1. Field of the Invention
The invention relates generally to a solar energy collecting apparatus to provide electric power, heat, or electric power and heat, more particularly to a parabolic trough solar collector for use in concentrating photovoltaic systems.
2. Description of the Related Art
Alternate sources of energy are needed to satisfy ever increasing world-wide energy demands. Solar energy resources are sufficient in many geographical regions to satisfy such demands, in part, by photoelectric conversion of solar flux into electric power and thermal conversion of solar flux into useful heat. In concentrating photovoltaic systems, optical elements are used to focus sunlight onto one or more solar cells for photoelectric conversion or into a thermal mass for heat collection.
In an exemplar concentrating photoelectric system, a system of lenses and/or reflectors constructed from less expensive materials can be used to focus sunlight on smaller and comparatively more expensive solar cells. The reflector may focus the sunlight onto a surface in a linear pattern. By placing a strip of solar cells or a linear array of solar cells in the focal plane of such a reflector, the focused sunlight can be absorbed and converted directly into electricity by the cell or the array of cells. Concentration of sunlight by optical means can reduce the required surface area of photovoltaic material while enhancing solar-energy conversion efficiency as more electrical energy can be generated from such a concentrator than from a flat plate solar cell with the same surface energy. There are continued efforts to improve the performance, efficiency, and reliability of concentrating photovoltaic systems while also considering other variables such as the cost of manufacturing, ease of installation and the durability of such systems.
Systems, methods, and apparatus by which solar energy may be collected to provide electricity, heat, or a combination of electricity and heat are disclosed herein.
A solar energy collector includes one or more rows of solar energy reflectors and receivers with the rows arranged parallel to each other and side-by-side. Each row comprises one or more linearly extending reflectors arranged in line so that their linear foci are collinear, and one or more linearly extending receivers arranged in line and fixed in position with respect to the reflectors with each receiver located approximately at the linear focus of a corresponding reflector. A support structure pivotably supports the reflectors and the receivers of the one or more such rows to accommodate rotation of the reflectors and the receivers about a rotation axis parallel to the linear focus of the reflectors in that row. In use, the reflectors and receivers are rotated about rotation axes on rotation shaft to track the sun such that solar radiation or light rays on the reflectors is directed and concentrated onto and across the receivers.
In one embodiment, a solar energy collector includes a linearly extending receiver, a reflector comprising a plurality of linear reflective elements with their long axes parallel to a long axis of the receiver arranged side-by-side on a reflector tray and aligned with respect thereto in a direction transverse to the long axis of the receiver, and fixed in position with respect to each other. A linearly extending support structure that accommodates movement of the receiver, rotation of the reflector, or rotation of the receiver and the reflector about an axis parallel to the long axis of the receiver. The reflector has a free state profile and the support structure comprises one or more reflector supports oriented transverse to the rotation axis. The reflector tray is securable to the reflector support in a profile different than the free state profile.
There are many advantages to a solar collector having a reflector tray with a free state profile that when secured is in a different profile. One advantage is a simple fabrication process using thinner materials that creates a support structure that is strong enough to support weaker reflective elements and yet flexible enough to be flexed into the desired shape during final installation. Another advantage is the cost savings realized by using flat segments of reflective elements as opposed to using more expensive curved mirrors.
These and other embodiments, features and advantages of the present invention will become more apparent to those skilled in the art when taken with reference to the following more detailed description of the invention in conjunction with the accompanying drawings that are first briefly described.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
The following detailed description should be read with reference to the drawings, in which identical reference numbers refer to like elements throughout the different figures. The drawings, which are not necessarily to scale, depict selective embodiments and are not intended to limit the scope of the invention. The detailed description illustrates by way of example, not by way of limitation, the principles of the invention. This description will clearly enable one skilled in the art to make and use the invention, and describes several embodiments, adaptations, variations, alternatives and uses of the invention, including what is presently believed to be the best mode of carrying out the invention.
As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly indicates otherwise. Also, the term “parallel” is intended to mean “parallel or substantially parallel” and to encompass minor deviations from parallel geometries rather than to require that any parallel arrangements described herein be exactly parallel. Similarly, the term “perpendicular” is intended to mean “perpendicular or substantially perpendicular” and to encompass minor deviations from perpendicular geometries rather than to require that any perpendicular arrangements described herein be exactly perpendicular.
This specification discloses apparatus, systems, and methods by which solar energy may be collected to provide electricity, heat, or a combination of electricity and heat.
Referring now to
In other variations, a solar energy collector otherwise substantially identical to that of
As is apparent from
Although each reflector 120 is parabolic or approximately parabolic in the illustrated example, reflectors 120 need not have a parabolic or approximately parabolic reflective surface. In other variations of solar energy collectors disclosed herein, reflectors 120 may have any curvature suitable for concentrating solar radiation onto a receiver.
In the example of
In the illustrated example, linear reflective elements 150 each have a width of about 75 millimeters (mm) and a length of about 2751 mm. In other variations, linear reflective elements 150 may have, for example, widths of about 20 mm to about 400 mm and lengths of about 1000 mm to about 4000 mm. Linear reflective elements 150 may be flat or substantially flat, as illustrated, or alternatively may be curved along a direction transverse to their long axes to individually focus incident solar radiation on the corresponding receiver. Although
Although in the illustrated example each reflector 120 comprises linear reflective elements 150, in other variations a reflector 120 may be formed from a single continuous reflective element, from two reflective elements, or in any other suitable manner.
Linear reflective elements 150, or other reflective elements used to form a reflector 120, may be or comprise, for example, any suitable front surface mirror or rear surface mirror. The reflective properties of the mirror may result, for example, from any suitable metallic or dielectric coating or polished metal surface.
In variations in which reflectors 120 comprise linear reflective elements 150 (as illustrated), solar energy collector 100 may be scaled in size and concentrating power by adding or removing rows of linear reflective elements 150 to or from reflectors 120 to make reflectors 120 wider or narrower. In another embodiment, two or more reflectors 120 with an appropriate number of linear reflective elements 150 may be placed side-by-side across the width of support structure 130 transverse to the optical axis of reflectors 120, and the width and length of transverse reflector supports 155 (discussed below), may be adjusted accordingly.
Referring again to
In some variations, the receivers 110 comprise solar cells but lack channels through which a liquid coolant may be flowed. In other variations, the receivers 110 may comprise channels accommodating flow of a liquid to be heated by solar energy concentrated on the receiver, but lack solar cells. Solar energy collector 100 may comprise any suitable receiver 110. In addition to the examples illustrated herein, suitable receivers may include, for example, those disclosed in U.S. patent application Ser. No. 12/622,416, filed Nov. 19, 2009, titled “Receiver For Concentrating Photovoltaic-Thermal System;” and U.S. patent application Ser. No. 12/774,436, filed May 5, 2010, also titled “Receiver For Concentrating Photovoltaic-Thermal System;” both of which are incorporated herein by reference in their entirety.
Referring again to
Support structure 130 also comprises a plurality of receiver supports 165 each connected to and extending from an end, or approximately an end, of a transverse reflector support 155 to support a receiver 110 over its corresponding reflector 120. As illustrated, each reflector 120 is supported by two transverse reflector supports 155, with one transverse reflector support 155 at each end of the reflector 120. Similarly, each receiver 110 is supported by two receiver supports 165, with one receiver support 165 at each end of receiver 110. Other configurations using different numbers of transverse reflector supports per reflector and different numbers of receiver supports per receiver may be used, as suitable. The arrangement of receiver supports 165 and reflector supports 155 is configured to enable the receivers 110 to be positioned at the concentration focal plane of the reflectors.
In the illustrated example and referring to
In the example shown in
In the illustrated example, the upper portion of the side wall of the transverse reflector supports 155 have any curvature suitable (e.g., a parabola) for concentrating solar radiation reflected from the reflectors 120 mounted thereon to receiver 110. Additionally, the side walls of the transverse reflector support 155 extend above crossbars 158 positioned between the side walls. The crossbars 158 of the transverse reflector support 155 each sit below the top level of the side walls and have two parallel openings (e.g., slots, holes, channels) 159 arranged side-by-side. The crossbars 158 are positioned, and thus the openings 159 in crossbars 158 are positioned, to correspond with attachment mechanisms of the reflector 120 at appropriate positions along the length of the transverse reflector support 155 creating two aligned rows of openings 159 positioned along the length of the transverse reflector support 155. In the illustrated example, the spacing between the two rows of openings 159 is about 5 mm to 10 mm. In other variations, the two rows of projections may be spaced apart from each other by, for example, about 5 mm to 100 mm.
Typically one sidewall of a single transverse reflector support 155 supports one end of a first reflector 120 and the opposing sidewall supports the adjacent end of another reflector 120 where the two reflectors 120 are arranged linearly end-to-end. The transverse reflector support 155 that supports the edge of each reflector 120 positioned at each end of the collector 100 may be adjusted to have one row of openings (not shown).
In the illustrated example, the curved upper sidewall surfaces of transverse reflector support 155 provide reference surfaces that orient reflectors 120, and thus the linear reflective elements 150 they support, in a desired orientation with respect to a corresponding receiver 110 with a precision of: for example, about 0.5 degrees or better (i.e., tolerance less than about 0.5 degrees). In other variations, this tolerance may be, for example, greater than about 0.5 degrees.
In the illustrated example, reflector tray 190 is about 2440 mm long and about 1540 mm wide (sized to accommodate 20 linear reflective elements). In other variations, reflector tray 190 is about 1000 mm to about 4000 mm long and about 300 mm to about 800 mm wide.
Referring to
In addition to attaching linear reflective elements 150 to upper tray surface 185, in the illustrated example adhesive 215 positioned between the outer edges of the rows of linear reflective elements 150 and between the outer edges of the linear reflective element 150 the tray side walls 195 may also seal the edges of the linear reflective elements 150 and thereby prevent corrosion of linear reflective elements 150. This may reduce any need for a sealant separately applied to the edges of the linear reflective elements 150. Adhesive 215 positioned between the bottom of the linear reflective element 150 and upper tray surface 185 may mechanically strengthen the linear reflective element 150 and also maintain the position of linear reflective elements 150 should they crack or break. Further, reflector tray 190 together with adhesive 215 may provide sufficient protection to the rear surface of the linear reflective element 150 to reduce any need for a separate protective coating on that rear surface often required during manufacturing
The reflector tray 190 to which the linear reflective elements 150 are adhered is made of sheet metal or other similar material with elastic properties and a thickness that allows the reflector tray 190 to flex and bend into a position matching the curvature of the transverse reflector support 155 forming a parabolic shape or similarly suited curve. The reflector tray 190 will bend between the mirrors as the stiffness of the combination of the metal of the reflective tray 190 and the reflective mirror elements 155 is greater than the stiffness of the metal alone. The flexible properties of reflective tray 190 allows the reflector 120 to be manufactured by adhering the linear reflective elements 150 to a flat surface that can be easily shipped and subsequently bent into its final shape in the field during the assembly of collector 100. Referring back to
Tabs 188 as shown in
More generally, tabs 188 may snap-on to transverse reflector supports 155 through the engagement of any suitable complementary interlocking features on tray bottom 190 and transverse reflector support 155. Slots and hooks, protrusions and recesses, or louvers and tabs, or other mechanical fasteners attached to tray bottom 190 for example, may be used in other variations. The snap-on feature of tabs 188 to transverse reflector support 155 also eliminates the need for dealing with bolt/hole alignment issues in the field.
Referring back to
Referring to
Referring to
For example, as shown in
Where not otherwise specified, structural components of solar energy collectors disclosed herein may be formed, for example, from 20 gauge G90 sheet steel, or from hot dip galvanized ductile iron castings, or from galvanized weldments and thick sheet steel.
This disclosure is illustrative and not limiting. Further modifications will be apparent to one skilled in the art in light of this disclosure and are intended to fall within the scope of the appended claims. All publications and patent application cited in the specification are incorporated herein by reference in their entirety.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application is a continuation of U.S. patent application Ser. No. 13/619,952 titled “Concentrating Solar Energy Collector”, filed Sep. 14, 2012, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 13619952 | Sep 2012 | US |
Child | 13763412 | US |