Historically Solar Photovoltaic (PV) power has been expensive when compared to other methods of producing electricity such as fossil or other renewable sources. Types of solar power production, all of which have limitations, include module-based (crystalline, film, and hybrids, among others), concentrating, and thermal. All three categories have been heavily researched for the last 40 years. Thermal is mainly dependent on the engine or generator type used to convert the heat gathered by the system. Module relies primarily on increased chip efficiency and lower chip manufacturing cost. Concentrating historically has traded off the amount of chip or film used for the expense of tracking systems, as the angle of acceptance in a non-tracking system is low. More recently, concentrating film-based systems applied to flat surfaces based on internal reflection have been proposed as a solution, but still accept relatively little light when compared to tracking concentrating systems.
Additionally PV systems have been designed under the premise of extended lifecycles similar to utility (or other industrial or construction systems) design for other power production methods, roughly 20 to 25 years. There is an inherent mismatch in this design paradigm between the largest potential market, the distributed market (smaller end users, local hydrogen production, etc.), the cost of the non-chip systems necessary to sustain this product lifetime (and the attendant lifecycle maintenance and efficiency degradation cost), and the lifetime of the underlying highest efficiency power producing mechanism, the crystalline chip, roughly 75-100+ years.
Methods and systems are described herein for PV systems wherein: 1) Wide acceptance angle concentration and thereby chip or film or other conversion mechanism expense reduction may be achieved without the expense or with a minimal expense of or on a tracking mechanism, 2) The components of the system may be designed as modular elements to decouple their lifecycle mismatch allowing amortization and reuse of the more expensive components over multiple system lifecycles, and 3) The cost and/or environmental “wear” parameters of the non-chip system and its installation may be designed around reduced lifecycle parameters more in keeping with the purchasing parameters of largest likely end use of the technology.
The current invention may achieve wide acceptance angle without tracking, and concomitant chip and system expense reduction, by means of a novel concentrator, reflector, refractor, and the like or a combination thereof concentrating facility and reflective, refractive, and the like or a combination thereof containment facility wherein said facilities may be modular in nature and comprised of metal, polymer, composite elements, and the like or any combination thereof and a power producing facility such as PV chip, film, a thermal engine, and the like or any combination thereof either interior or exterior or a combination thereof to the containment facility. Concentration in excess of 100:1 with regard to input to chip area may be achieved with such a system. Such facilities may be designed as independent, combinative, and the like facilities designed to be separated, recondition, recombined and the like at low cost to maximize lifecycle return of the given facilities.
An example may be a polymer, metallic, and the like focusing element molded in a sheet to appear like roofing shingle that may be designed to be installed, placed, molded and the like over a power producing PV chip “sheet” wherein the polymer sheet may be designed for a lifecycle of three years at low cost and wherein the polymer sheet may be designed to be inexpensively laid over the PV chip “sheet” such that its removal and replacement, in situ, on-site, off-site, and the like reconditioning after the period of three years may be performed for minimal cost. In such a case the PV chip “sheet” may remain installed or be refurbished or recycled for multiple polymer sheet lifecycles and the polymer sheet may serve as a focusing and “wear” protective layer to both the PV chip “sheet” and the underlying substrate on which the system is installed such as a roof. Such a system may substantially reduce the cost of the initial system based on reduced chip cost, reduced non-chip cost, reduced installation cost, and incremental lifecycle costs similar to normal maintenance costs associated with non-modular longer lifecycle systems and thereby may reduced the cost and commitment of such a solar facility to acceptable levels to be competitive in the marketplace.
These and other systems, methods, objects, features, and advantages of the present invention will be apparent to those skilled in the art from the following detailed description of the preferred embodiment and the drawings. All documents mentioned herein are hereby incorporated in their entirety by reference.
The invention and the following detailed description of certain embodiments thereof may be understood by reference to the following figures:
While the invention has been described in connection with certain preferred embodiments, other embodiments would be understood by one of ordinary skill in the art and are encompassed herein.
All documents referenced herein are hereby incorporated by reference.
The present invention describes a photoelectric power producing facility, such as integrated with another structure or as an independent structure. The optimization of cost yield within the photoelectric facility may be based on a shorter lifecycle than current solar technologies wherein the “wear” resistance of the non-chip components may be significantly shorter to achieve substantially lower cost across the environmental and operating parameters of “wear”. Referring to
With regard to
The power producing facility may also be designed wherein the overriding design principles and parameters may be determined by optimization of the modularity of components based on the environmental “wear” characteristics, the expense of the individual components, and the installation and de-installation cost of said components relative to the overall yield of the system.
Referring to
The concentrator may be of variable surface geometry to maximize incident light. The concentrator may be formed of a concentrating fiber optic material. The inverted reflective surface may be applied to an optimal geometry that maximizes incident light reflection to a photoelectric surface. The photoelectric surface may be comprised of multiple surfaces in three dimensions. The components of the sheet may include embedded or external capacitors or storage devices to normalize or offset power on a time basis system output.
The concentrator may be of variable surface geometry to maximize incident light. The concentrator may be a formed of a concentrating fiber optic material. The inverted reflective surface may be applied to an optimal geometry that maximizes incident light reflection to a photoelectric surface. The photoelectric surface may be comprised of multiple surfaces in three dimensions. The components of the sheet may include embedded, external capacitors, storage devices, and the like, to normalize or offset power on a time basis system output.
The solar sheet may be formed or molded to mimic a substructure surface, such as roofing shingles to appear substantially the same and provide temporary environmental wear protection to the substructure surface in addition to power output.
In embodiments, the cells of the solar facility may be suspended in a flexible polymer matrix material which may have reflective properties directly incorporated and may include a power gathering, storing (such as ferroelectric polymer-based capacitors), distribution mechanism, and the like.
In embodiments, a power producing “cell” may be comprised of a capsule where in the exposed portion is a concentrator and interior portion is reflective with at least one of a plurality of inorganic or organic power converting components suspended in the capsule. Light captured by the concentrator may be transferred internally by the geometry and surface properties of the capsule/cell. The concentrator upper surface may be comprised of an attenuating-concentrating fiber optic array that may be glass or a polymer having minimal reflective properties. The surface of the concentrator may cover the optimal light gathering curvature and the exit of the fiber optic components may cover a fraction of the interior surface area, preferably convex in shape, and the remainder of the interior surface may be reflective such that a large portion of the interior surface reflects the photons back into the interior of the cell to maximize interaction with the power producing element/s.
In embodiments, a power-producing cell may be comprised of a capsule wherein in the exposed portion is a concentrator and interior portion is reflective with an inorganic or organic power converting component suspended in the capsule. The concentrator and interior of the cell may be comprised of multiple layers/geometries of materials with different refractions indices such that the photons of the incident light are channeled to a or a plurality of power producing elements, such as an organic or inorganic chip, to maximize the concentration and energy gain of the cell. The cell may further have its non-exposed perimeter coated with a reflective coating to maximize photon interaction with the power producing element(s).
In embodiments, a power-producing cell may be comprised of a capsule wherein in the exposed portion is a concentrator and interior portion is reflective with an inorganic or organic power converting component suspended in the capsule. The concentrator of the cell may be prismatic such that the concentrator concentrates the incident light and separates said light into its component frequencies, focusing said frequencies onto specific areas of the cell interior. The power producing component(s) are comprised of multiple materials geometrically arranged such that the materials occupying a specific area to optimize power conversion for a specific band or frequency of the incident light. This may include dye-doped, crystal, organic chips, and the like.
In embodiments, the flexible substrate may form the lower reflective surface and the substrate may be covered by a flexible upper sheet of concentrators. The power producing element may be three-dimensional or inverted such that the light is directed by a concentrator array to the reflective surface and then concentrated by the reflective surface such that the absorption from the sun does not vary the area of concentration as the sun moves across the sky.
A convex reflective surface may form the upper surface wherein a concentrator is situated at the center of a convex “bowl” such that the concentrator transfers the light internally to the periphery of the cell and thereby to the reflector at the base of the cell.
The surface of the concentrator may be shaped to maximize refraction to the interior in low incident angle light. Where the concentrator may be a convex ellipsoid, a concave convex ellipsoid, a stepped structure similar to a ziggurat shape that maximizes internal refraction of high-angle and low angle incident light, and the like. The upper portion of the stepped profile may provide a surface substantially orthogonal either curved or flat to high angle incident light and constitutes a focusing element to the next step such that the vertical portion is curved or angled to maximize low incident light exposure. This may be comprised of a converging upper portion and a diverging lower portion, such as shown in
In an example, a fiber optic plug is shown in
In embodiments, the fiber optic taper may be used to control the input angle of the light. This may allow granular control on the containment on a time basis by faceting the surface of the reflectors such that the path the light would describe in the cell would be predictable. This may have advantages over a normal reflector, even with azimuth control.
In embodiments, various cell configurations may be utilized, such as provided in
In embodiments, a cell may have a plurality of input fiber optic concentrator/taper structures feeding in from the perimeter geometry, thereby creating angular input efficiency without utilizing active tracking to maximize capture at varying angles. In embodiments,
In embodiments, the interior surface may be coated directly with a photo-reactive surface such as through thin film deposition such that the interior of the cell may form the power producing facility, where interior surfaces may also include reflective surfaces. This may, such as with an inexpensive deposition or coating method, produce substantially more power from the light in the cell as the light is reflected interiorly and the surface interaction is substantially increased by the interior geometry relative to the upper concentrator incident surface. To this goal the interior surface of the cell may be non-uniform, e.g. polyhedral features extending from the mean interior curvature, to increase the effective surface area.
Referring to
The concentrating, containment, and power production elements may be individual modules such as typical solar modules, may be formed to duplicate any appearance such as roof tiles or may be formed in sheets wherein the sheets may molded and assembled individually and then installed in place atop a structure or substrate, and the like. Sheets, module elements, and the like may have “quick” connect elements that allow them to be installed and de-installed quickly and at low cost. Sheets may additionally be installed as a singular molded sheet wherein separation and reconditioning, refurbishing, recycling, and the like of the various sheet components may occur on site or off site.
In a preferred embodiment the lowest layer may clip into a structure, be adhered to a substrate, be partially formed of a high friction material that would hold the sheet in place on a given substrate such as a roof, and the like or any combination thereof. The topmost sheet may be a polymer sheet formed by methods common, uncommon, and the like in the art such as thermo-molding, injection molding, stamping, 3-d printing and the like that may “snap” or be attached into a second power producing sheet that in turn may “snap”, be attached into the lowermost sheet, and the like. Attachments between sheets may be by means of any number of attachments such as are known in the art such as clips, frames, screws, channels, and the like provided that said attachment mechanism may minimize the time and cost necessary to install the system. As depicted in
In a preferred embodiment the concentrating, containment, and power producing elements may be formed into a self-contained module,
The focusing, concentrating, and the like facility may be comprised of a concentrator, optical taper, reflector, refractive facility, and the like or any combination thereof with the purpose to concentrate light from an incident input area to a smaller output area for input into the containment element. The concentrating facility may or may not include some active or passive tracking capability. The concentrating element may be formed by a fiber optic taper, concentrator, a reflecting element, and the like or a combination thereof which may be partitioned into an array of grouped, separated, and the like wave guide channels in such a way that may optimize the input angle of acceptance of the system as a whole. Referring to
Referring to
In another preferred embodiment a single stage concentrator may be used wherein the wave guide may be a partitioned fiber optic taper, a partitioned reflector, or the like wherein the incident light is guided directly to the containment unit such that the incident angle to the containment element is sufficiently acute to ensure entrainment in the event that the containment element is comprised of a different material than the concentrating element.
In another embodiment,
All embodiments and descriptions above may be used combinatively. For example a partitioned reflector waveguide upper surface may be used in combination with a variable grating lower surface and an interstitial medium to affect a horizontally oriented concentrator pair wherein the refractive index of the medium may engender the containment through internal reflection.
In embodiments the concentrator or taper element, be it singular or a stage, of a partitioned array assembly may be made of various fiber optically suitable materials such as acrylonitrile butadiene styrene (ABS), polycarbonates (PC), polyamides (PA), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyphenylene oxide (PPO), polysulphone (PSU), polyetherketone (PEK), polyetheretherketone (PEEK), polyimides, polyethylene, polypropylene, polystyrene, polyvinyl chloride, polymethyl methacrylate, polyethylene terephthalate, and the like, various types of glass, transparent alloys, and the like, and may be molded, cut, formed and the like by methods known in the art. The reflective or refractive element, be it singular or a stage, of the concentrator may be made of metallic, polymer, composite and the like, such as but not limited to ceramics, reflective materials such as, but not limited to, all classes of polishable metals, reflective, surfacable polymers, reflective surfacable composites, and the like or any combination thereof. The reflective or refractive element may be made by common or uncommon methods as are known in the art including, but not limited to, thermo molding, injection molding, vacuum molding, casting, cutting, stamping, baking, and the like.
The containment facility may be comprised of a singular or plurality of interiorly reflective, refractive, and the like surfaces or a combination thereof, examples of which are given in
Any concentrator and containment system described herein may be combined either singularly or compoundly wherein the concentrator element requires only that it output the concentrated light into any of the types of containment facilities described herein and the containment element requires only a parameter of an input of light from any of the types of concentration facilities that are described herein or are generally known and understood by those of reasonable knowledge in the art. In a preferred embodiment the containment facility may be comprised of a contained gas, fluid, solid and the like that accepts a singular or plurality of annular inputs wherein the containment element may be paired with singular concentrators wherein the power producing element may be suspended in the medium. In a preferred embodiment the containment facility may be comprised of a gas, fluid, solid, and the like that accepts uniformly or non-uniformly distributed inputs wherein the containment element may be paired with multiple concentrators and the upper and lower surfaces may be of variable or grating geometry or the like and the power producing may be placed at an optimal central location.
With regard to the power production and transfer and/or storage facility, the power production facility and associated transfer and storage facilities may be centralized or networked. Power production and transfer facilities may be suspend in a medium within a containment element or may be exterior to the containment element. Said facility may be comprised of a networked array of energy converters, conditioners, and cables wherein the array may be formed as a integrated net or may formed with a combination of said elements and a support structure such a molded polymer sheet wherein active surfaces may be interior or exterior to said sheet. Said facility may be designed as a modular component and integrated with other modular components such as concentrator and containment components. The means of power transfer between the power producing components and the system output facility may be uniform or non-uniform in nature such as a web, node, tree and branch network structure, and the like or some combination thereof. Conditioning and storage may be collocated with the power producing elements, may be located at some optimized location within the transfer network, and the like. Power production may include singular or multiple types of power production methods including but not limited to PV, thermal differential, thermal flow, thermal combustion, thermal excitation systems, and the like.
As described light from a plurality of concentrator and containment facilities may be guided to a central facility or multi-feed facilities wherein the system power output would transferred out the system directly from said facilities or stored for leveling or future use purposes. As described a distributed facility may be embedded within a concentrator containment pair wherein the power produced may be transferred through a power collection network to a system output facility.
In a preferred embodiment modular concentrator and containment sheets may be sandwiched around a sheet of distributed PV crystalline, film elements, and the like singular to each concentrator-container pair suspended within a optically transparent polymer medium wherein the PV components may be arranged in an n×m matrix and connected by cables in a tree and branch or web configuration in series or in parallel or a combination thereof and thereby to a central transfer facility at the horizontal boundary of the sheet and a storage medium or the grid and wherein the PV components surfaces may be exterior or interior to the polymer and the cables may be interior and the sheet may include an attachment mechanism by which the sandwiching sheets may be held in place and the container elements thereby enclose the PV elements.
In a preferred embodiment a matrix of n×m PV crystalline or film elements of a module as described above singular to each concentrator-container pair may be suspended within a gaseous, fluid, solid, and the like or a combination thereof refractive medium encapsulated by a containment element wherein the containment element may be bisected around a central or non-central axis allowing the PV elements to be connected between encapsulated refractive containers and allowing ease of assembly. The PV element may be connected by a tree and branch, web structure, and the like and thereby to a positive and negative terminal at the horizontal boundary of the module. The concentrator element may attach to the upper surface of this structure by means and for purposes previously described. Said terminals may lock into terminals on other modules in such a way as to create an expanded power transfer network of a plurality of modules and in a manner previously described and thereby transfer the aggregate power of the modular array to a central storage facility or the grid.
In a preferred embodiment a waveguide module comprised of a refractive medium and exterior variable grating reflectors, with the lower surface containing the medium being reflective as previously described and the angle of the grating mechanism being determined by the angle of incidence to the module, may transfer light to a containment facility on the boundary of the module and a PV element may be suspended within the length of the containment element and connected at the orthogonal axis of the container boundary to positive and negative terminals that in turn connect to the adjoining module by means previously described. Thermal power may additional be gathered from fluid movement within the module by means known in the art and also connected to said terminals and thereby may form a network of modules wherein the aggregate solar and thermal power of the system may then be output to a storage facility or a grid.
Global optimization of the facilities described herein may include parameters for: cost of materials, effective lifecycle of materials, effective lifecycle of components, levelized replacement cost of components, legal and permitting costs, effective concentration ratio (inclusive of concentration and containment), ancillary system costs, efficiency of power conversion means, cost of power conversion means, complexity and cost of manufacture, complexity and cost of assembly, complexity and cost of installation, complexity and cost of deinstallation, complexity and cost of refurbishing, recycling, reconditioning and the like, complexity and cost of operation, complexity and cost of maintenance, cost of service, financing or purchase agreement type, historical and predicted market cost of electricity, cost of storage, cost and benefit of government regulations, systems efficiency, weather conditions, material environmental properties, historical and predicted irradiance, cost of insurance, quantified market acceptance boundaries, quantified market value proposition boundaries, scale cost mitigation, and the like.
While the invention has been described in connection with certain preferred embodiments, other embodiments would be understood by one of ordinary skill in the art and are encompassed herein.
All documents referenced herein are hereby incorporated by reference.
This application is a continuation of U.S. patent application Ser. No. 13/029,576 filed Feb. 17, 2011 (RFRD-0001-P01). U.S. patent application Ser. No. 13/029,576 claims the benefit of U.S. Provisional Application No. 61/305,198, filed Feb. 17, 2010 (RFRD-0001-P60). Each of the above patent applications is hereby incorporated by reference in its entirety.
| Number | Date | Country | |
|---|---|---|---|
| 61305198 | Feb 2010 | US |
| Number | Date | Country | |
|---|---|---|---|
| Parent | 13029576 | Feb 2011 | US |
| Child | 14877977 | US |