This disclosure pertains to the field of planar torsion springs.
Rotational torsion springs that work by storing energy with torsion or twisting; that is, a flexible elastic object that stores mechanical energy when it is twisted. When the rotational torsion spring (hereinafter “torsion spring”) is twisted, it exerts a force (torque) in the opposite direction, proportional to the amount (angle) the torsion spring is twisted. Torsion springs are known in the industry. However use is being adapted to new applications and optimal material shapes, dimensions and designs are frequently created on a trial and error basis.
A torsion spring is a type of spring that stores mechanical energy when a twisting force (torsion) is applied. These include torsion bars where the torsion is resisted by shear stresses, and spiral torsion springs wherein the torsion is resisted by bending stresses about the axis of their curvature.
This Disclosure pertains to a rotational torsion spring comprising an inner ring positioned concentrically with an outer ring. The inner ring can be termed the input side of the torsion spring. The outer ring can be termed the output side of the torsion spring. The outer ring has a larger radius than the inner ring. Both rings share the same axis of rotation. The inner ring and the outer ring are connected with splines positioned between the inner ring and the outer ring. In a preferred embodiment, of the splines is configured with long arc segments. The long arc segments extend approximately parallel to the circumference of the inner and outer rings.
The disclosure illustrates a torsion spring comprising concentric arc splines connecting the inner ring and outer ring of the torsion spring. Each spline comprises a serpentine component that extends from the inner ring to an outer ring. The serpentine shape of each spline is preferably identical. Each spline is attached to the inner ring and outer ring by each spline forming an L shaped segments at its juncture with each ring.
Each of the splines has a depth dimension. For example, the depth is the dimension of a steel plate from which the spline may be cut. The depth is a dimension parallel to the center longitudinal axis of the inner and outer rings.
Each of the splines has a thickness. This is the dimension of the spline relative to the plane to the rotational spring. This can be also termed the spline thickness or width of the concentric arc. The geometry of the torsion spring subject of this disclosure allows the reduction of spline thickness for a specified torsion spring load. For example the spline subject of this disclosure may be less thick (thinner) than the spline disclosed in provisional application 62/061,815 which is incorporated by reference in its entirety. It will be appreciated that the spline thickness may vary depending upon its position relative the inner or outer rotational ring, etc.
The spline depth may also vary. The depth may be less than the depth of the concentric inner or outer ring.
The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawings will be provided by the Office upon request and payment of the necessary fee.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate preferred embodiments of the invention. These drawings, together with the general description of the invention given above and the detailed description of the preferred embodiments given below, serve to explain the principles of the invention.
The planar torsion spring comprises an inner ring nested within a larger diameter outer ring. The rings are joined together by one or more splines. The splines can form elongated concentric arcs (hereinafter “concentric arc segments”) surrounding the inner ring. The design of the spline can be opposite the design of a wheel spoke radiating directly between an outer rim and inner hub. It will be appreciated the spoke will extend from the inner hub in a radially straight direction to the outer rim. It will be appreciated that the elongated concentric arc (serpentine) shape of the splines of the Applicant's design permits the greater deflection of the spline with lower stress. The Applicant's design achieves this improvement by the longer load path formed of the elongated design of the concentric arc segments of each spline. It will be further appreciated that the spline can be deflected or deformed by the rotation of one ring relative to the other ring. With fewer splines, each spline can be designed longer to achieve a wider range of stiffness, but a lower maximum achievable stiffness. With fewer splines, each spline can be designed to have a longer extended path between the inner ring and the outer ring. The thickness of the spline may be varied through the elongated length. The depth of the spline may also be varied
The Applicant discloses that incorporating more splines connecting the inner and outer rings allows a narrower range of achievable stiffness, but a higher maximum stiffness. There can be as few as 1 spline, and the practical upper limit of splines is dictated by the overall diameter of the spring. This disclosure teaches that fewer splines allows a broader range of stiffness, while a greater number of splines narrows the range of stiffness but increases the total stiffness of the spring. Further, this application claims priority to Nonprovisional application Ser. No. 14/691,702 entitled “Series Elastic Motorized Exercise Machine” filed Apr. 21, 2015 and which is incorporated in its entirety by reference herein.
It will be appreciated that the axis of rotation of the torsion spring may be shared with the axis of rotation of other components of an apparatus utilizing the torsion spring. Such an apparatus can be the Series Elastic Motorized Exercise Machine.
The planar torsion spring illustrated in
This disclosure pertains to a novel planar torsion spring. An example of the planar torsion spring of the Applicants' disclosure is shown in
The planar torsion spring can be described as an inner ring positioned within the concentric ring of an outer portion ring. The inner and outer rings are connected by one or more splines. The splines comprise multiple concentric arc segments positioned in a serpentine pattern between the inner circumference of the outer ring and the outer circumference of the inner ring. The Applicant's design illustrated in
Another definition of the disclosure would be a method for a planar torsion spring wherein the spring comprises fabricating a first outer ring, fabricating a second inner ring which is positioned within the first outer ring and possessing a same axis of orientation, further connecting the first outer ring with the second inner ring with one or more splines and extending the spline to a maximum length relative to the circumference between the first outer ring and second inner ring, fabricating the spline with the maximum number concentric arc segments between the inner circumference of the first outer ring and the outer circumference of the second inner ring and positioning the first outer ring, the second inner ring and the spline in the same plane.
The advantages of this construction include increased strength and flexure of the spring.
The above state definitions are now combined with the planar rotational spring diagramed in
It will be appreciated that there may be more than three annular segments. This could be achieved by making the thickness 134 of the spline narrower. This change in geometry may require the depth 135 of the spline of the torsion spring to be increased. It could also be achieved by making the diameter of the planar torsion spring larger.
The advantages of this construction, i.e., three splines constructed of three annular segments attached by curved segments and attached to the inner and outer rings by L shaped structures as illustrated in
An additional advantage is that the input side can be deflected from the output side by an increased angle. It will be appreciated that the drawing illustrates the spring at an equilibrium state. If the output side is subjected to force, the spring will flex. When flexed, the output side of the spring may rotate while the input side stays in the same position. The increased flexure of the spring allows increased angle of rotation or deflection of the output side relative to the input side without permanent deformation of the spring.
In another embodiment, not shown, is one or more splines comprising a winding configuration about the other or winding about the input side.
Continuing the discussion/comparison of the novel 3 spline design described above and illustrated in
The geometry of the 3 spline torsion spring subject of
Given a desired stiffness, the general geometry of the design reduces the stress in the material, resulting in a stronger spring than the design illustrated in
The color drawings
It will be appreciated that the spring geometry includes the depth 135 of the splines, as well as the spline thickness 134 and spline load path (illustrated as 131, 132, 133 and 134). The geometry and material selection determine the spring stiffness. For example the planar torsion spring illustrated in
Further, the new spring geometry reduces stress concentration by distributing the load more predictably and evenly. This means that the peak stress in the material is less with the new design given a size and stiffness target. The new spring geometry (
The Applicants' design illustrated in
SplineThickness=−1e−4*DesiredStiffness2+0.0577*DesiredStiffness+3.4142
DesiredStiffness is in units of Nm/deg
SplineThickness is in units of mm
This equation is specifically for an inner ring diameter of 50 mm and an outer ring diameter of 210 mm with a 6.35 mm depth. The equation maintains the same form for different inner ring and outer ring diameters as well as different thicknesses, but it will have different coefficients.
The concentric serpentine nature of the splines helps to reduce stress due to radial misalignment of the input and output axes of rotation due to assembly tolerances. Radial misalignment is illustrated in
Another variable of the planar torsion spring of the Applicants' concentric arc segment spline design is that the length of each arc segment 131 (see
A planar torsion spring comprising concentric arc segments tolerates radial or axial misalignment with reduced stress compared to other spring designs. Radial misalignment occurs when the axis of rotation of the inner ring and outer ring are not identical.
This specification is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the manner of carrying out the disclosure. It is to be understood that the forms of the disclosure herein shown and described are to be taken as the presently preferred embodiments. As already stated, various changes may be made in the shape, size and arrangement of components or adjustments made in the steps of the method without departing from the scope of this disclosure. For example, equivalent elements may be substituted for those illustrated and described herein and certain features of the disclosure maybe utilized independently of the use of other features, all as would be apparent to one skilled in the art after having the benefit of this description of the disclosure.
While specific embodiments have been illustrated and described, numerous modifications are possible without departing from the spirit of the disclosure, and the scope of protection is only limited by the scope of the accompanying claims.
This Disclosure claims priority to Provisional Application entitled “Elastic Torque Sensor for Planar Torsion Spring” filed Oct. 9, 2014 as application Ser. No. 62/061,815. This application also claims priority to Provisional application entitled “Concentric Arc Spline Rotational Spring” filed Jan. 1, 2015 as application Ser. No. 62/099,191. These provisional applications are incorporated by reference herein in their entirety. This application claims priority to and incorporates by reference herein provisional application Ser. No. 62/173,498 entitled “Elastic Torque Sensor for Planar Torsion Spring filed Jun. 10, 2015. This application claims priority to and incorporates by reference herein nonprovisional application Ser. No. 14/691,702 entitled Series Elastic Motorized Exercise Machine filed Apr. 21, 2015
Number | Date | Country | |
---|---|---|---|
62173498 | Jun 2015 | US | |
62099191 | Jan 2015 | US | |
62061815 | Oct 2014 | US |