The invention relates generally to a lift-enhancing mechanism for a canister-launched missile. In particular, this invention relates to embedded wings on the missile exterior that can be unfurled.
Cruise missiles such as RGM-84 Harpoon and the BGM-109 Tomahawk operate for over-the-horizon ranges. The disclosure generally employs metric units with the following abbreviations: length in meters (m) or kilometers (km), mass in kilograms (kg), time in seconds (s) or hours (hr), angles in degrees (°) or radians (rad), force in newtons (N), temperature in kelvins (K), electric current in amperes (A), and energy in joules (J). The respective axi-symmetric diameter and length (including booster) of the Harpoon airframe are 0.34 m and 4.6 m, with a mass of 690 kg and a cruciform wingspan of 0.91 m. The respective axi-symmetric diameter and length (including booster) of the Tomahawk airframe are 0.52 m and 6.25 m, with a mass of 1600 kg and a horizontal wingspan of 2.67 m. The Harpoon and Tomahawk respectively travel at 860 km/hr for at least 124 km and 890 km/hr for between 1300 km and 2500 km depending on variant. The requirement for these missiles to be capable of canister launch, the wings must be folded for stowage.
Conventional missile wings yield disadvantages addressed by various exemplary embodiments of the present invention. In particular, various exemplary embodiments provide a concatenated annular swing-wing tandem lift enhancer (CASTLE) for a canister-launched missile. The CASTLE includes fore and aft housing sections and pluralities of mainstays, airfoils, wing grapples and tension supports. The fore and aft housing sections are circumferentially disposed around the missile along a longitudinal axis of symmetry. The front and rear mainstays are disposed angularly along each housing section.
The airfoils circumferentially stowed around each the housing section. Each airfoil has an outer camber surface and an inner arc surface that provides leading and trailing edges ending at port and starboard tips. The wing grapples disposed on the inner arc surface in proximity to the port and starboard tips. The supports connect the mainstays with corresponding the grapples such that the airfoils deploy radially outward and swing such that each leading edge faces forward in relation to the longitudinal axis. The supports can be flexible lanyards or else rigid struts.
These and various other features and aspects of various exemplary embodiments will be readily understood with reference to the following detailed description taken in conjunction with the accompanying drawings, in which like or similar numbers are used throughout, and in which:
In the following detailed description of exemplary embodiments of the invention, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific exemplary embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments may be utilized, and logical, mechanical, and other changes may be made without departing from the spirit or scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims.
The disclosure generally employs metric units with the following abbreviations: length in meters (m), mass in kilograms (kg), time in seconds (s), angles in degrees (°), force in newtons (N), and energy in joules (J).
For a missile configuration such as Tomahawk, the fore recess housing section 120 can be disposed in mid-body surrounding the fuel tank between a fore portion 140 containing the payload and a mid portion 150, such as the aft body. The aft recess housing section 130 can be located adjacent propulsion between the mid portion 150 and an aft portion 160 such as propulsion or the motor (for boost). The housing sections 120 and 130 can include upstream and downstream channel bands 170 and 180 to contain mainstays 190 shown as anchor hooks onto which to attach lanyards for securing airfoils.
Wing grapples 280 and 290, shown as loops, can be disposed on the inner surface 230 towards the corresponding tips 260 and 270. The airfoils 210 are shown to have an aspect ratio of length to chord of about 2:1, although other proportions can be envisioned without departing from the scope of the invention. The airfoils 210 can be composed of an appropriate light-weight stiff polymer material, such as polypropylene, polystyrene, polyvinylchloride and polychlorotrifluoethylene.
The upper port, bottom and upper starboard airfoils 330, 350 and 370 have leading edges 240 that face anti-clockwise. Bilateral lines 380 denote vertical and horizontal planes of symmetry for the missile portion 110. Exemplary embodiments incorporate an even plurality of such wings 210 angularly disposed around the housing section 120.
As the airfoils deploy, the clockwise airfoils 320, 340 and 360 translate radially outward and twist rotationally clockwise as shown by arrows 460 (towards left) and 470 (towards right) for their respective port and starboard tips 260 and 270. Similarly, the anti-clockwise airfoils 330, 350 and 370 translate radially outward and swing rotationally anti-clockwise as shown by arrows 480 (towards right) and 490 (towards left) for their respective port and starboard tips 260 and 270.
Artisans will recognize that the hexagonal configuration is representative of an exemplary embodiment, and is thus not limiting, in that other even quantities of wings circumferentially arranged around a missile body can be employed. Preferably a number between four and twelve wings, depending on design considerations, are envisioned. Fewer than four wings 210 entail arc curvature on the inner surface 230 that interfere with twist during deployment. More than twelve wings 210 risk excess tension from longer lanyards 420, 430, 440 and 450, as well as reduced lift from shortened chords.
A cutout region 740 on the top airfoil 320 reveals a front anchor 750, while a rear anchor 760 remains obscured as denoted by hash outline. The front and rear anchors 750 and 760, as mainstays 190 in their respective channel bands 170 and 180, secure the wings 210 to the housing section 120, with the clockwise example top airfoil 320 as shown, although the same conditions remain valid for the anti-clockwise airfoils. The fore anchor lanyard 420 connects the front anchor 750 in tension with the port wing grapple 280. The rear anchor lanyard 430 connects the rear anchor 760 in tension with the starboard wing grapple 290. During stowage, the lanyards 420 and 430 can optionally both attach to the anchors 750 and 760 to augment their lengths. Releasable latches on the mainstays 190 (both anchors 750 and 760) enable the lanyards 420, 430, 440 and 450 to extend outward in order to deploy the wings 210.
Aerodynamic drag forces while the missile operates in flight would push the airfoils rearward, although the resulting displacement could be compensated by stiffening the lanyards 420, 430, 440 and 450. Additional brace ties could be incorporated to connect auxiliary wing hooks (not shown) at the leading and trailing edges to the corresponding front and rear anchors 750 and 760 connected by lines with adjustable lengths to enable the bottom airfoil 350 to exhibit an angle of attack for increased lift.
Instead of flexible lanyards, rigid rods or struts present an alternative technique for securing the wings 210 to the housing sections 120 and 130.
The stowed configuration 1010 shows the fore left strut 930 aligned on the front starboard track 830 and connecting to the port grapple 280, as well as the aft right strut 940 aligned on the rear port track 840 and connecting to the starboard grapple 290. A hash arc 1050 denotes the swing path of the grapples 280 and 290 as the airfoil 320 deploys. The tip chords 610 and 620 connect to adjacent airfoils as in view 700.
Direction arrows 1060 in the initial release phase configuration 1070 indicate respective movements of the grapples 280 and 290, as well as the pin joints 1030 and 1040. Phantom positions in hash outline of these markers identify example past and future positions along their respective paths. The configuration 1070 reveals the airfoil 320 has swung out clockwise by about 30° from stowage, with the fore and aft struts 930 and 940 moving apart. In the subsequent phase configuration 1080, the fore and aft struts 930 and 940 move closer together as the airfoil 320 has swung out clockwise by about 60° from stowage. The remaining clockwise airfoils 340 and 360 behave in a similar manner. The anti-clockwise airfoils 330, 350 and 370 operate with fore and aft struts 950 and 960 to swing out in opposite direction.
A missile corresponding to Tomahawk size would have a circumference of 1.63 m, which yields a wing chord of 0.25 m for six airfoils. Assuming a wing span for each deployed airfoil of 0.5 m, this provides an area of 0.125 m2 (square meter). The top and bottom airfoils are horizontal, while the adjacent airfoils slant at 60° from horizontal, thereby offering cos(⅔π)=½ or half the available area. The six concatenated annular wings in a single wing set would enable an effective horizontal wing area of 2×0.125×(2+4×½)=1.0 m2.
The Tomahawk wing span is 2.67 m, so subtracting the missile diameter of 0.62 m leaves an effective length of 2.05 m. For an estimated average chord of 0.3 m, the Tomahawk effective wing area is estimated for these purposes at 0.61 m2. The exemplary configuration for one annular wing set would increase lift surface over the conventional Tomahawk design by 63%, and for twin tandem sets by 225%. Twin tandem sets could be expected to provide better pitch stability than a single set of airfoils.
An added benefit of the exemplary airfoils includes enablement of banking without loss of lift due to the axi-symmetric configuration of the deployed wings. Corresponding values for the Harpoon would exhibit linear dimensions about 35% smaller than for Tomahawk. Because the folded wings on the Harpoon do not insert into the fuselage as those of Tomahawk, recess for the housing sections 120 and 130 may be unnecessary for incorporation of exemplary annular wing sets. A four-wing arrangement could accommodate the AGM-86 Air-Launched Cruise Missile (ALCM) and the AGM-154 Joint Standoff Weapon (JSOW), albeit with an inner surface 230 having a non-cambered planar profile disposed over their rounded rectangular cross-sections.
Effective lift can be estimated by the equation for lift: L=½ c·ρ·A·V2, where c is the lift coefficient estimated at 0.25 at zero angle of attack, ρ is air density of 1.225 kg/m3, A is wing area of 2.0 m for two concatenated wing sets, and V is velocity at 247 m/s. From this, resulting lift is 18.7 kN (kiloNewtons), which slightly exceeds the gravitational force on the Tomahawk missile.
While certain features of the embodiments of the invention have been illustrated as described herein, many modifications, substitutions, changes and equivalents will now occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the embodiments.
The invention described was made in the performance of official duties by one or more employees of the Department of the Navy, and thus, the invention herein may be manufactured, used or licensed by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefor.
Number | Name | Date | Kind |
---|---|---|---|
667048 | Whitman | Jan 1901 | A |
1099784 | Bizas | Jun 1914 | A |
3004489 | Griffith | Oct 1961 | A |
3063375 | Hawley | Nov 1962 | A |
3127838 | Moratti | Apr 1964 | A |
3233547 | Fletcher | Feb 1966 | A |
3589645 | Haglund | Jun 1971 | A |
3602459 | Pesarini | Aug 1971 | A |
4135686 | Herpfer | Jan 1979 | A |
4453426 | Groutage | Jun 1984 | A |
4588146 | Schaeffel, Jr. | May 1986 | A |
4667899 | Wedertz | May 1987 | A |
5615632 | Nedderman, Jr. | Apr 1997 | A |
8985504 | Tao | Mar 2015 | B2 |
9297622 | Roy | Mar 2016 | B2 |
10401134 | Trouillot | Sep 2019 | B2 |
20030178527 | Eisentraut | Sep 2003 | A1 |