The described embodiments relate generally to electronic devices that employ acoustic electrical connectors for electronic devices. More particularly, the present embodiments relate to electronic connectors that can be concealed within an acoustic aperture or other port of an electronic device.
Currently there are a wide variety of electronic devices that have one or more external electronic connectors for communicating with internal circuitry within the electronic device. These external connectors can be used for charging the device and/or for performing uni-directional or bi-directional communications with the device. However, with small electronic devices it may be preferred to predominantly use wireless charging and/or wireless communications since the small electronic devices may not have room for external electrical connectors. Further, it may be desirable to not use external electrical connectors because they disrupt the exterior surface (e.g., the aesthetics) or they are difficult to seal for water resilient or waterproof electronic devices.
However, some electronic devices may still need an external electronic connector for performing settings at the factory and/or for performing repair and diagnostics on the device or for other uses.
New electronic devices may require new features or new methods of implementing external electronic connectors that are concealed, consume little space, provide uninterrupted device aesthetics, are water resilient and/or water proof.
Some embodiments of the present invention relate to electronic devices having an electronic connector concealed within a speaker opening in the electronic device enclosure. A mating connector is configured to fit through the speaker opening and couple to the concealed electrical connector forming a bidirectional communications path with circuitry within the electronic device. The bidirectional communications path can be used to charge, program, diagnose and otherwise communicate with circuitry within the electronic device.
In some embodiments an electronic device comprises an enclosure defining a speaker aperture for emitting sound. A speaker is disposed within the enclosure and includes a diaphragm acoustically coupled to the speaker aperture. An acoustically permeable layer is positioned between the diaphragm and the speaker aperture, and a plurality of electrical contacts are disposed within the speaker aperture, positioned at an outer surface of the acoustically permeable layer and accessible through the speaker aperture.
In some embodiments the acoustically permeable layer includes a layer of acoustic mesh. In various embodiments the layer of acoustic mesh includes one or more electrically conductive fibers that are electrically coupled to at least one of the plurality of electrical contacts. In some embodiments the electronic device further comprises a backing plate disposed between the acoustically permeable layer and the diaphragm and is positioned to support the acoustically permeable layer.
In some embodiments the acoustically permeable layer includes a flexible circuit coupled to the plurality of electrical contacts. In various embodiments the acoustically permeable layer includes an insert-molded portion that is formed around the plurality of electrical contacts. In some embodiments the plurality of electrical contacts are electrically coupled to circuitry within the electronic device through a plurality of pins. In various embodiments a connector guide is formed around the plurality of electrical contacts to guide a mating connector into alignment with the plurality of electrical contacts. In some embodiments the speaker is disposed within a speaker housing and the speaker housing is sealed to the enclosure with one or more seals.
In some embodiments an electronic watch comprises an enclosure formed from a housing and a display screen that are joined together to define an exterior surface of the electronic watch. A speaker is disposed within the enclosure and includes a diaphragm. A speaker opening is defined by the enclosure and is formed at the exterior surface of the electronic watch. A processor is disposed within the enclosure and is coupled to the speaker with one or more conductors that carry signals causing the diaphragm to generate acoustic energy. An acoustic chamber is at least partially defined by the enclosure and couples the diaphragm to the speaker opening. An acoustically permeable layer is positioned between the diaphragm and the speaker opening and has an outer surface facing the speaker opening. A plurality of electrical contacts are disposed on the outer surface and accessible through the speaker opening.
In some embodiments the speaker opening is configured to receive a mating connector that extends from an exterior environment through the enclosure and electrically couples to the plurality of electrical contacts. In various embodiments the acoustically permeable layer includes a layer of acoustic mesh. In some embodiments the layer of acoustic mesh includes one or more electrically conductive fibers that are electrically coupled to at least one of the plurality of electrical contacts. In various embodiments the electronic watch further comprises a backing plate disposed between the acoustically permeable layer and the diaphragm and is positioned to support the acoustically permeable layer.
In some embodiments the acoustically permeable layer includes a flexible circuit coupled to the plurality of electrical contacts. In various embodiments the acoustically permeable layer includes an insert-molded portion that is formed around the plurality of electrical contacts. In some embodiments the plurality of electrical contacts are electrically coupled to circuitry within the electronic watch through a plurality of pins. In various embodiments a connector guide is formed around the plurality of electrical contacts to guide a mating connector into alignment with the plurality of electrical contacts.
In some embodiments the speaker is disposed within a speaker housing and the speaker housing is sealed to the enclosure with one or more seals. In various embodiments the acoustically permeable layer is integrally formed as a portion of a circuit board.
To better understand the nature and advantages of the present invention, reference should be made to the following description and the accompanying figures. It is to be understood, however, that each of the figures is provided for the purpose of illustration only and is not intended as a definition of the limits of the scope of the present invention. Also, as a general rule, and unless it is evident to the contrary from the description, where elements in different figures use identical reference numbers, the elements are generally either identical or at least similar in function or purpose.
Some embodiments of the present invention relate to electronic devices with a concealed electrical connector positioned within a speaker opening formed in an enclosure of the electronic device. A mating connector is configured to fit through the speaker opening and couple to the concealed electrical connector forming a bidirectional communications path with circuitry within the electronic device. The bidirectional communications path can be used to charge, program, diagnose and otherwise communicate with circuitry within the electronic device. By positioning the connector within the enclosure, the connector can be concealed from view, access to the connector can be restricted unless a specifically designed mating connector is used that can fit through the speaker opening and the electronic device is less susceptible to liquid ingression by reducing the number of openings formed in the enclosure since the speaker and the connector are combined within one opening.
While the present invention can be useful for a wide variety of configurations, some embodiments of the invention are particularly useful for electronic devices having small form factors with little space for electrical connectors, devices having aesthetic requirements that may be marred by an external visible electrical connector and/or or devices that need to be water resilient or waterproof, as discussed in more detail below.
For example, in some embodiments an electronic device can include a concealed electrical connector that enables a mating connector to establish one or more electronic communication channels with circuitry within the electronic device. The term concealed may be used to indicate that the connector is substantially imperceptible to the naked eye when viewing the outside of the electronic device. The concealed connector can be positioned within the enclosure of the electronic device and accessible through a speaker opening formed through the enclosure. The connector can include a plurality of contacts that are positioned at an outer surface of an acoustically permeable layer that is formed between a speaker positioned within the electronic device and the speaker opening formed in the enclosure. The plurality of contacts can be formed as a portion of a flexible circuit that couples the plurality of contacts to circuitry within the electronic device. A backing plate can be used to support the acoustic mesh and the plurality of contacts when a mating connector is inserted through the opening and pressed against the plurality of contacts.
In another example the plurality of contacts can be metallic studs that are insert-molded within a portion of the acoustically permeable layer and coupled to circuitry with a flexible circuit or with selective plating formed on a portion of the acoustically permeable layer. In another example a flexible circuit can be used to couple signals between the plurality of contacts and a feedthrough pin that couples signals from the flexible circuit through a waterproof speaker housing and to circuitry within the electronic device. In another example, a connector guide is formed around the plurality of contacts and includes features that guide the mating connector into alignment with the plurality of contacts.
In order to better appreciate the features and aspects of the present disclosure, further context for the disclosure is provided in the following section by discussing one particular implementation of an electronic device that includes a concealed connector according to embodiments of the disclosure. These embodiments are for explanatory purposes only and other embodiments may be employed in other electronic devices. For example, embodiments of the disclosure can be used with any device that receives or transmits audio, video or data signals. In some instances, embodiments of the disclosure are particularly well suited for use with portable electronic media devices because of their potentially small form factor. As used herein, an electronic media device includes any device with at least one electronic component that may be used to present human-perceivable media. Such devices may include, for example, wearable electronic devices (e.g., Apple's watch), portable music players (e.g., MP3 devices and Apple's iPod devices), portable video players (e.g., portable DVD players), cellular telephones (e.g., smart telephones such as Apple's iPhone devices), video cameras, digital still cameras, projection systems (e.g., holographic projection systems), gaming systems, PDAs, as well as tablet (e.g., Apple's iPad devices), laptop or other mobile computers. Some of these devices may be configured to provide audio, video or other data or sensory output.
A speaker opening 140 is formed through enclosure 115 and is coupled to a speaker (not shown in
In some embodiments speaker opening 140 can be a single opening as illustrated in
An acoustically permeable layer 230 is disposed between diaphragm 210 and speaker opening 140. Acoustically permeable layer 230 allows acoustic energy that is generated by diaphragm 210 to pass through and exit speaker opening 140. Acoustically permeable layer 230 includes flexible circuit 250 and further includes a plurality of electrical contacts 235 attached to an outer surface 240 of the acoustically permeable layer. Outer surface 240 faces speaker opening 140. Plurality of electrical contacts 235 form a portion of concealed connector 237 and are positioned such that they are accessible by mating connector 145 that can be inserted through speaker opening 140. Acoustic chamber 220 includes a first portion 221 that is positioned between diaphragm 210 and acoustically permeable layer 230 and a second portion 222 that is positioned between acoustically permeable layer 230 and speaker opening 140.
In some embodiments a backing plate 245 is disposed between acoustically permeable layer 230 and diaphragm 210 and positioned against the acoustically permeable layer to support the acoustically permeable layer when mating connector 145 is pushed against and mated to concealed connector 237.
In the embodiment illustrated in
In some embodiments, mating connector 145 includes multiple pins 147 that correspond in number to the number of contacts 235. Each individual pin can be spring-loaded and deflect when the mating connector is pushed into contact with contacts 235. Pins 147 can be used to accommodate variations in position of contacts 235 so a reliable connection is made.
One or more seals 255 can be positioned between speaker housing 215 and enclosure 115 to seal acoustic chamber 220 such that liquid, dust or other contaminants cannot pass beyond the speaker housing and damage circuitry within electronic device 100. In some embodiments plurality of contacts 235 can be electrically decoupled from the internal circuitry via electrical means or mechanical means such that liquid that enters acoustic chamber 220 cannot short out concealed connector 237. To couple the plurality of contacts 235 to the internal circuitry pressure may need to be exerted on mating connector 145 such that backing plate 245 deforms and the circuit is temporarily completed or electrical switches can be used to decouple contact pads from the circuitry within electronic device 100. In further embodiments a non-electrically conductive self-healing elastomeric coating can be applied over plurality of contacts 235 that can be displaced and/or temporarily penetrated by pins 147 of mating connector 145.
Flexible circuit 250, as disclosed herein, describes a circuit that includes an insulating polymer film having conductive circuit patterns affixed thereto and can also include a polymer coating to protect the conductor circuits. Flexible circuits can include a single metal layer, double sided metal layers, multilayer and rigid/flex combination constructions. Flexible circuits can be formed by etching metal foil cladding (normally of copper) from polymer bases, plating metal or printing of conductive inks, among other processes. Flexible circuits can also include one or more electronic passive or active components attached thereto. Flexible circuits can be fabricated using a lamination process that adheres layers together with an adhesive or polymer under pressure, elevated temperature and/or vacuum.
Backing plate 245 as described herein can be fabricated as a portion of enclosure 115, as a portion of speaker housing 215, as a portion of acoustically permeable layer 230 or as a separate component. Backing plate 245 can be fabricated from metal (including powdered metal known as MIM), plastic, ceramic or any other material and has one or more openings to allow sound to pass through, as described in more detail below.
As discussed above, contacts 235 can be formed on flexible circuitry 250 and the flexible circuit can include electrical traces that couple signals between circuitry within the electronic device 100 and contacts 235. Flexible circuit 250 can include one or more routing portions 315a, 315b that route signals from plurality of contacts 235 to circuitry within electronic device 100. In some embodiments each individual contact 235 can have a diameter between 0.1 to 4.0 millimeters and in other embodiments between 0.3 to 2.0 millimeters and in various embodiments between 0.7 to 1.3 millimeters.
In some embodiments a concealed electrical connector as described herein can be positioned in an opening within an electronic device wherein the opening is not a speaker opening but is used for a different purpose. For example, in some embodiments speaker opening 140 (see
The size of connector plate 445 can be small relative to speaker opening 140 (see
One or more traces 455 can be formed from each of studs 440 and routed along connector plate 445, across acoustically permeable layer 430 and coupled with circuitry within electronic device 100 (see
In some embodiments connector plate 445 has a thickness 525 that is between 0.1 and 0.5 millimeters while in other embodiments the thickness is between 0.2 and 0.4 millimeters and in various embodiments the thickness is between 0.25 and 0.35 millimeters.
In some embodiments acoustically permeable layer 430 has a thickness 530 that is between 0.025 and 0.2 millimeters while in other embodiments the thickness is between 0.5 and 0.15 millimeters and in various embodiments the thickness is between 0.075 and 0.125 millimeters.
In some embodiments, instead of one or more metal pins 705, an alternative electrical interconnect can be used and can include an anisotropic conductive elastomer (ACE) including electrically conductive regions separated by electrically insulating regions within an elastomeric panel, a plurality of aligned conductive wires inserted within an elastomeric panel, pogo pins, a wire or any other type of electrical interconnect.
As further illustrated in
For simplicity, various internal components, such as the circuitry, processor, graphics circuitry, bus, memory, storage device and other components of electronic devices 100, 700 and 800 (see
In the foregoing specification, embodiments of the invention have been described with reference to numerous specific details that may vary from implementation to implementation. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense. The sole and exclusive indicator of the scope of the invention, and what is intended by the applicants to be the scope of the invention, is the literal and equivalent scope of the set of claims that issue from this application, in the specific form in which such claims issue, including any subsequent correction. The specific details of particular embodiments may be combined in any suitable manner without departing from the spirit and scope of embodiments of the invention.
Additionally, spatially relative terms, such as “bottom or “top” and the like may be used to describe an element and/or feature's relationship to another element(s) and/or feature(s) as, for example, illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use and/or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as a “bottom” surface may then be oriented “above” other elements or features. The device may be otherwise oriented (e.g., rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
This application claims priority to U.S. provisional patent application Ser. No. 62/562,610, for “CONCEALED CONNECTOR FOR AN ELECTRONIC DEVICE” filed on Sep. 25, 2017 which is hereby incorporated by reference in entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
62562610 | Sep 2017 | US |