Computerized HVAC filter evaluation system

Information

  • Patent Grant
  • 12259148
  • Patent Number
    12,259,148
  • Date Filed
    Friday, April 19, 2019
    6 years ago
  • Date Issued
    Tuesday, March 25, 2025
    a month ago
Abstract
A heating, ventilation, and air conditioning (HVAC) control system generates a request to replace a first air filter installed in an air handler of an HVAC system with a second air filter. The second air filter has a particulate matter removal efficiency rating that is greater than a particulate matter removal efficiency rating of the first filter. The system delays for a predetermined period of time and then obtains (i) a first temperature of air downstream of the air handler and (ii) a second temperature of air upstream of the air handler. The system then calculates a temperature difference between the f temperatures and determines whether the temperature difference is within an acceptable range. In response to the temperature difference being within the acceptable range, the system (i) operates the HVAC system using the second air filter and (ii) generates an alert indicating compatibility of the second air filter.
Description
FIELD

The present disclosure relates to environmental control systems and more particularly to computerized control of environmental control systems.


BACKGROUND

The background description provided here is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.


A residential or light commercial HVAC (heating, ventilation, and air conditioning) system controls temperature and humidity of a building. Upper and lower temperature limits may be specified by an occupant or owner of the building, such as an employee working in the building or a homeowner. A thermostat controls operation of the HVAC system based on a comparison of measured air temperature and a target value. The thermostat controls the HVAC system to heat the building when the temperature is less than the lower temperature limit. The thermostat controls the HVAC system to cool the building when the temperature is greater than the upper temperature limit. Heating and cooling the building generally decreases humidity, although the HVAC system may include a humidifier that adds humidity to warm air output by the HVAC system during heating of the building.


SUMMARY

A heating, ventilation, and air conditioning (HVAC) control system is disclosed. The system includes a processor and a computer-readable medium that includes instructions executable by the processor. The instructions include selectively generating a replacement request for an operator to replace a first air filter installed in an air handler of an HVAC system with a second air filter. The first air filter has a first particulate matter removal efficiency rating and the second air filter has a second particulate matter removal efficiency rating that is greater than the first particulate matter removal efficiency rating. The instructions further include delaying, in response to activation of the HVAC system following installation of the second air filter, for a first predetermined period of time and then obtaining (i) a first temperature that represents a temperature of air downstream of the air handler and (ii) a second temperature that represents a temperature of air upstream of the air handler. The instructions also include calculating a first temperature difference between the first temperature and the second temperature; determining whether the first temperature difference is within an acceptable range; and in response to the first temperature difference being within the acceptable range, (i) operating the HVAC system using the second air filter and (ii) generating an alert indicating compatibility of the second air filter with the HVAC system.


In other features, the instructions further include, while the first air filter is installed, delaying for a second predetermined period of time following HVAC activation and then obtaining (i) a third temperature that represents a temperature of air downstream of the air handler and (ii) a fourth temperature that represents a temperature of air upstream of the air handler. The instructions also include calculating a second temperature difference between the third temperature and the fourth temperature and determining whether the second temperature difference is within the acceptable range. The instructions further include, in response to determining that the second temperature difference is outside of the acceptable range, preventing generation of the replacement request.


In yet other features, the instructions further include the instructions further include selecting between and performing one of (i) designating an existing air filter installed in the HVAC system as the first air filter and (ii) generating an initial request to replace the existing air filter with the first air filter.


In other features, the instructions further include, while the first air filter is installed, obtaining a first current value indicating current consumed by a circulator blower of the HVAC system and determining a threshold based on the first current value. The instructions include, in response to activation of the HVAC system following installation of the second air filter, obtaining a second current value indicating current consumed by the circulator blower and in response to the second current value being greater than the threshold, generating an alert indicating incompatibility of the second air filter with the HVAC system.


In further features, the instructions further include, obtaining, in response to activation of the HVAC system following installation of the second air filter, a current value indicating current consumed by a circulator blower of the HVAC system. The instructions include, in response to the current value being greater than a threshold, generating an alert indicating incompatibility of the second air filter with the HVAC system.


In other features, the instructions further include determining an acceptable range of airflow for the HVAC system. The instructions include, in response to activation of the HVAC system following installation of the second air filter, obtaining an airflow value indicating airflow through ductwork of the HVAC system. The instructions also include, in response to the airflow value being outside of the acceptable range of airflow, generating an alert indicating incompatibility of the second air filter with the HVAC system.


In other features, the instructions further include disabling, in response to determining that the first temperature difference is outside of the acceptable range, operation of the HVAC system pending replacement of the second air filter.


In yet other features, the instructions further include, in response to determining that the first temperature difference is outside of the acceptable range, calculating a change per rating based on the first particulate matter removal efficiency rating, the second particulate matter removal efficiency rating, the first temperature difference, and, in some implementations, the second temperature difference. The instructions include determining a highest suitable particulate matter removal efficiency rating for the HVAC system based on the change per rating. The instructions also include generating an indication of the highest suitable particulate matter removal efficiency rating for the HVAC system.


In other features, the system further includes a first sensor module located at a supply vent of the HVAC system. The first sensor module is configured to measure the first temperature. In other features, the second temperature is obtained from a thermostat.


In other features, the system further includes a second sensor module located at a return vent of the HVAC system. The second sensor module is configured to measure the second temperature. In yet other features, the system includes a third sensor module located within a conditioned space of the HVAC system. The third sensor module is configured to measure the second temperature.


In further features, the instructions further include generating, in response to installation of the second air filter, a request for the operator to activate the HVAC system.


In other features, the instructions further include determining, in response to installation of the second air filter, whether the HVAC system is set to a heating mode. The instructions also include, in response to the HVAC system including a heat pump and being set to the heating mode, generating a request for the operator to activate backup electric heat.


In other features, the first particulate matter removal efficiency rating and the second particulate matter removal efficiency rating are minimum efficiency reporting value (MERV) ratings.


In yet other features, the instructions further include, in response to the first temperature difference being within the acceptable range, delaying for a second predetermined period of time and then obtaining (i) a third temperature that represents a temperature of air downstream of the air handler and (ii) a fourth temperature that represents a temperature of air upstream of the air handler. The instructions further include calculating a second temperature difference between the third temperature and the fourth temperature and determining whether the second temperature difference is within the acceptable range. The instructions include, in response to the second temperature difference being within the acceptable range, continue operating the HVAC system using the second air filter.


A method for controlling a heating, ventilation, and air conditioning (HVAC) control system is disclosed. The method includes selectively generating a replacement request for an operator to replace a first air filter installed in an air handler of an HVAC system with a second air filter. The first air filter has a first particulate matter removal efficiency rating and the second air filter has a second particulate matter removal efficiency rating that is greater than the first particulate matter removal efficiency rating. The method further includes in response to activation of the HVAC system following installation of the second air filter, delaying for a first predetermined period of time and then obtaining (i) a first temperature that represents a temperature of air downstream of the air handler and (ii) a second temperature that represents a temperature of air upstream of the air handler. The method also includes calculating a first temperature difference between the first temperature and the second temperature, determining whether the first temperature difference is within an acceptable range, and in response to the first temperature difference being within the acceptable range, (i) operating the HVAC system using the second air filter and (ii) generating an alert indicating compatibility of the second air filter with the HVAC system.


In other features, the method includes, while the first air filter is installed, delaying for a second predetermined period of time following HVAC activation and then obtaining (i) a third temperature that represents a temperature of air downstream of the air handler and (ii) a fourth temperature that represents a temperature of air upstream of the air handler. The method further includes calculating a second temperature difference between the third temperature and the fourth temperature, determining whether the second temperature difference is within the acceptable range, and in response to determining that the second temperature difference is outside of the acceptable range, preventing generation of the replacement request.


In further features, the method includes selecting between and performing one of (i) designating an existing air filter installed in the HVAC system as the first air filter and (ii) generating an initial request to replace the existing air filter with the first air filter.


In other features, the method includes, while the first air filter is installed, obtaining a first current value indicating current consumed by a circulator blower of the HVAC system and determining a threshold based on the first current value. The method further includes, in response to activation of the HVAC system following installation of the second air filter, obtaining a second current value indicating current consumed by the circulator blower and in response to the second current value being greater than the threshold, generating an alert indicating incompatibility of the second air filter with the HVAC system.


In other features, the method includes, in response to activation of the HVAC system following installation of the second air filter, obtaining a current value indicating current consumed by a circulator blower of the HVAC system. The method also includes, in response to the current value being greater than a threshold, generating an alert indicating incompatibility of the second air filter with the HVAC system.


In yet other features, the method includes determining an acceptable range of airflow for the HVAC system and obtaining, in response to activation of the HVAC system following installation of the second air filter, an airflow value indicating airflow through ductwork of the HVAC system. The method also includes generating, in response to the airflow value being outside of the acceptable range of airflow, an alert indicating incompatibility of the second air filter with the HVAC system.


In other features, the method includes disabling, in response to determining that the first temperature difference is outside of the acceptable range, operation of the HVAC system pending replacement of the second air filter.


In further features, the method includes, in response to determining that the first temperature difference is outside of the acceptable range, calculating a change per rating based on the first particulate matter removal efficiency rating, the second particulate matter removal efficiency rating, the first temperature difference, and, in some implementations, the second temperature difference. The method also includes determining a highest suitable particulate matter removal efficiency rating for the HVAC system based on the change per rating and generating an indication of the highest suitable particulate matter removal efficiency rating for the HVAC system.


In other features, obtaining the first temperature includes receiving a temperature measured by a first sensor module located at a supply vent of the HVAC system.


In other features, obtaining the second temperature includes receiving a temperature measured by a thermostat. In yet other features, obtaining the second temperature includes receiving a temperature measured by a second sensor module located at a return vent of the HVAC system. In further features, obtaining the second temperature includes receiving a temperature measured by a third sensor module located within a conditioned space of the HVAC system.


In yet other features, the method includes generating, in response to installation of the second air filter, a request for the operator to activate the HVAC system. In yet other features, the method includes, in response to installation of the second air filter, determining whether the HVAC system is set to a heating mode and generating in response to the HVAC system including a heat pump and being set to the heating mode, a request for the operator to activate backup electric heat.


In other features, the first particulate matter removal efficiency rating and the second particulate matter removal efficiency rating are minimum efficiency reporting value (MERV) ratings.


A non-transitory computer-readable medium storing processor-executable instructions is disclosed. The instructions include selectively generating a replacement request for an operator to replace a first air filter installed in an air handler of an HVAC system with a second air filter. The first air filter has a first particulate matter removal efficiency rating and the second air filter has a second particulate matter removal efficiency rating that is greater than the first particulate matter removal efficiency rating. The instructions further include, in response to activation of the HVAC system following installation of the second air filter, delaying for a first predetermined period of time and then obtaining (i) a first temperature that represents a temperature of air downstream of the air handler and (ii) a second temperature that represents a temperature of air upstream of the air handler. The instructions also include calculating a first temperature difference between the first temperature and the second temperature and determining whether the first temperature difference is within an acceptable range. The instructions include, in response to the first temperature difference being within the acceptable range, (i) operating the HVAC system using the second air filter and (ii) generating an alert indicating compatibility of the second air filter with the HVAC system.


In other features, the instructions further include, while the first air filter is installed, delaying for a second predetermined period of time following HVAC activation and then obtaining (i) a third temperature that represents a temperature of air downstream of the air handler and (ii) a fourth temperature that represents a temperature of air upstream of the air handler. The instructions also include calculating a second temperature difference between the third temperature and the fourth temperature, determining whether the second temperature difference is within the acceptable range, and in response to determining that the second temperature difference is outside of the acceptable range, preventing generation of the replacement request.


In yet other features, the instructions further include selecting between and performing one of (i) designating an existing air filter installed in the HVAC system as the first air filter and (ii) generating an initial request to replace the existing air filter with the first air filter.


In further features, the instructions further include, while the first air filter is installed, obtaining a first current value indicating current consumed by a circulator blower of the HVAC system and determining a threshold based on the first current value and in response to activation of the HVAC system following installation of the second air filter, obtaining a second current value indicating current consumed by the circulator blower. The instructions also include, in response to the second current value being greater than the threshold, generating an alert indicating incompatibility of the second air filter with the HVAC system.


In other features, the instructions further include obtaining, in response to activation of the HVAC system following installation of the second air filter, a current value indicating current consumed by a circulator blower of the HVAC system. The instructions also include, in response to the current value being greater than a threshold, generating an alert indicating incompatibility of the second air filter with the HVAC system.


In other features, the instructions further include determining an acceptable range of airflow for the HVAC system and in response to activation of the HVAC system following installation of the second air filter, obtaining an airflow value indicating airflow through ductwork of the HVAC system. The instructions also include, in response to the airflow value being outside of the acceptable range of airflow, generating an alert indicating incompatibility of the second air filter with the HVAC system.


In yet other features, the instructions further include disabling, in response to determining that the first temperature difference is outside of the acceptable range, operation of the HVAC system pending replacement of the second air filter.


In other features, the instructions further include, in response to determining that the first temperature difference is outside of the acceptable range, calculating a change per rating based on the first particulate matter removal efficiency rating, the second particulate matter removal efficiency rating, the first temperature difference, and, in some implementations, the second temperature difference and determining a highest suitable particulate matter removal efficiency rating for the HVAC system based on the change per rating. The instructions also include generating an indication of the highest suitable particulate matter removal efficiency rating for the HVAC system.


In other features, obtaining the first temperature includes receiving a temperature measured by a first sensor module located at a supply vent of the HVAC system. In yet other features, obtaining the second temperature includes receiving a temperature measured by a thermostat.


In other features, obtaining the second temperature includes receiving a temperature measured by a second sensor module located at a return vent of the HVAC system. In further features, obtaining the second temperature includes receiving a temperature measured by a third sensor module located within a conditioned space of the HVAC system.


In other features, the instructions further include generating, in response to installation of the second air filter, a request for the operator to activate the HVAC system. In yet other features, the instructions further include determining, in response to installation of the second air filter, whether the HVAC system is set to a heating mode. The instructions include, in response to the HVAC system including a heat pump and being set to the heating mode, generating a request for the operator to activate backup electric heat.


In other features, the first particulate matter removal efficiency rating and the second particulate matter removal efficiency rating are minimum efficiency reporting value (MERV) ratings.


Further areas of applicability of the present disclosure will become apparent from the detailed description, the claims and the drawings. The detailed description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure will become more fully understood from the detailed description and the accompanying drawings.



FIG. 1 is a block diagram of an example heating, ventilation, and air conditioning (HVAC) system.



FIG. 2 is a functional block diagram of an example condenser unit of an example HVAC system that includes a heat pump.



FIG. 3 is a functional block diagram of an example indoor air quality (IAQ) sensor module that can be used with an HVAC system and/or other IAQ mitigation devices.



FIG. 4 is a functional block diagram of an example HVAC evaluation system.



FIG. 5 is a block diagram of an example testing device.



FIG. 6 is a functional block diagram of an example HVAC evaluation system including a remote testing system.



FIGS. 7A-7C are a flowchart depicting an example method of evaluating the use of different grade air filters in an HVAC system based on air temperature, air flow, and circulator blower current.



FIGS. 8A and 8B are a flowchart depicting an example method of evaluating the use of different grade air filters in an HVAC system based on air temperature.





In the drawings, reference numbers may be reused to identify similar and/or identical elements.


DETAILED DESCRIPTION

Typically, building owners and HVAC contractors install low-priced air filters in HVAC systems. Although low-priced air filters are often sufficient to protect the HVAC system from damage due to debris, they are not effective at removing fine particulate matter from the air. HVAC air filters are assigned a minimum efficiency reporting value (MERV) based on their filtration efficiency. Air filters with a higher MERV rating remove a larger percentage of particulate matter than air filters with a lower MERV rating. Particulate matter 1 micron or smaller in size poses the greatest risk to health in humans. Therefore, air filters that remove more sub-micron particulate matter are preferable.


A typical lost-cost air filter may have a MERV rating of 7, removing only 50%-70% of particulate matter 3 microns or larger in size and removing negligible amounts of particulate matter that is smaller than 3 microns. In contrast, an air filter with a MERV rating of 14 removes at least 90% of the particulate matter 3 microns or larger, 90% of the particulate matter between 3 microns and 1 micron, and 75%-85% of the particulate matter between 0.3 micron and 1 micron. Although air filters with ratings above MERV 14 exist, these filters are generally considered too restrictive for most HVAC systems—particularly older HVAC systems. The circulator blowers in HVAC systems may not be capable of sustaining sufficient airflow when an air filter with a rating greater than MERV 14 is installed.


Many building owners and HVAC contractors are concerned about installing air filters with a high MERV rating because they may negatively affect the operation of the HVAC system. For example, they may believe that such air filters will decrease the airflow of the HVAC system and/or increase the wear of a circulator blower. However, the majority of HVAC systems installed since approximately 2003 are capable of operating with a MERV 14 filter.


According to the present disclosure, one or more indoor air quality (IAQ) sensor modules can be used to determine whether an air filter with a higher MERV rating (such as MERV 14) may be used in an HVAC system. For example, temperatures may be obtained from one or more IAQ sensor modules (and sometimes other sources, such as the thermostat) that approximate temperature of return air returning to the HVAC system and temperature of supply air supplied to the conditioned space by the HVAC system.


With the higher-rated air filter installed, a testing device receives the temperature information and determines whether the measured temperature split (the difference between the return air temperature and the supply air temperature) is within an acceptable range. The acceptable range may be looked up based on the make, model, and configuration of the HVAC system. Alternatively, the testing device may use a lookup table of predetermined original equipment manufacturer (OEM) acceptable ranges. The lookup table may list acceptable temperature ranges associated with different heating and cooling capacities. If the temperature split is not within the acceptable range, the higher-rated air filter may be declared too restrictive. In various implementations, the lower-rated air filter (such as a MERV 7 rated air filter) may be tested prior to testing the higher-rated air filter to confirm that the temperature split begins within the acceptable range. To remove a source of error, the lower-rated filter may be replaced with a brand-new lower-rated baseline air filter before testing—for example, a new MERV 7 rated air filter.


The testing device may additionally or alternatively determine whether HVAC system airflow is sufficient with the higher-rated air filter installed. Again, the testing device may first confirm that HVAC airflow was sufficient with lower-rated air filter installed. The testing device may additionally or alternatively determine whether electrical current consumed (or another electrical parameter, such as power consumed) by the circulator blower in the HVAC system airflow is overly high with the higher-rated air filter installed. The limit for current may be determined by performing measurements with the lower-rated air filter installed.


In a case where the higher-rated air filter is not appropriate for the HVAC system, as indicated by parameters including temperature split, airflow, and/or current, the testing device may indicate that the higher-rated air filter must be replaced before normal operation of the HVAC system can resume. The testing device may perform linear or non-linear extrapolation of the parameters to estimate a highest rating for an air filter between the lower-rated and higher-rated air filters that would be suitable for the HVAC system.


In FIG. 1, a block diagram of an example HVAC system is presented. As used in this application, the term HVAC encompasses all environmental comfort systems in a building, including heating, cooling, humidifying, dehumidifying, air exchanging, and purifying. Environmental comfort systems include devices such as furnaces, heat pumps, humidifiers, dehumidifiers, ventilators, and air conditioners. HVAC systems as described in this application do not necessarily include both heating and air conditioning, and may instead have only one or the other.


In this particular example, a forced-air system with a gas furnace is shown. Return air is pulled from the building through an air filter 104 by a circulator blower 108. The air filter 104 reduces the amount of particulate matter in the return air. The return air may also be drawn through a volatile organic compound (VOC) filter 106. The VOC filter 106 reduces the amount of VOCs in the return air. The VOC filter 106 may be an absorbent type VOC filter. For example, the VOC filter 106 may be an activated charcoal filter, an alumina oxide filter, a zeolite filter, or a baking soda filter. In various implementations, the air filter 104 may be both a particulate matter filter and an absorbent type VOC filter, which may be integrated into a single filter frame. The circulator blower 108, also referred to as a fan, is controlled by a control module 112. The control module 112 receives signals from a thermostat 116. For example only, the thermostat 116 may include one or more temperature setpoints specified by the user. The thermostat 116 may be a WiFi thermostat having wireless networking capability.


The thermostat 116 may direct that the circulator blower 108 be turned on at all times or only when a heat request or cool request is present (automatic fan mode). In various implementations, the circulator blower 108 can operate at one or more discrete speeds or at any speed within a predetermined range. For example, the control module 112 may actuate one or more switching relays (not shown) to control the circulator blower 108 and/or to select a speed of the circulator blower 108.


The thermostat 116 provides the heat and/or cool requests to the control module 112. When a heat request is made, the control module 112 causes a burner 120 to ignite. Heat from combustion is introduced to the return air provided by the circulator blower 108 in a heat exchanger 124. The heated air is supplied to the building and is referred to as supply air.


The burner 120 may include a pilot light, which is a small constant flame for igniting the primary flame in the burner 120. Alternatively, an intermittent pilot may be used in which a small flame is first lit prior to igniting the primary flame in the burner 120. A sparker may be used for an intermittent pilot implementation or for direct burner ignition. Another ignition option includes a hot surface igniter, which heats a surface to a temperature high enough that gas introduced to the heated surface will combust. Fuel for combustion, such as natural gas, may be provided by a gas valve 128.


The products of combustion are exhausted outside of the building. In a high efficiency furnace, the products of combustion may not be hot enough to have sufficient buoyancy to exhaust via convection. Therefore, an inducer blower 132 creates a draft to exhaust the products of combustion. The inducer blower 132 may be turned on prior to ignition of the burner 120. The inducer blower 132 may remain running while the burner 120 is operating. In addition, the inducer blower 132 may continue running for a set period of time after the burner 120 turns off.


An enclosure, which will be referred to as air handler unit 136, may include the air filter 104, the VOC filter 106, the circulator blower 108, the control module 112, the burner 120, the heat exchanger 124, the inducer blower 132, an expansion valve 140, an evaporator 144, a condensate pan 146, and a transformer 147. The transformer 147 is connected to an alternating current (AC) power line in order to provide AC power to the control module 112 and the thermostat 116. For example, the transformer 147 may be a 10-to-1 transformer and therefore provide either a 12 V or 24 V AC supply depending on whether the air handler unit 136 is operating on nominal 120 V or nominal 240 V power. In various implementations, the air handler unit 136 includes an electrical heating device (not shown) instead of or in addition to the burner 120. When used in addition to the burner 120, the electrical heating device may provide backup or secondary (extra) heat.


The HVAC system of FIG. 1 includes a split air conditioning system. Refrigerant is circulated through a compressor 148, a condenser 152, the expansion valve 140, and the evaporator 144. The evaporator 144 is placed in series with the supply air so that, when cooling is desired, the evaporator 144 removes heat from the supply air, thereby cooling the supply air. During cooling, the evaporator 144 is cold (generally, below the dew point of the air within the building), which causes water vapor to condense. This water vapor is collected in the condensate pan 146, which drains or is pumped out.


A control module 156 receives a cool request from the control module 112 and controls the compressor 148 accordingly. The control module 156 also controls a condenser fan 160, which increases heat exchange between the condenser 152 and outside air. In such a split system, the compressor 148, the condenser 152, the control module 156, and the condenser fan 160 are generally located outside of the building, often in an enclosure referred to as a condensing unit 164.


In various implementations, the control module 156 may include a run capacitor, a start capacitor, and a contactor or relay. In various implementations, the start capacitor may be omitted, such as when the condensing unit 164 includes a scroll compressor instead of a reciprocating compressor. The compressor 148 may be a variable-capacity compressor and may respond to a multiple-level cool request. For example, the cool request may indicate a mid-capacity call for cooling or a high-capacity call for greater cooling. The compressor 148 may vary its capacity according to the cool request.


The electrical lines provided to the condensing unit 164 may include a 240 V mains power line and a 24 V switched control line. The 24 V control line may correspond to the cool request shown in FIG. 1. The 24 V control line controls operation of the contactor. When the control line indicates that the compressor should be on, the contactor contacts close, connecting the 240 V power supply to the compressor 148. In addition, the contactor may connect the 240 V power supply to the condenser fan 160. In various implementations, such as when the condensing unit 164 is located in the ground as part of a geothermal system, the condenser fan 160 may be omitted. When the 240 V mains power supply arrives in two legs, as is common in the U.S., the contactor may have two sets of contacts, and can be referred to as a double-pole single-throw switch.


The thermostat 116 typically includes a temperature sensor and sometimes includes a relative humidity sensor. When in a heating (heat) mode, the thermostat 116 generates a heat request when the temperature measured by the temperature sensor is less than a lower temperature limit. When in a cooling (cool) mode, the thermostat 116 generates a cool request when the temperature measured by the temperature sensor is greater than an upper temperature limit. The upper and lower temperature limits may be set based on a setpoint temperature plus and minus a respective predetermined amount (such as 1, 2, 3, 4, 5 degrees Fahrenheit). The setpoint temperature may be set to a predetermined temperature by default and may be adjusted by a user.


In many systems, the air handler unit 136 is located inside the building, while the condensing unit 164 is located outside the building. The present disclosure is not limited to that arrangement, however, and applies to other systems including, as examples only, systems where the components of the air handler unit 136 and the condensing unit 164 are located in close proximity to each other or even in a single enclosure. The single enclosure may be located inside or outside of the building. In various implementations, the air handler unit 136 may be located in a basement, garage, or attic. In ground source systems, where heat is exchanged with the earth, the air handler unit 136 and the condensing unit 164 may be located near the earth, such as in a basement, crawlspace, garage, or on the first floor, such as when the first floor is separated from the earth by only a concrete slab.


In split HVAC systems, an air handler unit is often located indoors and a condensing unit is often located outdoors. In heat pump systems, the function of the air handler unit and the condensing unit are reversed depending on the mode of the heat pump. As a result, although the present disclosure uses the terms air handler unit and condensing unit, the terms indoor unit and outdoor unit could be used instead in the context of a heat pump. The terms indoor unit and outdoor unit emphasize that the physical locations of the components stay the same while their roles change depending on the mode of the heat pump. A reversing valve selectively reverses the flow of refrigerant from what is shown in FIG. 1 depending on whether the system is heating the building or cooling the building in a heat pump system. When the flow of refrigerant is reversed, the roles of the evaporator and condenser are reversed—in other words, refrigerant evaporation occurs in what is labeled the condenser while refrigerant condensation occurs in what is labeled as the evaporator.


In FIG. 2, an example condensing unit 268 is shown for a heat pump implementation in which the HVAC system would include the condensing unit 268 in place of the condensing unit 164 of FIG. 1. The condensing unit 268 may be configured similarly to the condensing unit 164 of FIG. 1. Although referred to as the condensing unit 268, the mode of the heat pump determines whether the condenser 152 of the condensing unit 268 is actually operating as a condenser or as an evaporator. A reversing valve 272 is controlled by a control module 276 and determines whether the compressor 148 discharges compressed refrigerant toward the condenser 152 (cooling mode) or away from the condenser 152 (heating mode). The control module 276 controls the reversing valve 272 and the compressor 148 based on the control signals. The control module 276 may receive power from, for example, the transformer 147 of the air handler unit 136 or the incoming AC power line.



FIG. 3 includes a functional block diagram of an example indoor air quality (IAQ) sensor module 304 that can be used with an HVAC system and/or one or more other mitigation devices. The IAQ sensor module 304 includes one or more of: a temperature sensor 308, a relative humidity sensor 312, a particulate sensor 316, a VOC sensor 320, and a carbon dioxide sensor 324. The IAQ sensor module may also include one or more other IAQ sensors, such as occupancy, barometric pressure, airflow, light, sound, etc. The included sensors of the IAQ sensor module 304 will be referred to collectively as IAQ sensors 326. The IAQ sensor module 304 may also include a sampling module 328 and a transceiver module 332.


A power supply 336 may receive AC power from a standard wall outlet (or receptacle) 340 via a plug 344. For example, the standard wall outlet 340 may provide nominal 120 V or nominal 240 V AC power. The power supply 336 may include an AC-to-DC converter that converts the AC power into DC power, such as 5 V, 12 V, or 24 V DC power. The power supply 336 supplies power to the components of the IAQ sensor module 304, including the sensors, the sampling module 328, and the transceiver module 332. In various implementations, the power supply 336 may provide two or more different DC voltages to different components of the IAQ sensor module 304. In other implementations, the power supply 336 may be integrated with the plug 344.


Additionally or alternatively, the power supply 336 may include a battery (or multiple batteries) and/or a solar cell (or multiple solar cells) that supplies power to the components of the IAQ sensor module 304. The battery may be replaceable or non-replaceable. In the example of the battery being non-replaceable, the battery may be re-chargeable, such as via a standard wall outlet. In this example, the IAQ sensor module 304 may include a charger that charges the battery using power supplied, for example, via the standard wall outlet 340.


The IAQ sensor module 304 may be portable for easy movement into different rooms of a building. The IAQ sensor module 304 could also be placed outside the building, for example, to measure one or more conditions outside of the building, for calibration, or for other reasons. The temperature sensor 308 measures a temperature of air at the IAQ sensor module 304. The relative humidity sensor 312 measures a relative humidity of air at the IAQ sensor module 304. The particulate sensor 316 measures an amount (for example, micrograms (μg)) of particulate in air (for example, a cubic meter (m3)) at the IAQ sensor module 304 having a diameter that is less than a predetermined size (for example, 2.5 or 10 micrometers (μm)). The VOC sensor 320 measures an amount (for example, parts per billion (ppb)) of VOC in air at the IAQ sensor module 304. The carbon dioxide sensor 324 measures an amount (for example, parts per million (ppm)) of carbon dioxide in air at the IAQ sensor module 304.


The sampling module 328 samples (analog) measurements of the IAQ sensors 326. The sampling module 328 may also digitize and/or store values of the measurements of the IAQ sensors 326. In various implementations, the IAQ sensors 326 may be digital sensors and output digital values corresponding to the respective measured parameters. In such implementations, the sampling module 328 may perform a storage function or may be omitted.


The IAQ sensor module 304 may include one or more expansion ports to allow for connection of additional sensors and/or to allow connection to other devices. Examples of other devices include one or more other IAQ sensor modules, other types of IAQ sensors not included in the IAQ sensor module 304, a home security system, a proprietary handheld device for use by contractors, a mobile computing device, and other types of devices.


The transceiver module 332 transmits frames of data corresponding to predetermined periods of time. Each frame of data may include the measurements of the IAQ sensors 326 over a predetermined period. One or more calculations may be performed for the data of each frame of data, such as averages. Each frame (including the calculations and/or the measurements) may be transmitted to an air filter evaluation device, as discussed further below. The measurements of the IAQ sensors 326 may be sampled at a predetermined rate, such as 10 samples per minute or another suitable rate. In various implementations, individual sensors of the IAQ sensors 326 may be sampled at different rates. Each frame may correspond to a predetermined number of sets of samples (e.g., 10) or a predetermined window of time.


The transceiver module 332 transmits each frame (including the calculations and/or the measurements) to the thermostat 116 and/or a computing device, such as a smartphone, tablet, or another type of computing device. The transceiver module 332 transmits the frames wirelessly via one or more antennas, such as antenna 348, using a proprietary or standardized, wired or wireless protocol, such as Bluetooth, ZigBee (IEEE 802.15.4), 900 Megahertz, 2.4 Gigahertz, or WiFi (IEEE 802.11). The IAQ sensor module 304 may communicate directly with the thermostat 116 and/or the separate computing device. In various implementations, a gateway is implemented, which creates a wireless network for the IAQ sensor module 304, the thermostat 116, and the separate computing device.


Referring now to FIG. 4, a functional block diagram of an HVAC evaluation system is presented. In an example implementation, the air filter evaluation system includes a testing device 404, a first sensor module 408, and the thermostat 116. The testing device 404 is configured to determine whether an HVAC system can properly operate with an air filter that removes a substantial percentage of sub-micron particulate matter—for example, a MERV 14 rated air filter. The testing device 404 is configured to receive temperature data from the first sensor module 408 and the thermostat 116. The first sensor module 408 is located near a supply vent 412 that emits air supplied from the air handler unit 136 or within ductwork leading to the supply vent 412. The first sensor module 408 is configured to measure and transmit the temperature of the air supplied by the air handler unit 136. The first sensor module 408 may be implemented by the IAQ sensor module 304.


In other implementations, the HVAC evaluation system may include one or more of a second sensor module 416, a third sensor module 420, and a current sensor module 424. The second sensor module 416 is located near a return air vent 430 that supplies air to the air handler unit 136 or within the ductwork leading to the filter 104. The second sensor module 416 is configured to measure and transmit the temperature of the air returned to the air handler unit 136. The third sensor module 420 is located in a room that is supplied with air from the air handler unit 136 and is configured to measure and transmit the temperature of the air in the room. For example, the third sensor module 420 may be located near or integrated with the thermostat 116. The second sensor module 416 and the third sensor module 420 may be IAQ sensors such as the IAQ sensor module 304. The current sensor module 424 is configured to measure the current that flows through a motor of the circulator blower 108 and to transmit the measured current to the testing device 404.



FIG. 5 is a functional block diagram of an example implementation of the testing device 404 and may be used to implement the systems and methods described in this document. The testing device 404 may be a digital computer, such as a laptop, a desktop, a workstation, a personal digital assistant, a smartphone, a tablet, or other appropriate computer. In other implementations, the testing device 404 may be a controller associated with the HVAC system—for example, the thermostat 116. The components shown, connections, relationships between components, and corresponding functions are meant to be example only, and are not meant to limit implementations of the disclosure described and/or claimed in this document.


The testing device 404 includes a processor 508, a memory 512, a non-volatile storage 516, a display 520, input devices 524, and a communications interface 530. Each of the components 508, 512, 516, 524, and 530 are interconnected using various busses. The processor 508 executes instructions from the memory 512, and may operate on (read and/or write) data stored in the memory 512. Generally, the memory 512 includes volatile memory, such as dynamic random access memory. The processor 508 communicates, potentially via a chipset (not shown), with the non-volatile storage 516, which may include flash memory acting as a cache of instructions and/or data.


In various implementations, larger capacity and lower cost storage may also be included in the non-volatile storage 516. For example, optical drives, tape drives, or magnetic storage media, such as hard drives, may be used to store data in the non-volatile storage 516. Active portions of the data and/or instructions may be cached in the memory 512 and/or in flash memory portions of the non-volatile storage 516.


The input devices 524 receive user input, and may include devices such as a keyboard, a mouse, a touchpad, a digitizer tablet, etc. The display 520 displays data to a user and, in various implementations, may be combined with a touch sensitive input device in the form of a touchscreen. The communications interface 530 allows the testing device 404 to communicate with the thermostat 116, the first sensor module 408, the second sensor module 416, the third sensor module 420, the current sensor module 424, and other computing devices.



FIG. 6 is a functional block diagram showing the testing device 404 communicating with the thermostat 116, the first sensor module 408, the second sensor module 416, the third sensor module 420, the current sensor module 424, and a remote testing system 604. The testing device 404 is connected to the remote testing system 604 via the Internet 608. The remote testing system 604 includes a testing server 612 and an HVAC database 616. The HVAC database 616 stores information of various HVAC components such as the air handler unit 136 and the circulator blower 108. The testing server 612 is configured to receive data identifying an HVAC component, for example, a model number, from the testing device 404, retrieve the information associated with the identified HVAC component from the HVAC database 616, and transmit the information to the testing device 404.



FIGS. 7A-7C are a flowchart depicting an example method for evaluating the use of an air filter—for example, a MERV 14 rated air filter—in an HVAC system. In an example implementation, control may be performed by the testing device 404. In other implementations, control may be performed by the testing device 404 and the thermostat 116, which may be a WiFi thermostat. In various implementations, control may be performed partially or completely by a mobile device (such as a tablet or smartphone) that communicates with the sensors directly or via the testing device 404.


Control begins with 702 where control selectively causes display of an instruction to install a new baseline air filter, such as a new MERV 7 rated air filter, as the air filter 104. For example, control may display this instruction in response to information indicating that the existing air filter is dirty or non-standard. For example, control may assess dirtiness of the existing air filter based on information provided by the contractor or runtime data provided by the HVAC system; if control determines that the existing air filter has been in place for more than 3 months, control may assume that the existing air filter is dirty. The new baseline air filter may be included as part of an installation package.


Control continues with 704. At 704, control receives information regarding the parameters of the of the HVAC system. For example, the testing device 404 may prompt an operator to enter a model number of the air handler unit 136 using the input devices 524 of the testing device 404. In various implementations, the operator may be a building owner, such as a homeowner, or an HVAC contractor. The testing device 404 may also prompt the operator to enter additional information about the HVAC system, such as the British Thermal Unit (BTU) rating or the cooling tonnage of the HVAC system. Alternatively, the testing device 404 may transmit the model number entered by the operator to the remote testing system 604. In response the testing server 612 retrieves information stored in the HVAC database 616 that is associated with the model number and transmits the information to the testing device 404. Control then continues with 706.


At 706, control obtains the current heating/cooling setting of the HVAC system. For example, the testing device 404 may communicate with the thermostat 116 to obtain this information or may prompt the operator to provide the information via the input devices 524. Control then continues with 708. At 708, control determines whether the HVAC system is set to cool. If so, control progresses to 710; otherwise, control transfers to 712. At 712, control determines whether the HVAC system includes a heat pump. If so, control transfers to 714; otherwise, control transfers to 710. At 714, control causes an instruction to turn on the backup electric heat to be displayed to the operator. Control continues with 710. When the HVAC system includes a heat pump and is not set to cool, the use of backup electric heat produces more consistent temperature differentials and, therefore, improves the accuracy of the HVAC system evaluation.


At 710, control causes an instruction to be displayed requesting that the operator activate the HVAC system by adjusting the thermostat. For example, the testing device 404 may instruct the operator to lower the thermostat temperature if the HVAC system is set to cool or to increase the thermostat temperature if the HVAC system is set to heat. Control then continues with 716. At 716, control determines whether the HVAC system has been activated. The testing device 404 may communicate with the thermostat 116 to determine if the HVAC system is activated or may prompt the operator to use the input devices 524 to confirm that the HVAC is activated. If 716 is false, control returns to 710. If 716 is true, control progress to 718 where control delays for a first predetermined period of time, such as 10 minutes. The delay provides sufficient time for temperatures (such as the supply air temperature) to stabilize. Control then progresses to 720.


At 720, control obtains the measured air supply temperature. For example, the testing device 404 may receive the air supply temperature transmitted by the first sensor module 408. Control then progresses to 722. At 722, control obtains an air temperature approximating the return air temperature. For example, the testing device 404 may receive a room air temperature transmitted by either the thermostat 116 or the third sensor module 420. Alternatively, if the testing device determines that the room temperature differs significantly—for example, more than 25%—from an air temperature of the return air received from the second sensor module 416, the testing device 404 may use the air temperature of the return air from the second sensor module 416. Control continues with 724.


At 724, control calculates the absolute value of the difference between the supply air temperature and the room air temperature and stores the value as Base_Δ_Temp. Control then progress to 726. At 726, control determines an acceptable range of values for the difference between the supply air temperature and the room air temperature for the HVAC system. The testing device 404 uses the received information of the HVAC system to determine the acceptable range. For example, the testing device 404 may retrieve an acceptable range associated with the air handler unit 136 stored in the non-volatile storage 516. Alternatively, the testing device 404 may communicate with the remote testing system 604 to obtain the acceptable range associated with the air handler unit 136. Control then continues with 728.


At 728, control determines whether the calculated value of Base_Δ_Temp is within the acceptable range. If 728 is true, control progresses to 730, as described below. If 728 is false, control transfers to 732.


At 732, control generates an alert indicating that the temperature difference of the HVAC system with the baseline filter installed is unacceptable. The testing device 404 may present the alert to the operator on the display 520. If the currently installed filter is not new, the filter may be dirty enough that airflow restrictions have resulted in the Base_Δ_Temp being outside the acceptable range. In such a case, control may return to 702 to instruct the user to install a new baseline filter.


However, if the filter is new, other system problems (such as airflow restrictions, refrigerant charge problems, compressor issues) may have caused the Base_Δ_Temp to fall outside the acceptable range. In such a case, the alert may indicate that contractor diagnosis is necessary. Control then ends.


At 730, control obtains a current through a motor of the circulator blower 108 and stores the value as Base_Current. The testing device 404 may receive the current transmitted by the current sensor module 424. Alternatively, the testing device 404 may prompt the operator to use the input devices 524 to enter the current supplied to the circulator blower 108. At 734, control determines an acceptable range of values for the measured current. The testing device 404 uses the received information of the HVAC system to determine the acceptable range. For example, the testing device 404 may retrieve an acceptable range associated with the air handler unit 136 stored in the non-volatile storage 516. Alternatively, the testing device 404 may communicate with the remote testing system 604 to obtain the acceptable range associated with the air handler unit 136. Control then continues with 736 of FIG. 7B.


At 736, control determines whether the Base_Current is within the acceptable range. If 736 is false, control transfers to 738. At 738, control generates an alert indicating that the current through the motor of the circulator blower 108 is not within the acceptable range. Control then ends. If 736 is true, control progresses to 740 as described below. In some implementations, the current through the motor of the circulator blower 108 is not used in the evaluation process. In such implementations, elements 730-738 may be omitted and, if 728 is true, control progresses directly to 740.


At 740, control determines airflow of the air handler unit 136. The testing device 404 may determine the airflow based on the difference between the supply air temperature and the room air temperature using known airflow calculation formulas. In some implementations, additional information, such as the BTU rating of the HVAC system, may be used to determine the airflow. For example, the testing device 404 may approximate the airflow as a ratio of adjusted BTUs to temperature split. The adjusted BTUs may be calculated by dividing the BTU rating of the HVAC system by a scalar, such as 1.08. The temperature split may be calculated as the difference between the supply and return air temperatures.


Control continues with 742. At 742, control determines an acceptable range of airflow values for HVAC system. The testing device 404 uses the received information of the HVAC system to determine the acceptable range. For example, the testing device 404 may retrieve an acceptable range associated with the air handler unit 136 stored in the non-volatile storage 516. Alternatively, the testing device 404 may communicate with the remote testing system 604 to obtain the acceptable range associated with the air handler unit 136. Control then continues with 744.


At 744, control determines whether the determined airflow is within the acceptable range. If 744 is false, control transfers to 746. At 746, control generates an alert that indicates that the airflow of the HVAC system is not within the acceptable range. Control then ends. If 744 is true, control progresses to 748, as described below. In some implementations, the airflow of the HVAC system is not used in the evaluation process. In such implementations, elements 740-746 may be omitted and, if 736 is true, control progresses directly to 748.


At 748, control causes instructions to be displayed prompting the operator to turn off the HVAC system and replace the baseline air filter with a new, MERV 14 rated air filter. At 750, control then causes a display of an instruction to activate the HVAC system by adjusting the thermostat. The testing device 404 may use the display 520 to display the instructions. Control then continues with 752. As described above, the testing device 404 may instruct the operator to lower the thermostat temperature if the HVAC system is set to cool or to increase the thermostat temperature if the HVAC system is set to heat.


At 752, control determines whether the HVAC system has been activated. The testing device 404 may communicate with the thermostat 116 to determine if the HVAC system is activated. Alternatively, the testing device 404 may prompt the operator to use the input devices 524 to confirm that the HVAC is activated. If 752 is false, control returns to 750. If 752 is true, control progress to 754 where control delays for a second predetermined period of time, such as 10 minutes. The delay provides sufficient time for temperatures to stabilize. Control then progresses to 756.


At 756, control obtains the measured air supply temperature. As described above, the testing device 404 may receive the air supply temperature transmitted by the first sensor module 408. Control then progresses to 758. At 758, control obtains a new measured value approximating return air temperature. Control continues with 760. At 760, control calculates the absolute value of the difference between the supply air temperature and the room air temperature and stores the value as High_Ref_Δ_Temp. Control then continues with 762 of FIG. 7C.


At 762, control obtains a current through the motor of the circulator blower 108 while the air filter with the high MERV rating is installed and stores the value as High_Ref_Current. As described above, the testing device 404 may receive the current transmitted by the current sensor module 424 or prompt the operator to use the input devices 524 to enter the current through the motor of the circulator blower 108. Control then continues with 764. At 764, control determines whether the High_Ref_Current is more than a predetermined percentage (such as 120%) of the Base_Current. If so, control transfers to 766; otherwise, control transfers to 768. At 766, control generates an alert indicating the fan current while the air filter with the high MERV rating is installed is not acceptable—the current is too high. Control then ends. In some implementations, the current through the motor of the circulator blower 108 is not used in the evaluation process. In such implementations, elements 762-766 may be omitted and control progresses directly from 760 to 768.


At 768, control determines airflow of the air handler unit 136 while the air filter with the high MERV rating is installed. The testing device 404 may determine the airflow of the HVAC system as previously described. Control continues with 770. At 770, control determines whether the determined airflow is within the acceptable range of airflow values for the HVAC system or that the airflow of the air handler unit 136 while the high MERV rated air filter is installed is not less than 90% of the airflow of the air handler unit 136 while the baseline air filter was installed. If 770 is false, control transfers to 772. At 772, control generates an alert indicating that the airflow of the HVAC system while the air filter with the high MERV rating is installed is not within the acceptable range. Control then ends. If 770 is true, control progresses to 774, as described below. In some implementations, the airflow of the HVAC system is not used in the evaluation process. In such implementations, elements 768-772 may be omitted and if 764 is true, control progresses directly to 774.


At 774, control determines whether the calculated value of High_Ref_Δ_Temp is within the acceptable range. If 774 is false, control progresses to 776, as described below. If 774 is true, control transfers to 778. At 778, control causes an indication that an air filter with a MERV 14 rating can be used in the HVAC system to be displayed. The testing device 404 may display the indication on the display 520. Control then ends.


At 776, control causes an indication that the temperature difference of the HVAC system while the air filter with a MERV 14 rating is installed is not acceptable to be displayed. At 780, control calculates a change per filter rating level based on the Base A Temp and the High_Ref_Δ_Temp. For example, the testing device 404 may use the following equation to determine the value of the change per filter rating:







change


per


fitler


rating

=



Base_Δ

_Temp

-

High_Ref



_Temp




High_Grade

_MERV

-
Baseline_MERV






Baseline_MERV and High_Grade_MERV are the MERV ratings of the baseline filter and the high grade filter, respectively. Control then continues with 782, where control determines the highest suitable MERV rated air filter for the HVAC system based on the determined change per filter rating level. For example, the testing device 404 may use the following equation to set the value of the highest suitable MERV rating:







highest


suitable






MERV


rating

=

7
+



Base_Δ

_Temp

-

Acceptable_Δ

_Temp



change


per


filter


rating


level







At 784, the control causes an indication of the highest MERV rated air filter that can be used in the HVAC system to be displayed. Control then ends. If the MERV 14 filter is determined not to be suitable, control may disable the HVAC system temporarily so that a more suitable filter can be installed.



FIGS. 8A-8B are a flowchart depicting an example method for evaluating the use of an air filter with a high MERV rating in an HVAC system using only measured air temperatures. The flowchart illustrated in FIGS. 8A and 8B is the flowchart depicted in FIGS. 7A-7C with the elements related to the current through the motor of the circulator blower 108 and the airflow of the HVAC system omitted.


In some implementations, control ends after 778. In other implementations, after 778, control delays for a predetermined usage period—for example, 1 month, 3 months, 6 months, 9 months, or 12 months—and then re-evaluates the HVAC system with respect to the air filter with the high MERV rating.


In other words, after the air filter with the high MERV rating has been installed in the HVAC system for the usage period, control may again perform elements 750-760 and 774-784 to evaluate the performance of the HVAC system. If control determines that after the predetermined usage period, the temperature difference is not within the acceptable range, control may use particulate matter levels collected by at least one IAQ sensor to determine an average particulate matter level for the usage period. Control then compares the average particulate matter level for the usage period to a predetermined standard particulate matter level. If the average particulate matter level is greater than the standard particulate matter level, control may generate an alert that indicates the filter may be full and suggests replacing the installed filter with a new air filter that has the same MERV rating as the installed air filter.


The foregoing description is merely illustrative in nature and is in no way intended to limit the disclosure, its application, or uses. The broad teachings of the disclosure can be implemented in a variety of forms. Therefore, while this disclosure includes particular examples, the true scope of the disclosure should not be so limited since other modifications will become apparent upon a study of the drawings, the specification, and the following claims. It should be understood that one or more steps within a method may be executed in different order (or concurrently) without altering the principles of the present disclosure. Further, although each of the embodiments is described above as having certain features, any one or more of those features described with respect to any embodiment of the disclosure can be implemented in and/or combined with features of any of the other embodiments, even if that combination is not explicitly described. In other words, the described embodiments are not mutually exclusive, and permutations of one or more embodiments with one another remain within the scope of this disclosure.


Spatial and functional relationships between elements (for example, between modules, circuit elements, semiconductor layers, etc.) are described using various terms, including “connected,” “engaged,” “coupled,” “adjacent,” “next to,” “on top of,” “above,” “below,” and “disposed.” Unless explicitly described as being “direct,” when a relationship between first and second elements is described in the above disclosure, that relationship can be a direct relationship where no other intervening elements are present between the first and second elements, but can also be an indirect relationship where one or more intervening elements are present (either spatially or functionally) between the first and second elements. As used herein, the phrase at least one of A, B, and C should be construed to mean a logical (A OR B OR C), using a non-exclusive logical OR, and should not be construed to mean “at least one of A, at least one of B, and at least one of C.”


In the figures, the direction of an arrow, as indicated by the arrowhead, generally demonstrates the flow of information (such as data or instructions) that is of interest to the illustration. For example, when element A and element B exchange a variety of information but information transmitted from element A to element B is relevant to the illustration, the arrow may point from element A to element B. This unidirectional arrow does not imply that no other information is transmitted from element B to element A. Further, for information sent from element A to element B, element B may send requests for, or receipt acknowledgements of, the information to element A.


In this application, including the definitions below, the term “module” or the term “controller” may be replaced with the term “circuit.” The term “module” may refer to, be part of, or include: an Application Specific Integrated Circuit (ASIC); a digital, analog, or mixed analog/digital discrete circuit; a digital, analog, or mixed analog/digital integrated circuit; a combinational logic circuit; a field programmable gate array (FPGA); a processor circuit (shared, dedicated, or group) that executes code; a memory circuit (shared, dedicated, or group) that stores code executed by the processor circuit; other suitable hardware components that provide the described functionality; or a combination of some or all of the above, such as in a system-on-chip.


The module may include one or more interface circuits. In some examples, the interface circuits may include wired or wireless interfaces that are connected to a local area network (LAN), the Internet, a wide area network (WAN), or combinations thereof. The functionality of any given module of the present disclosure may be distributed among multiple modules that are connected via interface circuits. For example, multiple modules may allow load balancing. In a further example, a server (also known as remote, or cloud) module may accomplish some functionality on behalf of a client module.


The term code, as used above, may include software, firmware, and/or microcode, and may refer to programs, routines, functions, classes, data structures, and/or objects. The term shared processor circuit encompasses a single processor circuit that executes some or all code from multiple modules. The term group processor circuit encompasses a processor circuit that, in combination with additional processor circuits, executes some or all code from one or more modules. References to multiple processor circuits encompass multiple processor circuits on discrete dies, multiple processor circuits on a single die, multiple cores of a single processor circuit, multiple threads of a single processor circuit, or a combination of the above. The term shared memory circuit encompasses a single memory circuit that stores some or all code from multiple modules. The term group memory circuit encompasses a memory circuit that, in combination with additional memories, stores some or all code from one or more modules.


The term memory circuit is a subset of the term computer-readable medium. The term computer-readable medium, as used herein, does not encompass transitory electrical or electromagnetic signals propagating through a medium (such as on a carrier wave); the term computer-readable medium may therefore be considered tangible and non-transitory. Non-limiting examples of a non-transitory, tangible computer-readable medium are non-volatile memory circuits (such as a flash memory circuit, an erasable programmable read-only memory circuit, or a mask read-only memory circuit), volatile memory circuits (such as a static random access memory circuit or a dynamic random access memory circuit), magnetic storage media (such as an analog or digital magnetic tape or a hard disk drive), and optical storage media (such as a CD, a DVD, or a Blu-ray Disc).


The apparatuses and methods described in this application may be partially or fully implemented by a special purpose computer created by configuring a general purpose computer to execute one or more particular functions embodied in computer programs. The functional blocks, flowchart components, and other elements described above serve as software specifications, which can be translated into the computer programs by the routine work of a skilled technician or programmer.


The computer programs include processor-executable instructions that are stored on at least one non-transitory, tangible computer-readable medium. The computer programs may also include or rely on stored data. The computer programs may encompass a basic input/output system (BIOS) that interacts with hardware of the special purpose computer, device drivers that interact with particular devices of the special purpose computer, one or more operating systems, user applications, background services, background applications, etc.


The computer programs may include: (i) descriptive text to be parsed, such as HTML (hypertext markup language), XML (extensible markup language), or JSON (JavaScript Object Notation) (ii) assembly code, (iii) object code generated from source code by a compiler, (iv) source code for execution by an interpreter, (v) source code for compilation and execution by a just-in-time compiler, etc. As examples only, source code may be written using syntax from languages including C, C++, C#, Objective-C, Swift, Haskell, Go, SQL, R, Lisp, Java®, Fortran, Perl, Pascal, Curl, OCaml, Javascript®, HTML5 (Hypertext Markup Language 5th revision), Ada, ASP (Active Server Pages), PHP (PHP: Hypertext Preprocessor), Scala, Eiffel, Smalltalk, Erlang, Ruby, Flash®, Visual Basic®, Lua, MATLAB, SIMULINK, and Python®.

Claims
  • 1. A heating, ventilation, and air conditioning (HVAC) control system comprising: a processor; anda computer-readable medium that includes instructions executable by the processor, wherein the instructions include: selectively generating a replacement request for an operator to replace a first air filter installed in an air handler of an HVAC system with a second air filter, wherein (i) the first air filter has a first particulate matter removal efficiency rating and (ii) the second air filter has a second particulate matter removal efficiency rating that is greater than the first particulate matter removal efficiency rating,in response to activation of the HVAC system following installation of the second air filter, delaying for a first predetermined period of time and then obtaining (i) a first temperature that represents a temperature of air downstream of the air handler and (ii) a second temperature that represents a temperature of air upstream of the air handler,calculating a first temperature difference between the first temperature and the second temperature,determining whether the first temperature difference is within an acceptable range,in response to the first temperature difference being within the acceptable range, (i) operating the HVAC system using the second air filter and (ii) generating an alert indicating compatibility of the second air filter with the HVAC system, andin response to determining that the first temperature difference is outside of the acceptable range, disabling operation of the HVAC system pending replacement of the second air filter.
  • 2. The HVAC control system of claim 1 wherein the instructions include: while the first air filter is installed, delaying for a second predetermined period of time following HVAC activation and then obtaining (i) a third temperature that represents a temperature of air downstream of the air handler and (ii) a fourth temperature that represents a temperature of air upstream of the air handler,calculating a second temperature difference between the third temperature and the fourth temperature,determining whether the second temperature difference is within the acceptable range, andin response to determining that the second temperature difference is outside of the acceptable range, preventing generation of the replacement request.
  • 3. The HVAC control system of claim 2 wherein the instructions further include selecting between and performing one of: designating an existing air filter installed in the HVAC system as the first air filter; andgenerating an initial request to replace the existing air filter with the first air filter.
  • 4. The HVAC control system of claim 2 wherein the instructions further include: while the first air filter is installed, obtaining a first current value indicating current consumed by a circulator blower of the HVAC system;determining a threshold based on the first current value;in response to activation of the HVAC system following installation of the second air filter, obtaining a second current value indicating current consumed by the circulator blower; andin response to the second current value being greater than the threshold, generating an alert indicating incompatibility of the second air filter with the HVAC system.
  • 5. The HVAC control system of claim 1 wherein the instructions further include: in response to activation of the HVAC system following installation of the second air filter, obtaining a current value indicating current consumed by a circulator blower of the HVAC system; andin response to the current value being greater than a threshold, generating an alert indicating incompatibility of the second air filter with the HVAC system.
  • 6. The HVAC control system of claim 1 wherein the instructions further include: determining an acceptable range of airflow for the HVAC system;in response to activation of the HVAC system following installation of the second air filter, obtaining an airflow value indicating airflow through ductwork of the HVAC system; andin response to the airflow value being outside of the acceptable range of airflow, generating an alert indicating incompatibility of the second air filter with the HVAC system.
  • 7. The HVAC control system of claim 1 wherein the instructions further include, in response to determining that the first temperature difference is outside of the acceptable range: calculating a change per rating based on the first particulate matter removal efficiency rating, the second particulate matter removal efficiency rating, and the first temperature difference;determining a highest suitable particulate matter removal efficiency rating for the HVAC system based on the change per rating; andgenerating an indication of the highest suitable particulate matter removal efficiency rating for the HVAC system.
  • 8. The HVAC control system of claim 1 comprising a first sensor module located at a supply vent of the HVAC system, wherein the first sensor module is configured to measure the first temperature.
  • 9. The HVAC control system of claim 1 wherein the second temperature is obtained from one of a thermostat, a second sensor module located at a return vent of the HVAC system, and a third sensor module located within a conditioned space of the HVAC system, wherein the third sensor module is configured to measure the second temperature.
  • 10. The HVAC control system of claim 1 wherein the instructions further include, in response to installation of the second air filter, generating a request for the operator to activate the HVAC system.
  • 11. The HVAC control system of claim 10 wherein the instructions further include, in response to installation of the second air filter: determining whether the HVAC system is set to a heating mode; andin response to the HVAC system including a heat pump and being set to the heating mode, generating a request for the operator to activate backup electric heat.
  • 12. The HVAC control system of claim 1 wherein the first particulate matter removal efficiency rating and the second particulate matter removal efficiency rating are minimum efficiency reporting value (MERV) ratings.
  • 13. The HVAC control system of claim 1 where the instructions further include, in response to the first temperature difference being within the acceptable range: delaying for a predetermined usage period and then obtaining (i) a third temperature that represents a temperature of air downstream of the air handler and (ii) a fourth temperature that represents a temperature of air upstream of the air handler,calculating a second temperature difference between the third temperature and the fourth temperature,determining whether the second temperature difference is within the acceptable range, andin response to the second temperature difference being within the acceptable range, continue operating the HVAC system using the second air filter.
  • 14. A method for controlling a heating, ventilation, and air conditioning (HVAC) control system, the method comprising: selectively generating a replacement request for an operator to replace a first air filter installed in an air handler of an HVAC system with a second air filter, wherein (i) the first air filter has a first particulate matter removal efficiency rating and (ii) the second air filter has a second particulate matter removal efficiency rating that is greater than the first particulate matter removal efficiency rating,in response to activation of the HVAC system following installation of the second air filter, delaying for a first predetermined period of time and then obtaining (i) a first temperature that represents a temperature of air downstream of the air handler and (ii) a second temperature that represents a temperature of air upstream of the air handler,calculating a first temperature difference between the first temperature and the second temperature,determining whether the first temperature difference is within an acceptable range,in response to the first temperature difference being within the acceptable range, (i) operating the HVAC system using the second air filter and (ii) generating an alert indicating compatibility of the second air filter with the HVAC system, andin response to determining that the first temperature difference is outside of the acceptable range, disabling operation of the HVAC system pending replacement of the second air filter.
  • 15. The method of claim 14 further comprising: while the first air filter is installed, delaying for a second predetermined period of time following HVAC activation and then obtaining (i) a third temperature that represents a temperature of air downstream of the air handler and (ii) a fourth temperature that represents a temperature of air upstream of the air handler,calculating a second temperature difference between the third temperature and the fourth temperature,determining whether the second temperature difference is within the acceptable range, andin response to determining that the second temperature difference is outside of the acceptable range, preventing generation of the replacement request.
  • 16. The method of claim 15 further comprising: while the first air filter is installed, obtaining a first current value indicating current consumed by a circulator blower of the HVAC system;determining a threshold based on the first current value;in response to activation of the HVAC system following installation of the second air filter, obtaining a second current value indicating current consumed by the circulator blower; andin response to the second current value being greater than the threshold, generating an alert indicating incompatibility of the second air filter with the HVAC system.
  • 17. The method of claim 14 further comprising: in response to activation of the HVAC system following installation of the second air filter, obtaining a current value indicating current consumed by a circulator blower of the HVAC system; andin response to the current value being greater than a threshold, generating an alert indicating incompatibility of the second air filter with the HVAC system.
  • 18. The method of claim 14 further comprising: determining an acceptable range of airflow for the HVAC system;in response to activation of the HVAC system following installation of the second air filter, obtaining an airflow value indicating airflow through ductwork of the HVAC system; andin response to the airflow value being outside of the acceptable range of airflow, generating an alert indicating incompatibility of the second air filter with the HVAC system.
  • 19. The method of claim 14 further comprising, in response to determining that the first temperature difference is outside of the acceptable range: calculating a change per rating based on the first particulate matter removal efficiency rating, the second particulate matter removal efficiency rating, and the first temperature difference;determining a highest suitable particulate matter removal efficiency rating for the HVAC system based on the change per rating; andgenerating an indication of the highest suitable particulate matter removal efficiency rating for the HVAC system.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is the U.S. National Phase Application under 35 U.S.C. 371 of International Application No. PCT/US2019/028400, filed Apr. 19, 2019, which claims the benefit of U.S. Provisional Application No. 62/660,903, filed Apr. 20, 2018. The entire disclosures of the application referenced above are incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2019/028400 4/19/2019 WO
Publishing Document Publishing Date Country Kind
WO2019/204786 10/24/2019 WO A
US Referenced Citations (518)
Number Name Date Kind
4135370 Hosoda et al. Jan 1979 A
4136529 McCarty Jan 1979 A
4735054 Beckey Apr 1988 A
4922808 Smith May 1990 A
4977818 Taylor et al. Dec 1990 A
5067394 Cavallero Nov 1991 A
5129234 Alford Jul 1992 A
5259553 Shyu Nov 1993 A
5267897 Drees Dec 1993 A
5303561 Bahel et al. Apr 1994 A
5351855 Nelson et al. Oct 1994 A
5394934 Rein et al. Mar 1995 A
5428964 Lobdell Jul 1995 A
5598715 Edmisten Feb 1997 A
5707005 Kettler et al. Jan 1998 A
5832411 Schatzmann et al. Nov 1998 A
5887784 Haas Mar 1999 A
5892690 Boatman et al. Apr 1999 A
5904896 High May 1999 A
6161764 Jatnieks Dec 2000 A
6187263 Nielsen Feb 2001 B1
6230980 Hudson May 2001 B1
6251344 Goldstein Jun 2001 B1
6288646 Skardon Sep 2001 B1
6358374 Obee et al. Mar 2002 B1
6369716 Abbas et al. Apr 2002 B1
6377858 Koeppe Apr 2002 B1
6391102 Bodden et al. May 2002 B1
6392536 Tice et al. May 2002 B1
6394427 Guetersloh et al. May 2002 B1
6406367 Chou et al. Jun 2002 B1
6406506 Moredock et al. Jun 2002 B1
6423118 Becerra et al. Jul 2002 B1
6448896 Bankus et al. Sep 2002 B1
6466133 Skardon Oct 2002 B1
6493638 McLean et al. Dec 2002 B1
6494053 Forkosh et al. Dec 2002 B1
6494940 Hak Dec 2002 B1
6503462 Michalakos et al. Jan 2003 B1
6557365 Dinnage et al. May 2003 B2
6578770 Rosen Jun 2003 B1
6582295 Abouchaar Jun 2003 B1
6588250 Schell Jul 2003 B2
6622993 Mulvaney Sep 2003 B2
6691526 Gether et al. Feb 2004 B2
6698219 Sekhar et al. Mar 2004 B2
6711470 Hartenstein et al. Mar 2004 B1
6752713 Johnson, Jr. Jun 2004 B2
6790136 Sharp et al. Sep 2004 B2
6826920 Wacker Dec 2004 B2
6843068 Wacker Jan 2005 B1
6848266 Sheehan Feb 2005 B1
6884399 Reisfeld et al. Apr 2005 B2
6898960 Bodnar May 2005 B1
6902592 Green et al. Jun 2005 B2
6916239 Siddaramanna et al. Jul 2005 B2
6919809 Blunn et al. Jul 2005 B2
6920874 Siegel Jul 2005 B1
6924326 Meyer et al. Aug 2005 B2
6926079 Kensok et al. Aug 2005 B2
6941193 Frecska et al. Sep 2005 B2
6952715 Kronz Oct 2005 B1
7016791 Carnegie et al. Mar 2006 B2
7048776 Moore et al. May 2006 B2
7059400 Sekhar et al. Jun 2006 B2
7114343 Kates Oct 2006 B2
7151264 Ehlers, Sr. Dec 2006 B2
7178350 Shah Feb 2007 B2
7186290 Sheehan et al. Mar 2007 B2
7222494 Peterson et al. May 2007 B2
7241326 Han et al. Jul 2007 B2
7253743 Liang et al. Aug 2007 B2
7255831 Wei et al. Aug 2007 B2
7261762 Kang et al. Aug 2007 B2
7266960 Shah Sep 2007 B2
7267017 Bodnar Sep 2007 B1
RE39871 Skardon Oct 2007 E
7291206 Kiern et al. Nov 2007 B1
7291315 Obee et al. Nov 2007 B2
7302313 Sharp et al. Nov 2007 B2
7306650 Slayzak et al. Dec 2007 B2
7325748 Acker, Jr. Feb 2008 B2
7326388 Uslenghi et al. Feb 2008 B2
7357828 Bohlen Apr 2008 B2
7366588 Kim et al. Apr 2008 B2
7368003 Crapser et al. May 2008 B2
7369955 Lee May 2008 B2
7378064 Uslenghi et al. May 2008 B2
7381244 Tyndall et al. Jun 2008 B2
7389158 Desrochers et al. Jun 2008 B2
7398821 Rainer et al. Jul 2008 B2
7407624 Cumberland et al. Aug 2008 B2
7413594 Paterson et al. Aug 2008 B2
7434413 Wruck Oct 2008 B2
7475828 Bartlett et al. Jan 2009 B2
7552030 Guralnik et al. Jun 2009 B2
7552635 Chang et al. Jun 2009 B2
7574871 Bloemer et al. Aug 2009 B2
7621985 Kuo Nov 2009 B1
7632178 Meneely, Jr. Dec 2009 B2
7632340 Brady et al. Dec 2009 B2
7635845 Jensen et al. Dec 2009 B2
7645323 Massenbauer-Strafe et al. Jan 2010 B2
7651256 Lee et al. Jan 2010 B2
7721560 Carpenter May 2010 B2
7740184 Schnell et al. Jun 2010 B2
7748639 Perry Jul 2010 B2
7758408 Hagentoft Jul 2010 B2
7765792 Rhodes et al. Aug 2010 B2
7780092 Ahmed Aug 2010 B2
7789951 Sung et al. Sep 2010 B2
7811363 Zhang Oct 2010 B2
7836712 Sasao et al. Nov 2010 B2
7837958 Crapser et al. Nov 2010 B2
7839275 Spalink et al. Nov 2010 B2
7857884 Bohlen Dec 2010 B2
7857890 Paterson et al. Dec 2010 B2
7918407 Patch Apr 2011 B2
7932490 Wang et al. Apr 2011 B2
7938896 Paterson et al. May 2011 B2
7951327 Reisfeld et al. May 2011 B2
7966104 Srivastava et al. Jun 2011 B2
7979163 Terlson et al. Jul 2011 B2
8024982 Pettit et al. Sep 2011 B2
8024986 Pettit et al. Sep 2011 B2
8066558 Thomle et al. Nov 2011 B2
8079575 Novotny et al. Dec 2011 B2
8083398 Doll Dec 2011 B2
8086407 Chan et al. Dec 2011 B2
8097067 Fox et al. Jan 2012 B2
8118236 Lestage et al. Feb 2012 B2
8147302 Desrochers et al. Apr 2012 B2
8172154 Figley et al. May 2012 B1
8190367 Bassa May 2012 B2
8219249 Harrod et al. Jul 2012 B2
8231112 Cao et al. Jul 2012 B2
8231716 Poon Jul 2012 B2
8239066 Jennings et al. Aug 2012 B2
8267164 Lestage et al. Sep 2012 B2
8292270 Terlson et al. Oct 2012 B2
8318084 Johnson et al. Nov 2012 B2
8328910 Mulholland Dec 2012 B2
8333816 Kummer et al. Dec 2012 B2
8335593 Johnson et al. Dec 2012 B2
8347643 Taras et al. Jan 2013 B2
8392025 Orfield Mar 2013 B2
8397522 Springer et al. Mar 2013 B2
8398917 Itzhak et al. Mar 2013 B2
8398923 Mole Mar 2013 B2
8402815 Marra Mar 2013 B2
8423192 Liu Apr 2013 B2
8428901 Hsieh Apr 2013 B2
8442694 Jang May 2013 B2
8467977 Xia et al. Jun 2013 B2
8473429 Cheng et al. Jun 2013 B2
8479560 Cobianu et al. Jul 2013 B2
8492722 Chang et al. Jul 2013 B2
8496514 Kim et al. Jul 2013 B2
8496735 Jones et al. Jul 2013 B2
8529830 Zhou et al. Sep 2013 B2
8544288 MacDonald Oct 2013 B2
8554375 Nerling Oct 2013 B2
8555662 Peterson et al. Oct 2013 B2
8560126 Vass et al. Oct 2013 B2
8567204 Seem Oct 2013 B2
8574343 Bisson et al. Nov 2013 B2
8615327 Takagi et al. Dec 2013 B2
8640970 Dorendorf Feb 2014 B2
8651391 Patch Feb 2014 B2
8683845 Fleischer et al. Apr 2014 B2
8689572 Evans et al. Apr 2014 B2
8691144 Garfield et al. Apr 2014 B2
8696800 Storm Apr 2014 B2
8700227 Vass et al. Apr 2014 B2
8726721 Minges May 2014 B2
8734565 Hoglund et al. May 2014 B2
8744629 Wallaert et al. Jun 2014 B2
8755942 Bonilla et al. Jun 2014 B2
8757154 Schuller Jun 2014 B2
8758262 Rhee et al. Jun 2014 B2
8761945 Hadzidedic Jun 2014 B2
8768521 Amundson et al. Jul 2014 B2
8797159 Kirkpatrick et al. Aug 2014 B2
8813583 Kilps et al. Aug 2014 B2
8838037 Niederberger et al. Sep 2014 B2
8852501 Hedman Oct 2014 B2
8860569 Hruska et al. Oct 2014 B2
8880224 Eaton et al. Nov 2014 B2
8883083 Law et al. Nov 2014 B2
8886785 Apte et al. Nov 2014 B2
8889079 Zahedi Nov 2014 B2
8892797 Grohman Nov 2014 B2
8899055 Kuenzel et al. Dec 2014 B2
8900518 Seck Dec 2014 B2
8907803 Martin Dec 2014 B2
8920537 Seike Dec 2014 B2
8922971 Abate et al. Dec 2014 B2
8930030 Bester et al. Jan 2015 B2
8955761 Malloy Feb 2015 B2
8958918 Voysey Feb 2015 B2
8961881 Hagh et al. Feb 2015 B2
8963728 Kates Feb 2015 B2
8973845 Kanaya et al. Mar 2015 B2
8978445 Bergsten Mar 2015 B2
8986427 Hauville et al. Mar 2015 B2
9010172 Xia et al. Apr 2015 B2
9019111 Sloo et al. Apr 2015 B1
9023304 Nikles May 2015 B2
9040007 Hui et al. May 2015 B2
9040008 Zahedi May 2015 B2
9061230 Barakat Jun 2015 B2
9073009 Vanderspurt et al. Jul 2015 B2
9078082 Gill et al. Jul 2015 B2
9080784 Dean-Hendricks et al. Jul 2015 B2
9091497 Schwendinger et al. Jul 2015 B2
9092040 Fadell et al. Jul 2015 B2
9095636 Schmidt et al. Aug 2015 B2
9097432 Kreft et al. Aug 2015 B2
9101904 Yates et al. Aug 2015 B2
9103557 Choi et al. Aug 2015 B2
9109981 Sharp Aug 2015 B2
9109989 Hamann et al. Aug 2015 B2
9121618 Fisher et al. Sep 2015 B2
9121837 Chan et al. Sep 2015 B2
9143344 Cho et al. Sep 2015 B2
9157647 Leen et al. Oct 2015 B2
9164519 Holloway Oct 2015 B2
9166992 Stickle et al. Oct 2015 B1
9175872 McKie et al. Nov 2015 B2
9182751 Reeder Nov 2015 B1
9186609 Sherman, III et al. Nov 2015 B2
9200804 Park et al. Dec 2015 B2
9208676 Fadell et al. Dec 2015 B2
9234667 Ito et al. Jan 2016 B2
9250633 Chen et al. Feb 2016 B2
9254459 Miller Feb 2016 B2
9261290 Storm Feb 2016 B2
9278304 Lee Mar 2016 B2
9280884 Schultz et al. Mar 2016 B1
9286779 Shaw et al. Mar 2016 B2
9304511 Blount et al. Apr 2016 B2
9304521 Kates Apr 2016 B2
9308492 Obee et al. Apr 2016 B2
9310088 Melikov et al. Apr 2016 B2
9311807 Schultz et al. Apr 2016 B2
9316410 Meirav et al. Apr 2016 B2
9317659 Balinski et al. Apr 2016 B2
9323895 Balinski et al. Apr 2016 B2
9325516 Pera et al. Apr 2016 B2
9328936 Meirav et al. May 2016 B2
9332322 Niemeyer et al. May 2016 B2
9344753 Yerli May 2016 B2
9347678 Stakutis et al. May 2016 B2
9347860 Lalain et al. May 2016 B1
9347925 Shen et al. May 2016 B2
9353964 Kates May 2016 B2
9353966 Finkam May 2016 B2
9360229 Modi et al. Jun 2016 B2
9366448 Dean-Hendricks et al. Jun 2016 B2
9372010 Jung et al. Jun 2016 B2
9375672 Meirav et al. Jun 2016 B2
9377768 Grohman Jun 2016 B2
9390388 Drees et al. Jul 2016 B2
9395096 Fisher et al. Jul 2016 B2
9399187 Meirav et al. Jul 2016 B2
9400119 Malloy Jul 2016 B2
9404666 Terlson et al. Aug 2016 B2
9405301 Montero et al. Aug 2016 B2
9410752 Wallace Aug 2016 B2
9416987 Ragland et al. Aug 2016 B2
9417005 Roth et al. Aug 2016 B1
9417637 Matsuoka et al. Aug 2016 B2
9423144 Evans et al. Aug 2016 B2
9423146 Bruce et al. Aug 2016 B2
9427728 Sidheswaran et al. Aug 2016 B2
9449491 Sager et al. Sep 2016 B2
9459606 Takayama et al. Oct 2016 B2
9463339 Nozaki Oct 2016 B2
9464818 Holm et al. Oct 2016 B2
9498555 Hingorani et al. Nov 2016 B2
9520250 O'Keeffe Dec 2016 B2
9522210 Worrilow Dec 2016 B2
9523665 Fleischer et al. Dec 2016 B2
9535407 Durham et al. Jan 2017 B2
9537670 Cho et al. Jan 2017 B2
9557069 Matsui et al. Jan 2017 B2
9568445 Klein et al. Feb 2017 B2
9593859 Niazi Mar 2017 B2
9593861 Burnett Mar 2017 B1
9597627 Zhang Mar 2017 B2
9599353 Cur et al. Mar 2017 B2
9599357 Vogel Mar 2017 B2
9612188 Johnston et al. Apr 2017 B2
9618224 Emmons et al. Apr 2017 B2
9638434 Alston May 2017 B2
9638436 Arensmeier et al. May 2017 B2
9643117 Rahlin et al. May 2017 B2
9645112 Char May 2017 B2
9677777 Karamanos et al. Jun 2017 B2
9694309 Weatherman et al. Jul 2017 B2
9696049 Metteer Jul 2017 B2
9696735 Matsuoka et al. Jul 2017 B2
9709291 Dostmann Jul 2017 B2
9714844 Stamatakis et al. Jul 2017 B1
9715242 Pillai et al. Jul 2017 B2
9723380 Patel et al. Aug 2017 B2
9726579 Han et al. Aug 2017 B2
9729945 Schultz et al. Aug 2017 B2
9737842 Matlin et al. Aug 2017 B2
9752789 Staniforth et al. Sep 2017 B2
9759437 Kim et al. Sep 2017 B2
9764623 Fruehsorger et al. Sep 2017 B2
9789436 Meirav et al. Oct 2017 B2
9797620 Matsugi et al. Oct 2017 B2
9797812 Hamann et al. Oct 2017 B2
9803877 Yun Oct 2017 B2
9810441 Dean-Hendricks et al. Nov 2017 B2
9816724 Phannavong et al. Nov 2017 B2
9821260 Stoner, Jr. et al. Nov 2017 B2
9833734 Fox et al. Dec 2017 B2
9835348 Storm et al. Dec 2017 B2
9839872 Spartz Dec 2017 B2
9851299 Bertaux Dec 2017 B2
9854335 Patel et al. Dec 2017 B2
9856883 Olsen Jan 2018 B1
9857301 Nourbakhsh et al. Jan 2018 B1
9890969 Martin Feb 2018 B2
9986313 Schwarzkopf et al. May 2018 B2
9990842 Zribi et al. Jun 2018 B2
10976065 Kohn et al. Apr 2021 B2
11371726 Pham Jun 2022 B2
11543147 Rite Jan 2023 B1
20010045159 Johnson et al. Nov 2001 A1
20030070544 Mulvaney et al. Apr 2003 A1
20040006886 Lee Jan 2004 A1
20040109800 Pahlman et al. Jun 2004 A1
20050098495 Hughes May 2005 A1
20050277381 Banerjee et al. Dec 2005 A1
20060055547 DiMaggio Mar 2006 A1
20060267756 Kates Nov 2006 A1
20070013534 DiMaggio Jan 2007 A1
20070082601 Desrochers et al. Apr 2007 A1
20070155305 Heidel et al. Jul 2007 A1
20080014857 Spadafora et al. Jan 2008 A1
20080022705 Clearman Jan 2008 A1
20080182506 Jackson et al. Jul 2008 A1
20090079098 Ezra Mar 2009 A1
20090126382 Rubino et al. May 2009 A1
20090179338 Cottier Jul 2009 A1
20090204262 Nishimura Aug 2009 A1
20110010071 Rhodes et al. Jan 2011 A1
20110052453 McLarnon et al. Mar 2011 A1
20110125044 Rhee et al. May 2011 A1
20110151766 Sherman et al. Jun 2011 A1
20110184250 Schmidt et al. Jul 2011 A1
20120095684 Chan et al. Apr 2012 A1
20120323374 Dean-Hendricks et al. Dec 2012 A1
20130014522 Lukasse et al. Jan 2013 A1
20130144527 Kuhnreichi Jun 2013 A1
20130226352 Dean-Hendricks et al. Aug 2013 A1
20130287626 Benedek et al. Oct 2013 A1
20130289778 Ishizaka Oct 2013 A1
20130323781 Moularat et al. Dec 2013 A1
20130344609 Mayer et al. Dec 2013 A1
20140020559 Meirav et al. Jan 2014 A1
20140053586 Poecher et al. Feb 2014 A1
20140079564 Becerra et al. Mar 2014 A1
20140083292 Weiden Mar 2014 A1
20140109649 Fleischer et al. Apr 2014 A1
20140129004 Takayama et al. May 2014 A1
20140139342 Brown May 2014 A1
20140190679 Roosli et al. Jul 2014 A1
20140207693 Horst et al. Jul 2014 A1
20140217185 Bicknell Aug 2014 A1
20140241970 Smyrniotis et al. Aug 2014 A1
20140244043 Foster Aug 2014 A1
20140262837 Sidheswaran et al. Sep 2014 A1
20140266755 Arensmeier et al. Sep 2014 A1
20140313048 Sabata et al. Oct 2014 A1
20140346237 Mirza et al. Nov 2014 A1
20140354976 Evenstad et al. Dec 2014 A1
20140365017 Hanna et al. Dec 2014 A1
20140370800 Ansari Dec 2014 A1
20150011154 Holm et al. Jan 2015 A1
20150032264 Emmons et al. Jan 2015 A1
20150046179 Kang Feb 2015 A1
20150050876 Sakai et al. Feb 2015 A1
20150052975 Martin Feb 2015 A1
20150077737 Belinsky et al. Mar 2015 A1
20150088786 Anandhakrishnan Mar 2015 A1
20150140919 Zwijack May 2015 A1
20150153061 Riberon et al. Jun 2015 A1
20150153317 Krebs Jun 2015 A1
20150168003 Stefanski et al. Jun 2015 A1
20150168964 Wu et al. Jun 2015 A1
20150202563 Spartz Jul 2015 A1
20150241318 Hamann et al. Aug 2015 A1
20150246150 De Koster et al. Sep 2015 A1
20150256355 Pera et al. Sep 2015 A1
20150285524 Saunders Oct 2015 A1
20150285755 Moss et al. Oct 2015 A1
20150289802 Thomas et al. Oct 2015 A1
20150298043 Meirav et al. Oct 2015 A1
20150301513 Sager et al. Oct 2015 A1
20150306271 Willette Oct 2015 A1
20150323206 Chan et al. Nov 2015 A1
20150323427 Sharp Nov 2015 A1
20150330650 Abiprojo et al. Nov 2015 A1
20150330817 Law et al. Nov 2015 A1
20150330861 Alsaleem Nov 2015 A1
20150335834 Anandhakrishnan Nov 2015 A1
20150347910 Fadell et al. Dec 2015 A1
20150348400 Zribi et al. Dec 2015 A1
20150354848 Abel et al. Dec 2015 A1
20150369503 Flaherty et al. Dec 2015 A1
20150369507 Flaherty et al. Dec 2015 A1
20150370986 Hayward Dec 2015 A1
20150375187 Yates et al. Dec 2015 A1
20160015277 Dumoulin et al. Jan 2016 A1
20160015278 Campo et al. Jan 2016 A1
20160015314 Dusanter et al. Jan 2016 A1
20160015315 Auphan et al. Jan 2016 A1
20160026201 Vellanki et al. Jan 2016 A1
20160029805 Arens et al. Feb 2016 A1
20160041074 Pliskin Feb 2016 A1
20160048143 Chan et al. Feb 2016 A1
20160054023 Baker et al. Feb 2016 A1
20160061472 Lee et al. Mar 2016 A1
20160061794 Schultz et al. Mar 2016 A1
20160078751 Sloo et al. Mar 2016 A1
20160088438 O'Keeffe Mar 2016 A1
20160089089 Kakkar et al. Mar 2016 A1
20160091216 Tran et al. Mar 2016 A1
20160107114 Fu et al. Apr 2016 A1
20160110782 Tadajewski Apr 2016 A1
20160116181 Aultman et al. Apr 2016 A1
20160125714 Kates et al. May 2016 A1
20160132031 Kozura et al. May 2016 A1
20160133108 Bucsa et al. May 2016 A1
20160139038 Oldsen et al. May 2016 A1
20160147506 Britt et al. May 2016 A1
20160153674 Lancaster Jun 2016 A1
20160153884 Han et al. Jun 2016 A1
20160161137 Chen et al. Jun 2016 A1
20160169544 Fischer et al. Jun 2016 A1
20160169545 Mangsuli et al. Jun 2016 A1
20160178586 Stark Jun 2016 A1
20160209065 Hagstrom et al. Jul 2016 A1
20160209070 Hrejsa et al. Jul 2016 A1
20160209316 Buseyne et al. Jul 2016 A1
20160228809 Meirav et al. Aug 2016 A1
20160228811 Meirav et al. Aug 2016 A1
20160231014 Ro et al. Aug 2016 A1
20160238527 Tseng et al. Aug 2016 A1
20160245784 Matocha et al. Aug 2016 A1
20160256590 Taghipour Sep 2016 A1
20160263263 Robert Sep 2016 A1
20160263268 Kirschman Sep 2016 A1
20160292781 Nahmad et al. Oct 2016 A1
20160313290 Forzani et al. Oct 2016 A1
20160332170 Wennerstrom Nov 2016 A1
20160334121 Oobayashi Nov 2016 A1
20160348938 Simon et al. Dec 2016 A1
20160356511 Messinger et al. Dec 2016 A1
20160363332 Blackley Dec 2016 A1
20160363339 Blackley Dec 2016 A1
20160370021 Wiley et al. Dec 2016 A1
20160370029 Kurelowech Dec 2016 A1
20160377305 Kwa Dec 2016 A1
20170007954 Ehdaie Jan 2017 A1
20170010006 Kim et al. Jan 2017 A1
20170021298 Williams et al. Jan 2017 A1
20170080373 Engelhard Mar 2017 A1
20170089810 Novaro Mar 2017 A1
20170095762 Wolowicz Apr 2017 A1
20170097165 Yasuda et al. Apr 2017 A1
20170098230 Orangkhadivi Apr 2017 A1
20170108231 Hasegawa et al. Apr 2017 A1
20170130981 Willette et al. May 2017 A1
20170159964 Arai et al. Jun 2017 A1
20170167743 Dempsey et al. Jun 2017 A1
20170189844 McLeod et al. Jul 2017 A1
20170193788 Kim et al. Jul 2017 A1
20170193792 Bermudez Rodriguez et al. Jul 2017 A1
20170234570 Livchak et al. Aug 2017 A1
20170248332 Wright et al. Aug 2017 A1
20170268797 Mowris et al. Sep 2017 A1
20170273256 Hutzel Sep 2017 A1
20170273845 Phillips et al. Sep 2017 A1
20170292432 Hall et al. Oct 2017 A1
20170314812 Hurley Nov 2017 A1
20170323550 Patil et al. Nov 2017 A1
20170328591 Kelly et al. Nov 2017 A1
20170333838 Bender et al. Nov 2017 A1
20170341001 Jousma et al. Nov 2017 A1
20170341002 Cama et al. Nov 2017 A1
20170343227 Mowris Nov 2017 A1
20170347499 Ross et al. Nov 2017 A1
20170350610 Michielsen et al. Dec 2017 A1
20170350611 Su et al. Dec 2017 A1
20170356670 Zhang Dec 2017 A1
20170368488 Wall Dec 2017 A1
20180001249 Sher Jan 2018 A1
20180017275 Merrill Jan 2018 A1
20180017278 Klein et al. Jan 2018 A1
20180017513 Le Neel et al. Jan 2018 A1
20180017536 Le Neel et al. Jan 2018 A1
20180021613 Li Jan 2018 A1
20180023831 Ha et al. Jan 2018 A1
20180023834 Hatch et al. Jan 2018 A1
20180050302 Kamiyama et al. Feb 2018 A1
20180073759 Zhang et al. Mar 2018 A1
20180119974 Kotake et al. May 2018 A1
20180135877 Seiler May 2018 A1
20180148180 Fagundes et al. May 2018 A1
20190023099 Li et al. Jan 2019 A1
20210041119 Pham et al. Feb 2021 A1
20230070313 Douglas et al. Mar 2023 A1
Foreign Referenced Citations (59)
Number Date Country
102019120 Apr 2011 CN
102353751 Feb 2012 CN
102393882 Mar 2012 CN
202792383 Mar 2013 CN
203090662 Jul 2013 CN
104089361 Oct 2014 CN
203949322 Nov 2014 CN
104359815 Feb 2015 CN
104534617 Apr 2015 CN
103958976 Nov 2016 CN
106196506 Dec 2016 CN
107676931 Feb 2018 CN
107940682 Apr 2018 CN
10108274 Sep 2002 DE
0893657 Jan 1999 EP
1402935 Mar 2004 EP
1904905 Apr 2008 EP
2450640 May 2012 EP
2134556 Jul 2012 EP
2368616 Dec 2012 EP
2564114 Mar 2013 EP
2713159 Apr 2014 EP
2891019 Jul 2015 EP
2937961 Oct 2015 EP
3040948 Jul 2016 EP
3073883 Oct 2016 EP
3121524 Jan 2017 EP
H05180487 Jul 1993 JP
09-280640 Oct 1997 JP
H09-280640 Oct 1997 JP
2007083106 Apr 2007 JP
5231476 Jul 2013 JP
2014208343 Nov 2014 JP
2015152175 Aug 2015 JP
100355352 Sep 2002 KR
20030016787 Mar 2003 KR
20040061677 Jul 2004 KR
100509332 Aug 2005 KR
20050120911 Dec 2005 KR
20070072787 Jul 2007 KR
100819077 Apr 2008 KR
100930346 Dec 2009 KR
20100089605 Aug 2010 KR
20110074222 Jun 2011 KR
20110093329 Aug 2011 KR
101199180 Nov 2012 KR
101566592 Nov 2015 KR
101765454 Aug 2017 KR
101771053 Aug 2017 KR
20170122043 Nov 2017 KR
20180007381 Jan 2018 KR
92350 Jul 2015 LU
WO-9409324 Apr 1994 WO
WO-2005110580 Nov 2005 WO
WO-2013163612 Oct 2013 WO
WO-2015078672 Jun 2015 WO
WO-2016102337 Jun 2016 WO
WO-2016139544 Sep 2016 WO
WO-2017146637 Aug 2017 WO
Non-Patent Literature Citations (28)
Entry
U.S. Appl. No. 17/048,993, filed Oct. 19, 2020, Jeffrey N. Arensmeier.
U.S. Appl. No. 17/078,031, filed Oct. 22, 2020, Stuart K. Morgan.
U.S. Appl. No. 17/048,993, filed Oct. 19, 202, Jeffrey N. Arensmeier.
U.S. Appl. No. 17/048,866, filed Oct. 19, 2020, Hung M. Pham.
Notice of Allowance regarding U.S. Appl. No. 17/048,993 dated Oct. 19, 2020.
“Clean Your Air with Keen Home Smart Filters”, Keen Home, Inc., <https://keenhome.io/pages/smart-filter> 2018.
“Home Comfort: Digital, App-Based Climate Control”, Ecovent Systems Inc., <https://www.ecoventsystems.com/> 2018.
“Meet the Keen Home Zoning System—How It Works”, Keen Home, Inc., <https://keenhome.io/pages/how-it-works> 2018.
Doty, Steve, et al., “Building Operations: Balancing Energy Efficiency with Indoor Air Quality”, 2009.
El Mankibi, Mohamed, “Indoor air quality control in case of scheduled or intermittent occupancy based building: Development of a scale model”, 2009.
Emmerich, Steven, et al., “Indoor air quality impacts of residential HVAC systems, phase 1 report: Computer simulation plan”, NISTIR 5346: Building and Fire Research Laboratory; National Institute of Standards and Technology: http://www.researchgate.net/profile/Steven_Emmerich/publication/236454476_Indoor_air_quality_impacts_of_residential_HVAC_systems_phase_1_report_Computer_simulation_plan/links/565f5f2308ae1ef929854780.pdf; Feb. 1994; 108 Pages.
Footbot; Product Specifications; www.footbot.io. Accessed Sep. 13, 2017.
Herberger, Simone, et al., “Indoor Air Quality Monitoring Improving Air Quality Perception”, 2012.
International Search Report of the ISA/KR regarding International Application No. PCT/US2018/062190 dated Mar. 21, 2019.
Shaw, C. Y., “Maintaining acceptable air quality in office buildings through ventilation”, Construction Technology Updated No. 3, Institute for Research in Construction, National Research Council of Canada, Jan. 1997; 4 Pages.
Turner, William J.N., et al., “Energy and IAQ implications of residential ventilation cooling”, ResearchGate: http://www.researchgate.net/profile/William_Turner10/publication/278961832_Energy_and_IAQ_implications_of_residential_ventilation_cooling/links/5587e12608aef58c03a06547.pdf, Aug. 2014; 52 pages.
Written Opinion of the ISA/KR regarding International Application No. PCT/US2018/062190 dated Mar. 21, 2019.
Zhong, Lexuan, et al., “Ozonation Air Purification Technology in HVAC Applications”, Concordia University: http://www.researchgate.net/profile/Lexuan_Zhong/publication/260363850_Ozonation_Air_Purification_Technology_in_HVAC_Applications/links/0a85e530e28d98ecf4000000, 2014; 8 Pages.
Non-Final Office Action regarding U.S. Appl. No. 17/078,031 dated Oct. 20, 2021.
Notice of Allowance regarding U.S. Appl. No. 17/078,031 dated Feb. 22, 2022.
Non-Final Office Action for U.S. Appl. No. 17/048,993 dated Aug. 21, 2023.
Non-Final Office Action for U.S. Appl. No. 17/048,866 dated Jul. 20, 2023.
International Search Report of the ISA/KR regarding International Application No. PCT/US2019/028409 dated Aug. 9, 2019.
Written Opinion of the ISA/KR regarding International Application No. PCT/US2019/028409 dated Aug. 9, 2019.
International Search Report of the ISA/KR regarding International Application No. PCT/US2019/028400 dated Aug. 9, 2019.
Written Opinion of the ISA/KR regarding International Application No. PCT/US2019/028400 dated Aug. 9, 2019.
International Search Report of the ISA/KR regarding International Application No. PCT/US2019/028398 dated Aug. 6, 2019.
Written Opinion of the ISA/KR regarding International Application No. PCT/US2019/028398 dated Aug. 6, 2019.
Related Publications (1)
Number Date Country
20210231331 A1 Jul 2021 US
Provisional Applications (1)
Number Date Country
62660903 Apr 2018 US