Not Applicable
Not Applicable
Not Applicable
1. Field
This invention generally relates to solar energy systems, more particularly to, concentrating solar energy systems for power generation and other uses.
2. Prior Art
Concentrating Solar energy systems use optical components such as lenses and mirrors to collect and concentrate the sun's radiation and then absorb it for practical use. The main practical use is to provide high temperature working fluids to drive heat engines that in turn drive electricity generators. Other uses for concentrated sunlight include high intensity photovoltaic electricity generation, direct high temperature “clean” process heat, and indirect high temperature process heat.
A wide variety of designs have been developed to accomplish these goals. The following references provide a good overview of this technology. “Solar Engineering of Thermal Processes” by John A Duffie and William A Beckman, chapter seven and “Solar Energy” by G. N. Tiwari, chapter eight.
All current concentrating solar energy designs include two major elements:
Concentrators can use some of the following structural arrangements:
The lenses can use imaging optical elements and non-imaging optical elements. The lenses can use reflective optical elements and/or refractive optical elements. Regardless of their construction, concentrators are characterized by their entrance aperture and their exit aperture. In the case of multiple lens arrays or segments, the input aperture is the sum of the apertures of the elements of the array. The ratio of the area of the input aperture divided by the area of the exit aperture is the concentration ratio.
Receivers absorb the concentrated radiation from the concentrator and transfer this absorbed energy to a working fluid. This hot fluid is then either used to directly power a heat engine (such as a steam turbine), or is used to transfer heat via a heat exchanger to another working fluid which is then used to power a heat engine. The heat engine then drives a generator which produces electricity. Some systems first transfer heat from the working fluid to thermal storage, and then from thermal storage to a second working fluid in order to decouple when electrical energy is generated from when solar energy input is captured by a receiver.
Some hypothetical space based systems have been proposed that generate electricity via these processes in space and then convert the electrical energy to microwave energy to be beamed to the earth's surface and collected via large microwave antennae arrays.
Another unrelated area of prior art is light pipes. Glass and plastic versions of these have long been used in the area of telecommunications to transmit low power light signals over long distances. Light pipes using hollow tubes with various highly reflective inner surfaces are used to guide sunlight or artificial light over short distances for lighting purposes within buildings. A particularly efficient method used for lighting is described in U.S. Pat. No. 4,260,220, “Prism light guide having surfaces which are in octature” issued to Lorne A. Whitehead on Apr. 7, 1981. Another method used for lighting is described in U.S. Pat. No. 4,895,420, “High reflectance Light Guide” issued to John F. Waymouth on Jan. 23, 1990.
Light pipes are characterized by their aperture, acceptance angle, and attenuation. Light pipes accept light travelling in the direction of the light pipe within their acceptance angle. Generally light from point or small area concentrated light sources needs to pass through a collimator in order to satisfy the acceptance angle criteria and reduce attenuation. Collimators are common optical elements and are effectively the reverse of optical concentrators with a smaller entrance aperture than larger exit aperture. As well as conditioning light for light pipes or guides, optical collimators are used for a variety of purposes. These include projector condensor lenses, parabolic reflector light bulbs, and telescope objective lenses.
Current Concentrating Solar systems suffer from several problems that have limited their success. Their high capital costs make the cost of the energy they produce uncompetitive without subsidy. They also have high ancillary costs to compensate for the unpredictability of their energy output and the long transmission distance from the system to the average power user.
Concentrating Solar systems make use of direct sunlight, i.e. light directly from the sun that is not scattered or absorbed in earth's atmosphere. Current systems are severely negatively affected by effects of weather such as rain, clouds, moisture and dust in the atmosphere. This restricts their geographical location to hot dry desert areas which are relatively scarce and far from consumers of electricity. In addition, even in deserts, bad weather sometimes restricts electric power output availability, necessitating the provision of alternate sources of supply.
Solar concentrators need to have large entry apertures to produce meaningful amounts of power. Utility scale systems have apertures measured in millions of square meters. Current systems consequently consume large areas of land and significant quantities of construction materials like glass and steel needed to fabricate this large aperture collector. Also weather in the form of dust, wind, rain, hail frost and snow require that structures be strong and durable which adds significantly to their cost.
Current large scale systems use large arrays of individually steered collecting elements. Robust motors, gears, electrical equipment etc are needed for each collector element, contributing significantly to overall cost.
The cost problem is compounded by the generally low overall energy conversion efficiency of current systems, which consequentially requires a larger surface area and more material to produce a given power output compared to higher conversion efficiency systems.
The present invention is realized by suspending a solar energy concentrator at a high altitude in the earth's atmosphere, above clouds, moisture, dust, and wind. This is accomplished using a light-weight, rigid, buoyant, structure. The concentrated solar energy output from the concentrator can be used in a number of ways:
It can be passed through a collimator whose output is coupled to a light pipe. The solar energy is transmitted through the light pipe to the earth's surface where it is (optionally) further concentrated in order to better achieve high temperatures for high conversion and thermal storage efficiency. The energy output from this final stage concentrator is absorbed and converted to heat by a receiver, then (optionally) the heat is transferred to and stored in a thermal storage element. Heat from the thermal storage element is transferred to a separate working fluid which is used to drive a heat engine that drives a generator and produces electricity.
It can be converted directly to high voltage electricity by photovoltaic convertors and then transferred to earth's surface with high voltage transmission lines.
It can be collected by a receiver and then thermally converted to high voltage electricity via a conventional turbine, compressor and generator system, and then transferred to earth's surface with high voltage transmission lines.
These and other objects and features of the invention will be better understood by reference to the detailed description which follows taken together with the drawings in which like elements are referred to by like designations throughout the several views.
In the drawings, closely related figures have the same number but different alphabetic suffixes.
The description that follows is divided into separate sections with unique headings to help clarify the exposition. The system is first described with respect to schematic diagrams for the optical system and the solar energy conversion system, and then with more detailed perspective drawings, mostly for optical system elements of various embodiments.
The output aperture 106 of concentrator 36 is directly coupled to the input aperture 108 of collimator 38. The output aperture 110 of collimator 38 is directly coupled to the input aperture 112 of light pipe 20. Collimator 38 can be an imaging, reflective or refractive lens or a non imaging compound parabolic collimator or similar. Compound parabolic non imaging optical elements are well suited to this application as they are easy to couple to light pipes and can be constructed using the same materials and processes.
Light pipe 20 is a flexible, buoyant, thin walled tube structure that stretches from the earth's surface to the concentrator 36 and collimator 38 assemblies high in the earth's atmosphere. Its length is typically in the region of 20 km, and its length to width aspect ratio is in the region of 100. Its thin structural skin is airtight, maintains a circular cross section through an internal gage pressure, and is stabilized against high wind and gravity forces. It excludes weather effects like rain, snow, moisture and dust from the transparent gas in the pipe interior. The primary stabilizing force that counteracts wind forces and gravity is buoyancy from hydrogen or helium within high altitude sections of the pipe. Stability is augmented with stiffness in the structural wall, and cable stays when appropriate. Its interior wall surface is highly reflective and provides a low loss transmission path for the concentrated collimated solar energy input through aperture 112.
Second stage concentrator 26 has input aperture 116, directly coupled to light pipe 20 output aperture 114. Concentrator 26 can be an imaging reflective or refractive lens or a non imaging compound parabolic concentrator or similar. Compound parabolic non imaging optical elements are well suited to this application as they are easy to couple to light pipes and can be constructed using the same materials and processes.
The thermal store 30 decouples the arrival of solar energy from the use of electrical energy, and allows for 24 hour delivery of electricity despite the much shorter duration of daylight. One embodiment of thermal store 30 uses large graphite blocks with integral cooling channels. Graphite has long been used in this form in a variety of nuclear reactor cores. In that application graphite's advantages as a thermal storage medium were secondary to its benefits as a neutron moderator. Graphite has good thermal capacity, and can tolerate higher temperatures than almost any material. It maintains structural integrity at high temperature and can withstand severe thermal cycling. It is abundant and relatively inexpensive.
Other elements of this electricity generation system are ambient cooler heat exchanger 88, compressor 90 and regenerator heat exchanger 92. A common working fluid for high temperature Brayton cycles is helium at high pressure and temperature.
A particular advantage of the use of a combined cycle system with a high temperature concentrating solar system is the improved thermal capacity of sensible heat storage system 82. The thermal storage capacity of thermal store 82 is dependant on the average temperature difference between the high temperature gas delivered to heat engine 84 from high temperature storage and the low temperature gas returned to thermal store 82. For the Brayton cycle with regeneration shown in
Another embodiment not shown in
Due to its large mass, it would be difficult to suspend a thermal store in the stratosphere with these embodiments. These embodiments would need a ground based energy storage system to provide continuous electrical power.
1) A large, buoyant, segmented, reflecting, parabolic, mirror concentrator, and collimator assembly detailed in
2) A flexible hollow buoyant light pipe 20.
3) A ground based foundation, anchor, optical concentrator and receiver assembly detailed in
Light pipe 20 connects to the entry aperture on the top of Compound Parabolic Concentrator (CPC) 26 shown in cross section in
In one embodiment a Cavity absorber receiver assembly is attached to the bottom of CPC 26. This is shown as receiver 80 in
In one embodiment, absorber surface 32 is directly attached to thermal storage graphite blocks that form thermal store 30. Graphite is particularly suited to high temperature sensible heat thermal storage, as its melting point is extremely high (3652-3697 degrees Celsius) and it maintains its structural integrity close to its melting point. Large graphite blocks with integral cooling channels have long been used in the core of a variety of nuclear reactors. Integrating cooling channels and heat exchangers into the graphite storage blocks eliminates large amounts of high temperature piping and enables higher temperature operation than is feasible with current high temperature piping materials.
As an example to illustrate the scale, 50,000 cubic meters of solid graphite using a thermal delta of 500 degrees Celsius can store over 8 million kilo-Watt hours of thermal energy (28,800,000,000 kJ), and provides sufficient thermal storage capacity to average out the day to night fluctuation in input solar energy for the system described in the first embodiment at mid latitudes. This provides a 24 hour continuous source of thermal energy with considerable flexibility in when during the 24 hour period the stored thermal energy can be withdrawn for use in generating electricity.
The thermal storage capacity required varies with latitude, and the electrical demand curve it is desired to satisfy. The most thermal storage is needed for systems at high latitude. Continuous constant electrical power requires more storage than a system with more electrical output during daylight hours. While thermal storage is a technology that helps make solar energy a practical alternative for all electric power generation, it is also a considerable expense, perhaps half the total system cost, and perhaps the single biggest cost element.
In one embodiment, absorber surface 32 transfers heat to pressurized steam which is used to directly drive Rankine cycle steam turbines. This embodiment is particularly useful when built beside an existing fossil fueled power plant and uses the existing turbines, generators, cooling, and distribution facilities etc. This embodiment acts as a supplement to the existing power plant, reducing its operation to non daylight hours and thus reducing fuel consumption and carbon generation by large percentages. This is potentially a very economic alternative as it re-uses existing infrastructure and avoids the costs of a thermal storage unit.
It should be noted that
In one embodiment, mirror 36 is approximately 2.3 km in diameter. The mirror 38 is approximately 180 m in diameter. The light tube 20 is also approximately 180 m in diameter and approximately 20 km long. These dimensions are in the range appropriate for a one Giga Watt (GW), continuous output electricity generation system. The mirrors 36 and 38 are rigid, lightweight, buoyant, gas filled, structures. The light tube 20 is a flexible, buoyant, gas filled, pressurized, structure. The buoyancy gas is either helium or hydrogen. In one embodiment the light tube stores the buoyancy gas within a portion of the light tube to avoid the need for additional buoyancy elements attached external to the light tube.
Alt-azimuth mount 44 is used to enable the solar receiver assembly to accurately track the sun while compensating for wind forces on the concentrator and collimator assembly, and motion in the base of the mount 44 attached to the top of light pipe 20. Altitude and azimuth motors within mount 44 are controlled by a closed loop feedback sun tracking system. The structure consisting of concentrator 36, collimator 38 and beam 40 pivots in altitude around altitude pivot 46. The structure pivots in azimuth around the axis of alt azimuth base attached to the top of light pipe 20.
In addition to, or as a replacement for motors in the alt azimuth mount, fan thrusters on the solar concentrator structure can provide the forces that move the concentrator assembly in order to track the sun.
Light pipe segment 21 is flexible and is slightly narrower in diameter than light pipe 20. The end of light pipe segment 21 attached to the mount 44 telescopes within light pipe 20. This allows it to lengthen as the angle of altitude is increased and the amount of bend is reduced, and also to rotate freely within light pipe 20 as the angle of azimuth is adjusted.
In a first embodiment, parabolic concentrator 36 is designed to have 200 times the aperture of parabolic collimator 38 in order to achieve a concentration factor of 200. The concentration factor used in the first embodiment is an engineering design choice constrained by several factors, primarily the reflection efficiency and acceptance angle of the material on the inner surface of the light tube 20, and the light tube aspect ratio, and is not a fixed feature of the invention. As the concentration factor is increased the dispersion angle of the concentrated light beam also increases. This results in more light absorption in the light tube as more reflections occur in the path down the tube to the earth's surface.
The other variable that affects the transmission effectiveness of the light pipe is the length to width ratio, or aspect ratio, of the light pipe. The larger this number is, the higher the energy losses are, as more reflections occur on average as light traverses the light pipe. Numbers for this aspect ratio are usually in the region of 100 for light pipes with efficient reflective surfaces.
So in summary, a combination of the optical design, the concentration factor, the light pipe wall reflectivity, and the light pipe aspect ratio, all influence the overall transmission efficiency of the light pipe.
Very high reflectivity light pipe wall material with reflective efficiency exceeding 99.9% enables embodiments that do not need collimator 38. The acceptance angle of the light pipe then sets the limits for concentrator 36.
The struts 48 are light weight hollow tubes. Nodes 50 in one embodiment are dodecahedral and have connectors on each face to attach struts 48. Struts 48 and nodes 50 are standardized elements and mass producible at low cost. The parabolic curvature of the truss is created by slightly increasing the length of the inner layer of struts. The degree of lengthening required is small and is accomplished in one embodiment with spacers. Another embodiment uses linear actuators to adjust strut lengths and more accurately control the structure's shape. This helps compensate for factors that affect the structure's accuracy, such as wind load and thermal expansion and contraction.
Mirrors 36 and 38 are shown in
The back and front skins of mirrors 36 and 38 are connected via long struts arranged in the same tetrahedral fashion used to form the skin layers. These long struts are fashioned from the same small truss elements consisting of struts 48 and nodes 50. Thus the overall structure of mirrors 36 and 38 can be considered as a “sandwich” of two stiff thin skins separated by a substantially hollow core with interior tetrahedral and octahedral spaces formed within a tetrahedral truss. This is the same structure used to fashion the mirror skins repeated at a larger scale.
The large interior octahedral and tetrahedral spaces within the tetrahedral truss are filled with like shaped gas bags fashioned from thin impermeable film material such as PET film, and filled with buoyancy gas such as helium or hydrogen maintained at ambient pressure and temperature. For mirror 36, these gas bags will have edge lengths measured in hundreds of meters. The edges are attached to the nodes on the interior struts and the surface skin and provide the buoyancy that supports the overall structure.
In one embodiment, the mirror segments 4B are made from an air tight, lightweight, reflective, pressure tensioned membrane 54 attached to a light rigid air tight frame 52. In one embodiment the membrane is fashioned from aluminized PET film. This relatively fragile material is commonly used in space based inflated structures, and it and similar thin film materials can be used in this application because of the benign “space like” weather free environment in the stratosphere.
The curvature of the mirror 4B surface membrane is controlled by providing reduced air pressure within the frame, thereby stretching the membrane into an approximate spherical curvature. This can be accomplished to a high degree of accuracy because the degree of curvature required is very small. A common measure of the degree of curvature of an optical element is its focal length to aperture ratio, (f/D). For example a 20 meter aperture mirror segment with a focal length of one kilometer has an f/D of 500, which is very large. At such large ratios, spherical surfaces are practically indistinguishable from parabolic surfaces, and are easily formed to high accuracy.
An optical feedback system within the mirror segment measures the mirror depth of curvature on the back of the mirror membrane via an accurate distance measuring device, and adjusts the internal air pressure via a feedback control system to establish and maintain the desired depth of curvature for the mirror segment 4B. In this way a common mirror segment can be manufactured, and then adjusted during operation to a particular curvature depending on its position within the larger mirror assembly. The feedback control system also compensates for manufacturing variability in film thickness etc. It can maintain the desired curvature despite varying conditions such as atmospheric temperature and pressure, segment wall and membrane surface expansion and contraction under heating and cooling cycles, and gas leakage through the surface membrane.
In another embodiment mirror segment 4B is fabricated using very thin carbon composite replica mirror technology that has been developed for large space based optical telescopes. This requires many unique fabrication molds, but does not need active control of the membrane and is more durable. It is a suitably lightweight fabrication technology.
Each mirror segments 4B is attached to the tetrahedral truss at three surface connecting nodes 56 using linear actuators. Each surface node thus acts as an attachment point for three different mirrors and thus three linear actuators. An optical measurement system measures the precise orientation of each mirror segment with respect to the common focus, and the sun. Each mirror segment orientation is then controlled via feedback control adjustment of the length of its three attached actuators, to reflect light to the common focus with great accuracy. This type of system is used in large segmented mirror optical astronomical telescopes to position mirror segments to extremely high accuracy. The mirror segments and linear actuators described in this embodiment are much larger and less accurate than those used in astronomical telescopes, but the positioning method is the same, and pointing accuracy in the order of 0.1 mrad is easily achievable using simple stepper motor linear actuators.
The use of linear actuators to position mirror segments serves additional purposes:
1) The actuators can be adjusted to ensure that light from some mirror segments is not directed from mirror 36 to mirror 38 and is “dumped”. This is useful when it is desired to reduce the amount of light collected.
2) With sophisticated control software the actuators can be used as a fine grained sun tracking mechanism for each mirror segment. This is like the systems used in heliostat arrays, but for a much smaller range of motion. This mechanism can compensate for inaccuracies or slow response in the alt azimuth control of the overall mirror structure 36.
The rigid truss framework forms the stiff and accurate reaction structure that enables the mirror segments to maintain their position with sufficient accuracy. It also provides the framework to hold the ambient pressure, buoyancy gas filled bags. At 20 km altitude, atmospheric pressure is low and substantial volume is needed to provide meaningful lift. The design of both struts and mirror segments emphasizes light weight. For example for an average structural weight of 1 kg/m2 of mirror aperture area, a volume of approximately 10 m3 of Helium is needed to provide neutral buoyancy at an altitude of 20 km. A mirror structure 100 meters thick can thus provide lift for an average structural mass of approximately 10 kg/m2.
Light weight rigid structures are practical for this application because the structural loads are very light. Wind speed is very low and steady at 20 km, and buoyancy removes much of the stress of supporting gravitational forces. At 20 km altitude, mirrors 36 and 38 are safely in the stratosphere and above all weather in the troposphere, including clouds, moisture, dust, wind, and the jet stream.
The 20 km height of the mirrors in the atmosphere is illustrative. The actual height of individual systems may vary with geographic location. The height of the boundary between the troposphere and the stratosphere varies with latitude, season of the year and local weather conditions. The boundary height is generally lower at higher latitudes and in the winter.
Circular segments are easier to fabricate than hexagonal segments, but they cover less area due to their non space filling shape. The Fresnel approach simplifies the supporting structure, but is slightly less efficient due to shading or extra spacing requiring a larger structure with more mirrors and struts than the hexagonal segments approach.
In one embodiment, vertically oriented steel cables 66 attached to the outer side of the structural fabric carry the vertical pre-tension load provided by the buoyancy of the light pipe. Cables from other materials or stronger fabrics without external reinforcement are viable alternatives.
The vertical force acts to stabilize gravity forces and the horizontal displacement of the light pipe caused by wind forces. These horizontal forces are very large, especially at the higher altitudes of the jet stream. In effect this section of the light pipe behaves approximately like a hanging catenary cable.
The diameter of the steel cables can be reduced as the tension load diminishes with height in buoyant regions of the light pipe. Ultimately, at the top of the light pipe the tension is close to zero.
At the bottom section of the light pipe 20 that connects to the second concentrator 26 and anchor structure it is beneficial to add additional structural reinforcement in a manner that enhances the stiffness of the light pipe. In one embodiment this is done using steel cable hoop reinforcement attached to the vertical steel reinforcement. This section of the light pipe 20 behaves more like a cantilever beam attached to the foundation structure, than the catenary cable of the upper portion of light pipe 20. This stiffness helps to keep the light pipe vertical at the CPC entry which optically aligns the light pipe with the CPC without resort to complex mechanical methods. This takes advantage of the light pipes ability to accommodate gradual bends while still maintaining high transmission efficiency.
A reflective layer is attached to the inner surface of structural fabric wall 62. In one embodiment this is a layer of aluminized PET film. Mounted to the inner wall 62 is a refracting layer 64. In one embodiment layer 64 is made of prismatic transparent reflecting film, as used in lighting system light tubes. One such commercially available material is 3M optical lighting film TM. This film uses the principal of total internal reflection as taught by Whitehead in U.S. Pat. No. 4,260,220, “Prism light guide having surfaces which are in octature” and can be 99% efficient in reflecting light within the acceptance angle. A portion of the small amount of light that leaks through the prismatic film 64 is reflected by the metallic reflective film 62, further enhancing overall reflection efficiency.
Another embodiment uses multiple layers of transparent film such as PET film for layer 64 and exploits the principle of multi layer reflectance as taught by Waymouth in U.S. Pat. No. 4,895,420, “High reflectance Light Guide”. This approach also only works for a limited acceptance angle. These various techniques, exploiting both reflection from layer 62 and refraction within layer 64 can exceed 99.5% overall reflectivity.
Operation—
As the sun rises, light is reflected from concentrator mirror 36 onto collimating mirror 38, and then reflected from collimator mirror 38 to the entrance aperture of light pipe segment 21. As the light reflects off mirror 36 and 38 and is concentrated, its dispersion half angle increases from the 4.653 mrad of the incident sunlight to a larger number approaching 60 mrad at the entrance to light pipe segment 21. The light then travels down light pipe segment 21 reflecting occasionally off the reflective walls and around the bend in the pipe at the alt azimuth mount 44 that connects to the main light pipe 20. Light then travels down light pipe 20 reflecting occasionally off the reflective wall which has gradual bends as the light pipe adjusts to the force of the wind it experiences in the troposphere.
At the bottom of light pipe 20 at ground level the light passes through the final optical concentrator element CPC 26, exiting the optical system and entering the thermal system
In one embodiment of a solar energy conversion system shown in
Exhaust gas from heat engine 84 passes through regenerator 92, transferring heat to the cooler high pressure gas output from compressor 90. After exiting regenerator 92, the low pressure, low temperature gas passes through ambient cooler heat exchanger 88, where it is further cooled before entering compressor 90. High pressure pre-heated gas from the regenerator 92 enters thermal store 30, completing the thermal circuit.
In the combined cycle solar energy conversion system embodiment shown in
As the day progresses, the solar concentrator and collimator tracks the sun, rotating the entire mirror and alt-azimuth mount structure in azimuth and tilting the structural axis (which is parallel to beam 40) in azimuth. The motion is driven by motors in the alt-azimuth mount 44 which are controlled by a sun tracking control system. As is shown in
Advantages
Unlike prior art concentrating solar energy systems, the geographic location of these embodiments is not constrained to desert areas. This is of particular benefit to normally cloudy mid latitude locations where most large urban areas are located.
The combination of geographic flexibility and power generation without the need for any fuel provides a secure and clean energy system.
Power in the form of concentrated solar energy or electricity can be provided at any point on the earth's surface, where the definition of surface includes the entire surface, including all land and oceans. Offshore platforms could be a particularly convenient in some locations. Concentrated direct solar energy and or electricity could be provided near mines, allowing convenient high temperature processing without transportation of bulk ores.
The very small amount of land area needed means that systems can be located very near existing power plants, or existing transmission and distribution networks, which reduces or eliminates the need for new electricity transmission infrastructure.
With the thermal storage described in the embodiments a reliable and flexible power generation system that can continuously supply all energy requirements without augmentation with other power generation sources, as is required with prior art solar power and other alternative energy systems.
Energy systems that do not put carbon dioxide into the atmosphere are highly desirable. Currently all alternative energy systems suffer from major problems:
1) They are very costly to build
2) They are unreliable providers of electricity due to intermittent weather affects, and so need backup generation using alternate energy sources such as natural gas.
3) They need large additional energy storage and transmission infrastructure investments.
4) The energy is located far from users, again requiring large transmission infrastructure investments
This new system has the benefit of not producing carbon dioxide and has none of these problems. The bottom line is clean secure energy can be provided at much lower cost.
The benefits of suspending a collector in the stratosphere are the reliability of the energy source, the higher incident energy density, and the benign stable calm low wind weather free environment. These benefits come at the price of lower atmospheric density, which means less buoyant lift and a consequent need for a very lightweight structure. This complicates the use of heavy energy absorbing and/or power conversion equipment at the collector in the stratosphere, and explains the benefit of embodiments using a light pipe to transport the light energy directly to the earth's surface, without conversion.
It is envisaged that the large buoyant optical structures, particularly mirror structures 36 and 38 will be assembled at one or more centralized factory locations in a highly automated fashion. The assembled structures will then be raised by their own buoyancy into the stratosphere and “flown” to their destination anywhere on the planet. There they will be connected to the light pipe and ground based elements. This manufacturing method greatly reduces cost, improves quality, and speeds construction. It is envisaged that when production is mature, complete utility size electricity generating facilities could be operational in less than a year from breaking ground. This compares with current technologies which require three to five or more years to construct.
Although the present invention has been described in terms of a first embodiment, it will be appreciated that various modifications and alterations might be made by those skilled in the art without departing from the spirit and scope of the invention. Though the first embodiment is described using offset parabolic mirror arrays for the concentrator and collimator elements, other forms of concentrators and collimators using a myriad of different optical geometries are possible. Also refractive optics elements such as lightweight arrays of thin prismatic elements, or inflatable reflective or refractive optical elements are also possible.
All that is required of the light tube is a sound gas tight structure and a high inner surface reflective efficiency, both of which can be met with many alternative materials and structural approaches. As described in the specification, there are various structural techniques to stabilize the light pipe against atmospheric wind forces including:
Each of these techniques or a combination of some or all is possible.
The invention should therefore be measured in terms of the claims which follow.