This invention relates to a system and method for loosening or fastening a fastener using ultrasonic or acoustic energy. This invention also relates to an optimal fastener design feature to accept ultrasonic or acoustic energy.
Various devices for loosening a threaded connection are known from U.S. Pat. Nos. 3,485,307; 3,861,250; 4,771,661; 4,807,349: 4,812,697; 5,083,358; 6,681,663 and U.S. Publication Nos. 2007/0193420; 2009/0229846 and 2012/0024553. As shown, many relate to vibrations/impact mechanisms that are driven by various means, such as compressed air. It is generally known to persons skilled in the art, especially in the automotive, engine, and airplane technology industries, that fasteners, screws, nuts, or bolts are oftentimes seized and are difficult to remove from the part. This is due to a number of factors, such as corrosion occurring between the threads of the fasteners, screws, nuts, or bolts and the threads of the structure to which they are threadably mounted. In some applications, carbon deposits and foreign debris can build up and slowly “eat away” at the various metals, such as aluminum, titanium, and steel. When fasteners, screws, nuts, or bolts are unloosened, there is a risk of the fastener head and/or nut breaking during removal, leaving the remaining fastener in the threaded opening.
Although most attention is paid to the problem of loosening a sticking connection, and in particular threaded connections, until now none of the cited solutions have proven adequate in the airplane engine industry and/or other industries (such as heavy industrial or automotive) to replace or remove fasteners, screws, nuts, or bolts with a high success rate (i.e. without the fasteners, screws, nuts, or bolts breaking during removal procedure) especially in locations that are subject to severe conditions (i.e. high temperatures, large thermal gradience, corrosion by salt or dissimilar metals, and/or environmental sand/dust). Also, during the repeated heating and cooling cycling the parts grow and shrink at different rates which causes increased strain on the fastener which increases the likelihood of the fastener getting stuck.
There is, therefore, a need for further improvements and to provide further systems and tools particularly for loosening stuck fasteners, screws, nuts, and bolts.
The current available fastener designs are not optimized to receive acoustical or ultrasonic energies. What is also needed, therefore, is an improved design that facilitates acoustical or ultrasonic energy transfer to maximize the energy into the fastener.
While some of the prior art focuses on subjecting the sticking connection to axial and rotational vibrations, such as by an impact wrench and/or hammer, there is a need to provide an improved focused system and tool that increases the chances of successfully removing the fasteners, screws, nuts, and bolts.
What is needed, therefore, is an improved system, tool and method for overcoming one or more of the problems with the prior art tools of the past.
One object of the invention is to provide a system and fastening tool that is adapted to loosen or tighten a fastener using focused acoustic or ultrasonic energy.
Another object of the invention is to provide a system and method and a horn that is adapted and sized to transfer focused ultrasonic or acoustic energy to a predetermined location in the fastener.
Another object of the invention is to provide a plurality of horns each of which comprises of a socket, screwdriver bit, and/or torque bit that generally have and optimized geometry and or flat areas for performing work on a fastener.
Another object of the invention is to provide a fastening tool and system that utilizes an acoustic/ultrasonic generator for generating ultrasonic or acoustic energy that travels into the fastener and becomes concentrated or focused at a predetermined location in the fastener.
Still another object of the invention is to provide a rotational torque applicator that may be used substantially simultaneously as the ultrasonic or acoustic generator to further facilitate loosening or tightening the fastener.
Another object of the invention is to provide the ability to cycle/alternate between tightening and loosening to facilitate freeing the fastener by breaking up debris and corrosion.
Yet another object of the invention is to provide an ultrasonic or acoustic generator and horn that generates cyclic heating between the threads of the fastener and the threads of a structure that threadably receives the fastener.
Yet another object of the invention is to stretch the fastener with ultrasonic or acoustical energy which in turn raises the fastener head or nut from the surface structure.
Still another object of the invention is to provide a system and fastening tool that decreases the “break away torque or breaking force” necessary to loosen a fastener.
Still another object of the invention is to provide a system and method wherein the ultrasonic or acoustic energy is focused at a predetermined location in the fastener.
Another object of the invention is to provide a system and fastening tool wherein the predetermined targeted location is between the head and/or nut and its mating structure surface(s) along with the mating threads of the fastener and structure(s).
Still another object of the invention is to provide a horn having a horn body that either has a socket, screwdriver bit, and/or torque bit on its end or a threaded aperture adapted to receive at least one of a plurality of replaceable tips that are removably and threadably mounted to the horn body.
Yet another object of the invention is to provide a plurality of interchangeable or replaceable tips for mounting on a horn, wherein the plurality of interchangeable or replaceable tips comprise different shapes or sizes to accommodate fasteners of different shapes or sizes.
Another object of the invention is to provide a horn body that is threaded that receives at least one of the plurality of interchangeable or replaceable tips comprising mating threads and where a thread direction of the horn body threads being a direction or handedness that is generally the opposite thread direction of the threads of the fastener.
Another object of the invention is to provide a horn with at least one of the plurality of interchangeable or replaceable tips that is adapted to cause an acoustic energy in the fastener that results in a vortex or helical energy being applied to the fastener in a predetermined direction.
Yet another object of the invention is to provide a system and tool that may comprise of at least one energy transfer facilitator that may comprise but not limited to Teflon, oil, water, gel, foam, glycol, glycerin, and/or a polymer film or a non-energy absorbing spacer.
In one aspect, one embodiment of the invention comprises a fastener tool for loosening or tightening a fastener mounted on a structure, the fastener tool comprising a tool body; a horn adapted and sized to apply an acoustic or ultrasonic energy into the fastener; and an acoustic/ultrasonic generator for generating the acoustic or ultrasonic energy that passes through the horn and into the fastener to facilitate fastening or loosening the fastener. These all may be individual components or can be integrated into an inseparable assembly.
In another aspect, another embodiment of the invention comprises a system for rotating a fastener that is fastened to a structure; the system comprising an acoustic/ultrasonic wave generator for generating an acoustic/ultrasonic signal that passes longitudinally through the fastener to elongate the fastener and to introduce a cyclic strain and heating within the fastener to reduce a frictional force between threads on the fastener and mating threads on the structure; a tool having a horn for transmitting the acoustic/ultrasonic signal into the fastener; and wherein the acoustic/ultrasonic wave generator and the horn cooperate to focus or apply the acoustic/ultrasonic signal a predetermined distance into the fastener in order to reduce a coefficient of friction between the fastener and the structure when the horn is in operative relationship with the fastener and the acoustic/ultrasonic signal is applied thereto.
Another aspect of this invention is to provide the acoustic or ultrasonic energy via a liquid or gel transfer (e.g., water, glycol) agent from the horn and/or generator that may be delivered through a transfer tube like component directly to the bolt/screw head and/or nut which in turn delivers the ultrasonic or acoustic energy to the predetermined location in the fastener. This is especially useful in difficult to reach and minimal clearance applications where a direct horn application is not feasible.
This invention, including all embodiments shown and described herein, could be used alone or together and/or in combination with one or more of the features covered by one or more of the following list of features:
The fastener tool wherein the horn comprises a generally optimized geometry and or flat surface for applying the acoustic or ultrasonic energy to the fastener.
The fastener tool wherein the fastener comprises an end that is directly or indirectly engaged by the horn during loosening or fastening when the acoustic or ultrasonic energy is applied thereto, the acoustic/ultrasonic generator generating the ultrasonic or acoustic energy that travels into the fastener and becomes concentrated or focused at a predetermined location in the fastener.
The fastener tool wherein the fastener tool comprises a rotational torque applicator for applying a rotational torque to the fastener while the ultrasonic or acoustic energy passes into the fastener; wherein the rotational torque is at least one of mechanical torque or an acoustic/ultrasonic torque that is applied substantially simultaneously as the horn causes the acoustic or ultrasonic energy to pass into the fastener.
The fastener tool wherein the horn is adapted to apply the rotational torque substantially simultaneously as the ultrasonic or acoustic energy passes into the fastener.
The fastener tool wherein the horn comprises a socket, screwdriver bit, and/or torque bit sized and adapted to receive a head and/or nut of the fastener with any geometric shape.
The fastener tool wherein the end comprises a head and/or nut that engages the structure at a head and/or nut engagement area of the structure when the fastener is mounted thereto, the predetermined location being in the fastener and under the mating surface of the bolt/screw head and/or nut and the structure.
The fastener tool wherein the end comprises a head and/or nut that becomes situated at a head and/or nut engagement area of the structure when the fastener is mounted thereto, the predetermined location being in the fastener and under the mating surface of the bolt/screw head and/or nut and the structure, such that when the ultrasonic or acoustic energy is applied to the fastener, a friction or pressure between the head and/or nut and its mating surface(s) along with the mating threads of the fastener and structure(s) is at least partly reduced.
The fastener tool wherein the fastener comprises threads that mate with mating threads at a thread-engagement location, the predetermined location is applied under the bolt/screw head or nut and to the mating threads of the bolt/screw and the mating threads of the structure.
The fastener tool wherein the predetermined targeted location is between the head and/or nut and its mating structure surface(s) along with the mating threads of the fastener and structure(s).
The fastener tool wherein the acoustic/ultrasonic generator applies the ultrasonic or acoustic energy.
The fastener tool wherein the fastener has a head and/or nut, the horn being adapted and sized to receive or engage the head and/or nut to apply a tightening or loosening torque to the head and/or nut when the acoustic/ultrasonic energy passes therethrough.
The fastener tool wherein the horn comprises a socket, screwdriver bit, and/or torque bit that is sized and adapted to engage the head and/or nut and apply a rotational torque when the ultrasonic or acoustic energy passes into the fastener.
The fastener tool wherein the fastener tool comprises a plurality of horns that are sized and adapted for a plurality of fasteners that have a plurality of heads, respectively, of different shapes or sizes.
The fastener tool wherein the horn is configured or adapted to receive a plurality of sockets, screwdriver bits, and/or torque bits of different sizes so that the horn may be used to apply the ultrasonic or acoustic energy directly into and through the socket, screwdriver bit, and/or torque bit and into the fastener when the fastener is being tightened or loosened.
The fastener tool wherein the horn comprises a horn body; with one or more replaceable tip(s) removably coupled to the horn body.
The fastener tool wherein the fastener tool comprises a plurality of interchangeable or replaceable tips of different shapes or sizes to accommodate fasteners of different shapes or sizes, respectively, with one or more replaceable tips being selected from the plurality of interchangeable or replaceable tips.
The fastener tool wherein the horn body comprises a plurality of replaceable tips to accommodate fasteners of different sizes.
The fastener tool wherein the horn body is threaded and at least one replaceable tip comprises mating threads, a thread direction of the horn body threads being a direction opposite a thread direction of threads of the fastener. Additionally, the horn body may be threaded with a substantially larger diameter such that the threaded fastener will rotate before the horn body attachment.
The fastener tool wherein at least one of the plurality of interchangeable or replaceable tips comprises a generally optimized geometry and or flat fastener-engaging surface.
The fastener tool wherein at least one of the plurality of interchangeable or replaceable tips is adapted to cause the acoustic or ultrasonic energy to cause a vortex or helical energy to be applied internally to the fastener, the vortex or helical energy being in a predetermined direction.
The fastener tool wherein the predetermined direction is at least one of opposite thread direction of threads on the fastener when loosening the fastener or the thread direction is the same as thread direction of threads when it is desired to tighten the fastener.
The fastener tool wherein the horn comprises a helical or frusto-conical surface for engaging the fastener to apply a longitudinal signal during loosening or tightening of the fastener.
The fastener tool wherein the fastener tool comprises a rotational force generator that is integrated or separate from the acoustic/ultrasonic generator, the rotational force generator generates the rotational tortional signal and force to rotate the fastener as the acoustic/ultrasonic generator generates the ultrasonic or acoustic energy that passes into the fastener.
The fastener tool wherein the horn comprises a fastener-engaging surface for engaging the fastener, the fastener engaging surface being adapted to create an energy vortex within the fastener that facilitates loosening or fastening the fastener.
The fastener tool wherein the end comprises a head and/or nut that engages a mating surface at a head and/or nut engagement area where the head and/or nut engages the structure when the fastener is mounted thereto, the predetermined location being downstream/upstream of the head and/or nut engagement area so that when the ultrasonic or acoustic energy is applied to the fastener, a friction or pressure between the head and/or nut and its mating surface(s) along with the mating threads of the fastener and structure(s) is at least partly reduced.
The fastener tool wherein the fastener tool comprises an energy transfer facilitator for facilitating transferring the ultrasonic or acoustic energy into the fastener.
The fastener tool wherein the energy transfer facilitator comprises at least one of a fluid or material is arranged between the horn and at least one of the fastener or a socket, screwdriver bit, and/or torque bit mounted on the fastener, the fluid or material absorbing a minimal acoustic or ultrasonic energy as it travels into the fastener.
The fastener tool wherein the energy transfer facilitator may comprise but not limited to Teflon, oil, water, gel, foam, glycol, glycerin, and/or a polymer film or a minimal energy absorbing spacer.
The fastener tool wherein the fastener may comprise but not limited to an airplane, industrial, and/or automotive component fastener for fastening at least two components together.
The fastener tool wherein the fastener comprises a predetermined resonant frequency selected to match or generally correspond to a horn resonant frequency of the horn.
The system wherein the fastener comprises a head and/or nut that may have a shoulder (if present) that engages the structure at a shoulder engagement area of the structure, the predetermined distance being spaced under the head and/or nut and the shoulder engagement area.
The system wherein an end of the fastener comprises a head and/or nut that becomes situated at a head and/or nut engagement area of the structure when the fastener is mounted thereto, a predetermined location being along a length of the fastener and downstream/upstream of the head and/or nut engagement area so that when the acoustic/ultrasonic signal is applied to the fastener, a friction or pressure between the head and/or nut and its mating surface(s) along with the mating threads of the fastener and structure(s) is at least partly reduced.
The system wherein the fastener comprises male threads that mate with mating threads, the predetermined targeted location between the head and/or nut and its mating structure surface(s) along with the mating threads of the fastener and structure(s).
The system wherein the predetermined targeted location between the head and/or nut and its mating structure surface(s) along with the mating threads of the fastener and structure(s).
The system wherein the system comprises a rotational torque applicator adapted to apply a rotational torque to the fastener substantially simultaneously as the acoustic/ultrasonic signal passes through the fastener.
The system wherein a rotational torque applicator and the acoustic/ultrasonic wave generator are integrated into a common tool body,
The system wherein the horn is sized and adapted to receive a head and/or nut end of the fastener.
The system wherein the horn is sized and adapted to receive a socket, screwdriver bit, and/or torque bit that is placed on a head and/or nut or end of the fastener to tighten or loosen the fastener, the socket, screwdriver bit, and/or torque bit receiving the acoustic/ultrasonic signal and causing it to pass into the fastener.
The system wherein the horn comprises a socket, screwdriver bit, and/or torque bit that is sized and adapted to receive a head and/or nut of the fastener.
The system wherein the predetermined distance being into the fastener and spaced under the bolt/screw head and/or nut such that the acoustic/ultrasonic signal is focused at a predetermined location in the fastener.
The system wherein the fastener has a head and/or nut, the horn being adapted and sized to receive or engage the head and/or nut to apply a tightening or loosening torque to the head and/or nut when the acoustic/ultrasonic signal passes therethrough.
The system wherein the horn comprises a socket, screwdriver bit, and/or torque bit that is sized and adapted to engage the head and/or nut and apply a rotational torque when the acoustic/ultrasonic signal passes into the fastener.
The system wherein the system comprises a plurality of horns that are sized and adapted for a plurality of fasteners that have a plurality of heads/nuts, respectively, of different shapes or sizes.
The system wherein the horn is configured or adapted to receive a plurality of sockets, screwdriver bits, and/or torque bits of different sizes so that the horn may be used to apply the acoustic/ultrasonic signal directly into and through the socket, screwdriver bit, and/or torque bit and into the fastener when the fastener is being tightened or loosened.
The system wherein the horn comprises a horn body; one or more replaceable tips removably coupled to the horn body.
The system wherein the system comprises a plurality of interchangeable or replaceable tips of different shapes or sizes to accommodate fasteners of different shapes or sizes, respectively, may include one or more replaceable tip being selected from the plurality of interchangeable or replaceable tips.
The system wherein the horn body comprises a plurality of replaceable tips to accommodate fasteners of different sizes.
The system wherein the horn body is threaded and the at least one replaceable tip comprises mating threads, a thread direction of the threads of the horn body being a direction opposite a thread direction of threads of the fastener.
The system wherein at least one of the plurality of interchangeable or replaceable tips comprises a generally optimized geometry and or flat fastener-engaging surface.
The system wherein at least one of the plurality of interchangeable or replaceable tips is adapted to cause the acoustic/ultrasonic signal to cause a vortex or helical energy to be applied internally to the fastener, the vortex or helical energy being in a predetermined direction.
The system wherein the predetermined direction is at least one of opposite a thread direction of threads on the fastener when loosening the fastener or the thread direction is the same as thread direction of threads when it is desired to tighten the fastener or of a larger diameter than the bolt/screw/nut that we are trying to remove/tighten.
The system wherein the horn comprises a helical surface.
The system wherein the horn comprises a helical surface that causes the acoustic/ultrasonic signal to vortex in a predetermined direction for either loosening or tightening the fastener.
The system wherein the vortex is counterclockwise for a right-hand threaded fastener or clockwise for a left-hand threaded fastener to facilitate rotating the fastener when the acoustic/ultrasonic signal passes therein to loosen it.
The system wherein the vortex is clockwise for a right-hand threaded fastener or counterclockwise for a left-hand threaded fastener to facilitate rotating the fastener when the acoustic/ultrasonic signal passes therein to tighten it.
The system wherein the fastener comprises an end that is engaged by the horn during loosening or fastening, the acoustic/ultrasonic generator generating the acoustic/ultrasonic signal that travels into the fastener the predetermined distance and becomes concentrated or focused at a predetermined location in the fastener.
The system wherein the end comprises a head and/or nut that engages a mating surface of the structure at a head and/or nut engagement area where the head and/or nut engages the structure when the fastener is mounted thereto, the predetermined location being downstream/upstream of the head and/or nut engagement area so that when the acoustic/ultrasonic signal is applied to the fastener, a friction or pressure between the head and/or nut and its mating surface(s) along with the mating threads of the fastener and structure(s) is at least partly reduced.
The system wherein the horn is configured or adapted to receive a plurality of sockets, screwdriver bits, and/or torque bits of different sizes so that the horn may be used to apply the acoustic/ultrasonic signal directly into and through the socket, screwdriver bit, and/or torque bit and into the fastener when the fastener is being tightened or loosened.
The system wherein the acoustic/ultrasonic generator applies the acoustic/ultrasonic signal at a frequency equal to or larger than 1 kHz.
The system wherein the fastener has a head and/or nut, the horn being adapted and sized to receive the head and/or nut to apply a tightening or fastening torque to the head and/or nut while the acoustic/ultrasonic signal passes therethrough.
The system wherein the tool comprises a plurality of horns that are sized and adapted for a plurality of fasteners that have a plurality of heads, respectively, of different shapes or sizes.
The system wherein the horn comprises a helical or frusto-conical surface for engaging the fastener to apply a rotational torsional signal or force during longitudinal vibration of the fastener so that both a longitudinal signal and a tortional signal and force are applied substantially simultaneously or alternating to the fastener during loosening or tightening of the fastener.
The system wherein the acoustic/ultrasonic generator generates and applies the acoustic/ultrasonic signal, the tool comprising a rotational force generator that may be integrated or is separate from the acoustic/ultrasonic generator, the rotational force generator generates a tortional signal or force to rotate the fastener as the acoustic/ultrasonic generator generates the acoustic/ultrasonic signal passes into the fastener at the predetermined distance.
The system wherein the horn comprises a fastener-engaging surface for engaging the fastener, the fastener engaging surface being adapted to create an energy vortex within the fastener that facilitates loosening or tightening the fastener.
The system wherein the fastener comprises a head and/or nut that engages a mating surface at a head and/or nut engagement area of the structure when the fastener is mounted thereto, the predetermined location targeted location being between the head and/or nut and its mating structure surface(s) along with the mating threads of the fastener and structure(s).
The system wherein the end comprises a head and/or nut that engages a surface at a head and/or nut engagement area where the head and/or nut engages a structure when the fastener is mounted thereto, the predetermined location being downstream/upstream of the head and/or nut engagement area so that when the acoustic/ultrasonic signal is applied to the fastener, a friction or pressure between the head and/or nut and its mating surface(s) along with the mating threads of the fastener and structure(s) is at least partly reduced.
The system wherein the system comprises an energy transfer facilitator for facilitating transferring the acoustic/ultrasonic signal into the fastener.
The system wherein the energy transfer facilitator comprises at least one of a fluid or material and is arranged between the horn and at least one of the fastener or a socket, screwdriver bit, and/or torque bit mounted on the fastener, the fluid or material absorbing minimal acoustic/ultrasonic signal while traveling into the fastener.
The system wherein the energy transfer facilitator may comprise, but not limited to Teflon, oil, water, gel, foam, glycol, glycerin, and/or a polymer film or a minimal energy absorbing spacer.
The system wherein the fastener may comprise but not limited to an airplane, industrial, and/or automotive component fastener for fastening at least two components together.
The system wherein the horn comprises a predetermined resonant frequency selected to match or generally correspond to a fastener resonant frequency.
The system wherein the acoustic or ultrasonic energy is applied via a liquid or gel transfer agent from the horn and/or generator through a transfer tube like component directly to the bolt/screw head and/or nut. This is especially useful in difficult to reach and minimal clearance applications where a direct horn application is not feasible.
The system wherein the acoustic or ultrasonic energy creates a gap under the bolt/screw head and or nut and the mating structure surface, which in turn partly reduces the pressure or torque required to remove the fastener.
The system wherein the bolt/screw head design is optimized to receive acoustic or ultrasonic energies.
These and other objects and advantages of the invention will be apparent from the following description, the accompanying drawings and the appended claims.
Referring now to
The system 10 comprises the acoustic/ultrasonic generator 14 which, in a preferred embodiment, applies an ultrasonic or acoustic energy at a frequency equal to or larger than 1 KHz. The acoustic/ultrasonic generator 14 is coupled to a fastener tool 16 that comprises an armature 16a, which is coupled to a horn 18 as shown. Note that the horn 18 comprises a socket, screwdriver bit, and/or torque bit tip 20 for receiving a head and/or nut 12a of the fastener 12. The horn 18 comprises a threaded aperture 18a1 that threadably receives a threaded projection 20a of the socket, screwdriver bit, and/or torque bit tip 20. In other embodiments described later relative to
In the illustration being described relative to
Alternatively in
In one embodiment, a plurality of sockets, screwdriver bits, and/or torque bit tips 20 are provided in a set for selection by a user and the appropriate socket, screwdriver bit, and/or torque bit tips 20 for a particular fastener 12 is identified and selected and then threadably mounted in the threaded aperture 20c on the end 18a of the horn 18, as illustrated in
In this regard, the acoustic/ultrasonic wave generator 14 and the horn 18 or the socket, screwdriver bit, and/or torque bit tips 20 for the embodiments of
Referring now to
Furthermore, during acoustic/ultrasonic energy application the bolt/screw head/nut elongates and a gap 27a becomes present between the bottom of the bolt/screw head 12a1 and the top of the surface of 22a. This gap 27a is illustrated in
Referring back to
Referring back to
As mentioned earlier herein, during the application of the ultrasonic or acoustic energy by the acoustic/ultrasonic generator 14, it is preferable to apply a rotational torque to the fastener 12. Accordingly, the system 10 has multiple means and apparatus for generating or performing such rotational torque which will now be described.
Referring now to
In one illustrative embodiment, the acoustic/ultrasonic generator 14 and the rotational torque applicator 40 may be either the Dukane IQ 600W handheld or a Dukane IQ 2400W Servo, both of which are available from Dukane Corp. located at 2900 Dukane Drive St. in Charles, Ill. 60174.
It is important to understand that the rotational torque applicator 40 preferably applies the rotational torque to the horn 18 substantially simultaneously as the ultrasonic or acoustic energy from the acoustic/ultrasonic generator 14 passes into the fastener 12. The inventors have found that by causing the acoustic or ultrasonic energy to pass to the predetermined focus area 25 causes the elongation of the fastener 12 in the cyclic heating and stress between the threads 24a and the threads 12b of the fastener 12 as mentioned earlier, which facilitates loosening the fastener 12 when a rotational torque is applied substantially simultaneously.
Referring now to
In the embodiment illustrated in
With respect to the horn 18iv, notice that the end does not have the socket, screwdriver bit, and/or torque bit tip 19, but rather, a flat area 31 for engaging a top surface of the head/nut. Although not shown, this horn 18iv is adapted to engage not only the head and/or nut 12a, but it could engage either end of the fastener 12, especially if the fastener 12 does not have a head and/or nut 12a of the type shown and described herein. This particular horn 18iv may also be used to engage a head and/or nut 12a and apply acoustic/ultrasonic energy into the fastener 12, without receiving the fastener head and/or nut 12a. The benefits of a flat horn 19 is for when a bolt/screw is in a place where the full socket cannot or will not fit over the bolt/screw head and/or nut, where one might need to use different torque applicator on the bolt/screw head and/or nut that is not the horn itself, or when access to the bolt/screw head and/or nut face and a nut is on an opposite side, where axis is to an end of the bolt/screw shank.
Referring now to
As illustrated in
Advantageously, the at least one replaceable socket, screwdriver bit, and/or torque bit tip 20 comprises a plurality of interchangeable or replaceable tips or sockets of different sizes and shapes to accommodate fasteners 12 of different sizes and shapes, respectively, with at least one of the replaceable sockets or tips 20 being selected from the plurality of interchangeable or replaceable sockets or tips 20 during use of the system 10. During use, the sockets or tips 20, 20ai, 20aii, 20aiii, and 20aiv are threadably secured to the horn 18 when the threaded projection 20a is mounted into the threaded receiving area 20c as illustrated in
Referring now to
In contrast, note that the horn 18viii or socket, screwdriver bit, and/or torque bit or tip 20vii has a helical groove 70b in a clockwise direction which causes an acoustic vortex or helical energy to apply a clockwise rotational and helical force to be applied to the fastener 12 which results in tightening the fastener 12 after the horns 18v, 18vi, 18vii or sockets or tips 20v, 20vi or 20vii are mounted to the horn 18.
Advantageously, the system 10 comprises at least one or a plurality of helical grooves 70a-70c that cause the acoustic/ultrasonic signal to vortex in a predetermined direction that is selected depending on whether or not the user wishes to loosen or tighten the fastener 12. For example, the vortex may be selected to be counter-clockwise for a right-handed threaded fastener 12 or clockwise for left-handed threaded fastener 12 to facilitate rotating the fastener 12 when the acoustic/ultrasonic signal passes therein to loosen it. Likewise, the vortex may be selected to be clockwise for a right-handed threaded fastener 12 or counter-clockwise for a left-handed threaded fastener 12 to facilitate rotating the fastener 12 when the acoustic/ultrasonic signal passes therein to tighten it.
During operation, the horn 18 and/or socket, screwdriver bit, and/or torque bit tips 20 are selected in response to the shape and size of the head and/or nut 12a of the fastener 12. The horn 18 is mounted to the armature 16a. Alternatively and for the embodiment illustrated in
To facilitate the energy transfer, the system 10 may comprise an energy transfer facilitator 80 (
In
Advantageously, one embodiment of this invention is that it removes the risk of breaking bolts; reduced manual labor; reduced skilled labor. In other words, one would not need to be a skilled machinist to extract bolts which would reduce overall maintenance time.
Advantageously, one embodiment of this invention facilitates eliminating the need to drill out broken bolts and reduces risk of damage to engine/other components, which also removes possibility for debris to fall into the engine or undesirable locations through a drilled through hole.
Advantageously, another embodiment of this invention, including all embodiments shown and described herein, could be used alone or together and/or in combination with one or more of the features covered by one or more of the claims set forth herein, including but not limited to one or more of the features or steps mentioned in the Summary of the Invention and the claims.
While the system, apparatus and method herein described constitute preferred embodiments of this invention, it is to be understood that the invention is not limited to this precise system, apparatus and method, and that changes may be made therein without departing from the scope of the invention which is defined in the appended claims.