a DMIA is combined with a computer, there is typically a computer user interface (CUI) for the DMIA which controls the display of the micro image for the purpose of reading, printing or capturing to file. The image display area contains a resizable capture box, which defines the portion of the image to be printed or captured to file. Although there are always exceptions, it is generally desired to capture each micro image in its entirety to a single print or file. For this reason, the micro image must be sized using the optical zoom function of the DMIA to fit onto the imaging sensor and consequently the CUI display area. Computer video displays are limited in size and resolution. When the micro image is sized to fit within the CUI display area it is difficult if not impossible to read because the image is both too small and the video display resolution is too low. To make it possible to read the information of the micro image displayed in the CUI display area it is necessary to either optically or digitally zoom. Optically zooming in makes a portion of the image readable but also enlarges it to a point where the entire micro image no longer fits onto the imaging sensor. With the micro image enlarged optically it is necessary to shift the position of the micro image with respect to the DMIA's optical system to view other portions of the micro image. In this enlarged state, it is not possible to capture the micro image in its entirety to a single print or file. One must first zoom back out again before this is possible.
Digital zooming makes it possible to view an enlarged image without affecting the size of the micro image on the imaging sensor and therefore still allows the micro image to be captured in its entirety to a single print or file. Digital zooming also allows one to pan around the image sensor viewing the entire image without having to shift the position of the micro image with respect to the DMIA's optical system. This too, however, is not without its drawbacks. When digitally zoomed in, you are not able to see the entire micro image and therefore unable to know which direction to pan (left, right, up, down) to view a specific piece of information of the micro image without using a trial and error approach. Another drawback is that the capture box defining the area to be printed or captured is either no longer visible or, if it is visible, no longer defines the entire micro image area desired to be captured. In this case it is necessary to zoom back out to meaningfully define the capture box. Known DMIAs/CUIs are not able to both optically zoom and digitally zoom, particularly concurrently.
What is needed in the art is a method and apparatus for enlarging the image for viewing without affecting the size of the image on the imaging sensor, without requiring a trial and error approach to view a specific piece of information of the micro image, and to provide a meaningful and continual display of the capture box.
The present invention provides, in one form thereof, a computer implemented method of viewing a microform segment which has been imaged by a digital microform imaging apparatus connected to a computer. The digital microform imaging apparatus images the microform segment and provides a corresponding image data of the microform segment to the computer. The method comprises the steps of: displaying the image data of the microform segment on a display connected to the computer using a computer user interface having a display area; and creating a magnification window within the computer user interface.
The present invention provides, in another form thereof, a method of viewing a microform segment using a digital microform imaging apparatus connected to a computer, where the computer includes a computer user interface for the digital microform imaging apparatus. The method includes the steps of: placing a microform in a viewing area of the digital microform imaging apparatus; imaging a segment of the microform on a sensor of the digital microform imaging apparatus; viewing the segment of the microform on a display device connected to the computer using the computer user interface; and creating a magnification window within the computer user interface.
The present invention provides, in yet another form thereof, a computer-readable storage medium having at least one instruction to be executed by at least one processor which has been provided image data of a microform segment by a digital microform imaging apparatus. The at least one instruction causes the at least one processor to: display the image data of the microform segment on a display of a computer connected to the least one processor using a computer user interface having a display area; and create a magnification window within the computer user interface.
The present invention provides, in yet another form thereof, a digital microform imaging system which includes a digital microform imaging apparatus which images a segment of a microform image to produce image data, and a computer including at least one processor and a computer-readable storage medium readable by the at least one processor. The computer-readable storage medium has at least one instruction which causes the at least one processor to: display the image data of the microform segment on a display connected to the computer using a computer user interface having a display area; and create a magnification window within the computer user interface.
The present invention provides, in yet another form thereof, a computer for receiving image data from a digital microform imaging apparatus which images a segment of a microform image to produce the image data. The computer includes at least one processor and a computer-readable storage medium readable by the at least one processor. The computer-readable storage medium has at least one instruction which causes the at least one processor to: display the image data of the microform segment on a display connected to the computer using a computer user interface having a display area; and create a magnification window within the computer user interface.
Advantages of the present invention are that it provides a method and apparatus for enlarging the image for viewing without affecting the size of the image on the imaging sensor, without requiring a trial and error approach to view a specific piece of information of the micro image, and to provide a meaningful and continual display of the capture box.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate one preferred embodiment of the invention, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Referring now to the drawings, and more particularly to
DMIA 22 is described in U.S. patent application Ser. No. 11/748,692, titled “DIGITAL MICROFORM IMAGING APPARATUS”, filed May 15, 2007, which application is incorporated by reference as if fully setforth herein. Referring more particularly to
A microform media support 44 is configured to support a microform media 46 after diffuse window 40 and along first optical axis 42. In the embodiment shown support 44 is an X-Y table, that is, support 44 is movable in a plane which is approximately orthogonal to first optical axis 42. Referring particularly to
An approximately 45° fold mirror 70 (
An imaging subsystem 84 includes a first lead screw 86 and a second lead screw 88 where each lead screw is approximately parallel with second optical axis 72. A lens 90 is connected to a first carriage 92 which is linearly adjustable by rotating first lead screw 86. Lens 90 includes stop 94 and f-stop adjustment 96 which can adjust the aperture of stop 94. Lens 90 can have a fixed focal length of 50 mm, for example. This focal length has the advantage of a relatively large depth of focus. A rough formula used to quickly calculate depth of focus is the product of the focal length times the f-stop divided by 1000, which yields a depth of focus of 0.55 mm for a 50 mm focal length and fl 1 f-stop adjustment. An area sensor 97 is connected to a second carriage 98 which carriage is linearly adjustable by rotating second lead screw 88. Area sensor 97 can be an area array CCD sensor with a two dimensional array of sensor elements or pixels, for example, with a 3.5 μm2 pixel size, or other types of sensors and pixel sizes depending on resolution size requirements. The area array nature of sensor 97, when compared to a line sensor, eliminates the need for scanning of the sensor when viewing two dimensional images. The overall novel optical layout of the present invention including the separately adjustable area sensor 97 and lens 90; 45° fold mirror 70; and film table 44 location; algorithms for moving the lens and sensor to appropriate respective locations to achieve proper magnification and focus of the image; and the lens focal length and relatively large depth of focus, allows DMIA 22 to autofocus without the need for iterative measurements and refocusing the of lens 90 during magnification changes to accommodate different reduction ratios of different film media. Further, the present invention can easily accommodate reduction ratios in the range of 7× to 54×, although the present invention is not limited to such a range.
A first motor 100 is rotationally coupled to first lead screw 86 by a timing pulley, a belt with teeth, and another timing pulley, similar to timing pulley 120, belt 122 with teeth, and timing pulley 124, respectively, and a second motor 108 is rotationally coupled to second lead screw 88 by a timing pulley, a belt with teeth, and another timing pulley, also similar to timing pulley 120, belt 122 with teeth, and timing pulley 124, respectively. A controller 116 is electrically connected to first motor 100, second motor 108 and area sensor 97, where controller 116 is for receiving commands and other inputs from computer 24 or other input devices, controlling first motor 100 and second motor 108, and other elements of DMIA 22, and for outputting an image data of area sensor 97. Consequently, controller 116 can include one or more circuit boards which have a microprocessor, field programmable gate array, application specific integrated circuit or other programmable devices; motor controls; a receiver; a transmitter; connectors; wire interconnections including ribbon wire and wiring harnesses; a power supply; and other electrical components. Controller 116 also provides electrical energy and lighting controls for LED array 36.
A third motor 118 is rotationally coupled to area sensor 97, where controller 116 additionally controls third motor 118 through electrical connections as with motors 100 and 108. For example, controller 116 can rotate area sensor 97, using motor 118, timing pulley 120, belt 122 with teeth, and timing pulley 124, to match an aspect ratio of microform media 46, and particularly an aspect ratio of images 60. A light baffle 126 can be connected to area sensor 97 to reduce stray light incident on sensor 97 and thereby further improve the resolution and signal to noise of DMIA 22. Light baffle 126 can have an antireflective coating at the front and inside surfaces of the baffle to further reduce stray light incident on sensor 97. Motors 100, 108 and 118 can be DC servomotors, or other motors.
Referring to
By selecting the magnifier glass portion of digital magnifier 176, CUI 156 creates magnifier window 226. An indicator box 228 identifies which subsegment 230 of image data 204 is being illustrated in magnifier window 226. By clicking on indicator box 228 and dragging it around image data 204 a user can pan around image data 204, with the subsegment data of new locations being shown in magnifier window 226. However, the data within indicator box 228 itself is not magnified, and indicator box 228 itself does not provide the functionality to expand indicator box 228. Instead, selecting the arrow portion of digital magnifier 176 selects the digital magnification of the subsegment 230 of image data 204 within magnifier window 226, and magnifier window 226 can be expanded transversely, longitudinally and diagonally by placing the cursor on one of the sides, or a corner, and mouse clicking and dragging to expand magnifier window 226, as is typical in windows of Windows® operating system. Scroll bars 232, 234 of magnifier window 226 can be used to scroll within window 226. Although indicator box 228 moves and expands with magnifier window 226, the data within indicator box 228 is not digitally magnified, in contrast with the data within magnifier window 226.
A programmer with ordinary skill in the art in Windows® operating system including callable subroutines, or other operating systems and their callable subroutines, and C++ or Visual Basic programming language can create the CUI 156 as shown in
Computer environment 600 includes a general-purpose computing device in the form of a computer 602. The components of computer 602 can include, but are not limited to, one or more processors or processing units 604, system memory 606, and system bus 608 that couples various system components including processor 604 to system memory 606.
System bus 608 represents one or more of any of several types of bus structures, including a memory bus or memory controller, a peripheral bus, an accelerated graphics port, and a processor or local bus using any of a variety of bus architectures. By way of example, such architectures can include an Industry Standard Architecture (ISA) bus, a Micro Channel Architecture (MCA) bus, an Enhanced ISA (EISA) bus, a Video Electronics Standards Association (VESA) local bus, a Peripheral Component Interconnects (PCI) bus also known as a Mezzanine bus, a PCI Express bus, a Universal Serial Bus (USB), a Secure Digital (SD) bus, or an IEEE 1394, i.e., FireWire, bus.
Computer 602 may include a variety of computer readable media. Such media can be any available media that is accessible by computer 602 and includes both volatile and non-volatile media, removable and non-removable media.
System memory 606 includes computer readable media in the form of volatile memory, such as random access memory (RAM) 610; and/or non-volatile memory, such as read only memory (ROM) 612 or flash RAM. Basic input/output system (BIOS) 614, containing the basic routines that help to transfer information between elements within computer 602, such as during start-up, is stored in ROM 612 or flash RAM. RAM 610 typically contains data and/or program modules that are immediately accessible to and/or presently operated on by processing unit 604.
Computer 602 may also include other removable/non-removable, volatile/non-volatile computer storage media. By way of example,
The disk drives and their associated computer-readable media provide non-volatile storage of computer readable instructions, data structures, program modules, and other data for computer 602. Although the example illustrates a hard disk 616, removable magnetic disk 620, and removable optical disk 624, it is appreciated that other types of computer readable media which can store data that is accessible by a computer, such as magnetic cassettes or other magnetic storage devices, flash memory cards, CD-ROM, digital versatile disks (DVD) or other optical storage, random access memories (RAM), read only memories (ROM), electrically erasable programmable read-only memory (EEPROM), and the like, can also be utilized to implement the example computing system and environment.
Any number of program modules can be stored on hard disk 616, magnetic disk 620, optical disk 624, ROM 612, and/or RAM 610, including by way of example, operating system 626, one or more application programs 628, other program modules 630, and program data 632. Each of such operating system 626, one or more application programs 628, other program modules 630, and program data 632 (or some combination thereof) may implement all or part of the resident components that support the distributed file system.
A user can enter commands and information into computer 602 via input devices such as keyboard 634 and a pointing device 636 (e.g., a “mouse”). Other input devices 638 (not shown specifically) may include a microphone, joystick, game pad, satellite dish, serial port, scanner, and/or the like. These and other input devices are connected to processing unit 604 via input/output interfaces 640 that are coupled to system bus 608, but may be connected by other interface and bus structures, such as a parallel port, game port, or a universal serial bus (USB).
Monitor 642 or other type of display device can also be connected to the system bus 608 via an interface, such as video adapter 644. In addition to monitor 642, other output peripheral devices can include components such as speakers (not shown) and printer 646 which can be connected to computer 602 via I/O interfaces 640.
Computer 602 can operate in a networked environment using logical connections to one or more remote computers, such as remote computing device 648. By way of example, remote computing device 648 can be a PC, portable computer, a server, a router, a network computer, a peer device or other common network node, and the like. Remote computing device 648 is illustrated as a portable computer that can include many or all of the elements and features described herein relative to computer 602. Alternatively, computer 602 can operate in a non-networked environment as well.
Logical connections between computer 602 and remote computer 648 are depicted as a local area network (LAN) 650 and a general wide area network (WAN) 652. Such networking environments are commonplace in offices, enterprise-wide computer networks, intranets, and the Internet.
When implemented in a LAN networking environment, computer 602 is connected to local network 650 via network interface or adapter 654. When implemented in a WAN networking environment, computer 602 typically includes modem 656 or other means for establishing communications over wide network 652. Modem 656, which can be internal or external to computer 602, can be connected to system bus 608 via I/O interfaces 640 or other appropriate mechanisms. It is to be appreciated that the illustrated network connections are examples and that other means of establishing at least one communication link between computers 602 and 648 can be employed.
In a networked environment, such as that illustrated with computing environment 600, program modules depicted relative to computer 602, or portions thereof, may be stored in a remote memory storage device. By way of example, remote application programs 658 reside on a memory device of remote computer 648. For purposes of illustration, applications or programs and other executable program components such as the operating system are illustrated herein as discrete blocks, although it is recognized that such programs and components reside at various times in different storage components of computing device 602, and are executed by at least one data processor of the computer.
Various modules and techniques may be described herein in the general context of computer-executable instructions, such as program modules, executed by one or more computers or other devices. Generally, program modules include routines, programs, objects, components, data structures, etc. for performing particular tasks or implement particular abstract data types. Typically, the functionality of the program modules may be combined or distributed as desired in various embodiments.
An implementation of these modules and techniques may be stored on or transmitted across some form of computer readable media. Computer readable media can be any available media that can be accessed by a computer. By way of example, and not limitation, computer readable media may comprise “computer storage media” and “communications media.”
“Computer storage media” includes volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules, or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by a computer.
“Communication media” typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as carrier wave or other transport mechanism. Communication media also includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. As a non-limiting example only, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared, and other wireless media. Combinations of any of the above are also included within the scope of computer readable media.
The present invention is not limited by the DMIA 22 shown as there are other DMIAs, or microfilm or micro opaque readers, scanners, etc., which are available which can be used in conjunction with a computer and the CUI of the present invention. Further, the present invention is not limited by a separate DMIA 22 and computer 602. For example, computer 602 can be integrated into DMIA 22, or can be part of controller 116. Yet further, monitor 642 can be a part of DMIA 22, or one of these variation, instead of a separate device.
Media 46 can include any microform image formats such as microfilm/microfiche, aperture cards, jackets, 16 mm or 35 mm film roll film, cartridge film and other micro opaques. Micro opaques are different than transparent film. Images are recorded on an opaque medium. To view these micro images one needs to use reflected light. The present invention can use LED arrays 37 (
While example embodiments and applications of the present invention have been illustrated and described, it is to be understood that the invention is not limited to the precise configuration and resources described above. Various modifications, changes, and variations apparent to those skilled in the art may be made in the arrangement, operation, and details of the methods and systems of the present invention disclosed herein without departing from the scope of the claimed invention.