Detection of atherosclerotic lesions prone to rupture is of utmost importance in the management of patients with acute coronary syndromes or stroke. Despite the advent of computed tomographic (CT) angiography, high resolution MRI, intravascular ultrasound (IVUS), near-infrared fluorescence (NIRF), time-resolved laser-induced fluorescence spectroscopy, and other techniques, predicting metabolically active atherosclerotic lesions has remained an unmet clinical need. Mechanically unstable atherosclerotic plaque is often characterized by a thin-cap fibrous atheroma (<65 μm) and a metabolically active lipid core. Rupture of these plaques is clinically manifested as acute coronary syndromes or stroke. Emerging imaging modalities such as an integrated intravascular ultrasound (IVUS) and optical coherence tomography (OCT) system have enabled the colocalization of thin-cap fibroatheroma with intimal hyperplasia and calcification. Assessing metabolic states in the inflammatory, albeit non-obtrusive, lesions has remained a diagnostic challenge.
Concentric bipolar electrodes sensors and assemblies are used for electrochemical impedance spectroscopy (EIS) to measure impedance of biological tissue and bio-materials.
An aspect of the present disclosure is directed to a system for electrochemical impedance spectroscopy (EIS). The system can include a concentric bipolar electrode sensor assembly including an outer electrode and a center electrode disposed within the outer electrode. The concentric bipolar electrode assembly can be configured to supply an excitation voltage across the outer and center electrodes. The system can include a memory, storage device, or memory unit that is configured to receive data from the concentric bipolar electrode assembly. A processor can be included that can be connected to the memory. Programming can be included for execution by the processor, and stored in the memory or storage device. Execution of the programming by the processor configures the system to perform functions, including functions to measure impedance across the outer and center electrodes for EIS measurements of biological tissue or material adjacent to the sensor assembly.
A further aspect of the present disclosure is directed to an article of manufacture including a non-transitory machine-readable storage medium; and executable program instructions embodied in the machine readable storage medium that when executed by a processor of a programmable computing device configures the programmable computing device to: from electrical signals received from a bipolar concentric electrode sensor, measure impedance of biological tissue or material; and provide an output signal indicative of the measure impedance to a display device.
While certain embodiments are depicted in the drawings, one skilled in the art will appreciate that the embodiments depicted are illustrative and that variations of those shown, as well as other embodiments described herein, may be envisioned and practiced within the scope of the present disclosure.
The drawing figures depict one or more implementations in accord with the present teachings, by way of example only, not by way of limitation. They do not set forth all embodiments. Other embodiments may be used in addition or instead. Details that may be apparent or unnecessary may be omitted to save space or for more effective illustration. Conversely, some embodiments may be practiced without all of the details that are disclosed. When the same numeral appears in different drawings, it refers to the same or like components or steps. The drawings are not necessarily to scale, emphasis instead being placed on the principles of the disclosure. In the drawings:
While certain embodiments are depicted in the drawings, one skilled in the art will appreciate that the embodiments depicted are illustrative and that variations of those shown, as well as other embodiments described herein, may be envisioned and practiced within the scope of the present disclosure.
In the following detailed description, numerous specific details are set forth by way of examples in order to provide a thorough understanding of the relevant teachings. However, it should be apparent to those skilled in the art that the present teachings may be practiced without such details. In other instances, well known methods, procedures, components, and/or circuitry have been described at a relatively high-level, without detail, in order to avoid unnecessarily obscuring aspects of the present teachings.
Systems and methods of the present disclosure provide for and/or facilitate detection and diagnosis of the non-obstructive and pro-inflammatory atherosclerotic lesions in human arteries during catheterization by use of concentric bipolar electrodes for electrochemical impedance spectroscopy (EIS). Biological tissues store charges, and electric impedance (Z) develops as a function of frequency in response to the applied alternating current (AC), and accordingly, atherosclerotic lesions can display distinct electrochemical properties. Active lipids and macrophages cause distinct electrochemical properties in the vessel wall that can be measured by electrochemical impedance spectroscopy (EIS). Distinct electrochemical properties of oxidized low density lipoprotein (oxLDL) and foam cell infiltrated in the subendothelial layer at lesion sites can be measured in terms of the electrochemical impedance spectroscopy (EIS) using concentric bi-polar electrodes as described herein. Concentric bipolar microelectrodes can accordingly be used to measure electrochemical impedance in regions of pro-inflammatory states with high spatial resolution. Distinct from linear four point electrode arrays, methods and systems according to the present disclosure employ concentric bipolar electrodes, allowing for reproducible assessment for vascular regions harboring vascular oxidative stress in terms of oxLDL and foam cells. Concentric electrodes can provide constant and symmetric displacement between working and counter electrodes. Moreover, concentric configuration may allow for EIS measurement independent of the surrounding solutions or blood and the orientation of the tissues. Because of the micro-scale of the concentric electrodes, the impedance measurement is mainly sensitive to the electrochemical properties of the tissue at close proximity, thus during in vivo investigation the impedance measurements may be largely independent of lumen diameters, blood volumes, and flow rates when the contact is made between microelectrodes and endoluminal surface. In implemented embodiments, specimens that harbored oxidative stress were found to generate distinctly higher EIS values compared to the healthy tissues over a range of frequency from 10 KHz to 100 kHz; other frequency ranges may of course be utilized.
EIS sensors according to the present disclosure can be incorporated onto a steerable catheter accompanied with intravascular ultrasound (IVUS) to scan the circumferential profile of the atherosclerotic vasculature. EIS measurement can be performed at multiple sites for a single lesion to generate a contour map containing both topographical and electrochemical information. In addition, EIS measurements can be potentially incorporated with intracardiac echocardiogram, optical coherence tomography (OCT), and/or micro-thermal sensors to further enhance the sensitivity and specificity for the assessment of pro-inflammatory states or unstable plaque.
As further shown in
Details for a method of fabricating 200 an exemplary concentric bipolar electrode assembly, in the form of a MEMS based sensor, are shown in
Exemplary embodiments were tested and demonstrated the ability to characterize metabolically active lesions via EIS measurements in explants of human aorta. Equivalent circuit models were developed to assess electric circuit parameters in the context of simulating endoluminal EIS measurements. EIS measurements performed on 15 coronary, carotid, and femoral arteries at various Stary stages of atherosclerotic lesions revealed distinct electrochemical impedance spectroscopic signals. Endoluminal impedance was significantly higher in the active lipid-rich lesions as validated by positive anti-oxLDL staining. To corroborate the specificity of EIS measurements, significant differences in frequency-dependent impedance signals were demonstrated among fatty streaks (Stary Type II lesions), thin fibrous cap oxLDL-rich (Type III or IV), oxLDL absent fibroatheroma (Type V), and calcified lesions (type VII).
Regarding material and methods, fresh-frozen human artery specimens were obtained from National Disease Research Interchange (NDRI) in accordance with the University of Southern California Institutional Review Board guideline. A total of 15 human coronary, carotid and femoral arterial segments from nine (9) donors were analyzed for endoluminal EIS measurements. The arterial samples were immersed in phosphate buffered saline (PBS) solution (commercially available from Invitrogen, CA, USA), and sectioned longitudinally to unfold the endoluminal sides. The gross pathology of individual specimens revealed various degrees of atherosclerosis as classified by Stary stages from type I to VII, as shown in Table 1 of
EIS measurements were conducted using the concentric bipolar microelectrodes with a flat tip profile (commercially available from FHC Co., ME, USA). Briefly, the concentric bipolar microelectrode was mounted vertically on a micro-manipulator (commercially available from World Precision Instruments, FL, USA), and made in contact with tested tissue at selected measuring point. An Ag/AgCl electrode (commercially available from World Precision Instruments, FL, USA) was used as the reference electrode. Frequency-dependent impedance was measured from 100 Hz to 300 kHz (commercially available from Gamry Series G 300 potentiostat, PA, USA). The magnitudes and phases of the EIS measurements were recorded at 20 data points per frequency decade, and the measured impedance spectrums were analyzed (commercially available from Gamry Echem Analyst software, PA).
To simulate equivalent circuit model for the concentric bipolar electrode-endoluminal tissue interface for an implemented embodiment, three models describing both working and counter electrode interface as well as the tissue impedance were constructed.
As shown in
where Y represents the capacitance and a is the empirical constant describing the surface property of an electrode. When a=1, the CPE operates as an ideal capacitor. In most cases, a fell between 0 and 1 (0<a<1), where ZCPE indicates the non-ideal behavior of electrode-tissue interface capacitance. The charge transfer resistance, RCT, was seen as being predominantly dependent on the chemical and physical properties of electrolyte solution and electrode material. Each blood vessel was considered to harbor both resistive (RB) and capacitive (CB) properties; thus, both were seen as contributing to the overall tissue impedance. The RB and CB values were mainly dependent on the composition and structure of the tissue, particularly its water, lipid, ion and charged molecule content. With the assumption of an extremely large charge transfer resistance (RCT1) at large-area counter electrode and an ideal double layer capacitance (CDL2) replacing the CPE at working electrode, Equivalent Circuit model 2 (EC2) was implemented to avoid potential over-fitting to simplify the simulation (
Regarding histology and immunohistochemistry, human specimens were sectioned and immersed in 4% paraformaldehyde for paraffin fixation immediately following the impedance measurements. Multiple slides with thickness of 5 μm were cut for histological evaluation. Standard hematoxylin and eosin (H&E) staining was performed to visualize initima, media, smooth muscle cells, adventitia, and foam cells. The metabolic states of atherosclerotic lesions were assessed by anti-oxLDL antibody (mAb4E6) to active lipids, Oil-red-O to lipid content, and von Kossa to calcification. All histological sections were visualized under Olympus IX70 microscopes (made commercially available by Olympus, Japan) and captured with a CCD digital camera (such as a ProGres® C3, made commercially available by Jenoptic, Germany). Metabolically active conditions of the fibroatheromas were classified by the Stary stages in terms of intimal hyperplasia, thin-cap atheroma, active lipids, and calcification.
For statistical analysis, atherosclerotic lesions were categorized into five types (lesion free/fatty streak/thin cap oxLDL-rich atheroma/oxLDL-absent fibroatheroma/calcified lesions) based on histological evidence. Due to variations in specimen size, thickness, and possible changes in electrode surface chemistry after multiple applications, inter-specimen variations in baseline EIS measurements could develop. To standardize comparisons, all of the parameter values obtained from simulation were normalized to the respective mean parameter values obtained from the lesion-free sites of the same specimens. Next, one-way analysis of variance (ANOVA) and two-tailed T-test were used for multi-group comparison and comparison between lesion and lesion free groups, respectively. P values <0.05 were considered statistically significant.
As for results, an optimal equivalent circuit to simulate endoluminal EIS measurements were constructed as shown for Equivalent Circuits 1 and 2 (EC1 and EC2). Both Equivalent Circuits 1 and 2 (EC1 and EC2) predicted frequency-dependent changes in impedance (Ω) and phase, and were in agreement with the endoluminal EIS measurements in the human carotid arteries accompanied by approximately 2.5% error, as shown in
Equivalent Circuit 3 (EC3) predicted frequency-dependent changes in impedance accompanied by approximately 14.8% error and by a significant deviation in the phase values (θ). The individual circuit parameters were further compared among the three equivalent circuits, as shown in
Endoluminal EIS measurements were compared between fatty streak-rich and fatty streak absent sites, followed by immunohistochemistry analysis for anti-oxLDL and Oil-red-O staining.
To address the inflammatory states underneath the fibrous caps, application of EIS was demonstrated in en face human carotid arteries.
To assess the specificity for inflammatory states, frequency-dependent EIS measurements were performed to compare oxLDL-rich and -absent fibrous atheroma in en face human carotid arteries.
To further assess frequency-dependent EIS measurements in the presence of calcification, EIS measurements were performed in en face calcific atherosclerotic plaque from explants of human carotid arteries.
Accordingly, systems, apparatus, and methods as described herein can provide concentric bipolar electrodes for electrochemical characterization of tissue structure and/or disease states such as fibrous atheromas and bioactive lipids in terms of impedance spectroscopy.
Aspects of the methods of EIS processing using concentric bipolar electrode assemblies outlined above may be embodied in programming. Program aspects of the technology may be thought of as “products” or “articles of manufacture” typically in the form of executable code and/or associated data that is carried on or embodied in a type of non-transitory machine readable medium. “Storage” type media include any or all of the tangible memory of the computers, processors or the like, or associated modules thereof, such as various semiconductor memories, tape drives, disk drives and the like, which may provide non-transitory storage at any time for the software programming. All or portions of the software may at times be communicated through the Internet or various other telecommunication networks. Such communications, for example, may enable loading of the software from one computer, processor, or device into another, for example, from a management server or host computer of the service provider into the computer platform of the application server that will perform the function of the push server. Thus, another type of media that may bear the software elements includes optical, electrical and electromagnetic waves, such as used across physical interfaces between local devices, through wired and optical landline networks and over various air-links. The physical elements that carry such waves, such as wired or wireless links, optical links or the like, also may be considered as media bearing the software. As used herein, unless restricted to non-transitory, tangible “storage” media, terms such as computer or machine “readable medium” refer to any medium that participates in providing instructions to a processor for execution.
Hence, a machine readable medium may take many forms, including but not limited to, a tangible storage medium, a carrier wave medium or physical transmission medium. Non-volatile storage media include, for example, optical or magnetic disks, such as any of the storage devices in any computer(s), server(s), or the like, such as may be used to implement the push data service shown in the drawings. Volatile storage media include dynamic memory, such as main memory of such a computer platform. Tangible transmission media include coaxial cables; copper wire and fiber optics, including the wires that comprise a bus within a computer system. Carrier-wave transmission media can take the form of electric or electromagnetic signals, or acoustic or light waves such as those generated during radio frequency (RF) and infrared (IR) data communications. Common forms of computer-readable media therefore include for example: a floppy disk, a flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, DVD or DVD-ROM, any other optical medium, punch cards paper tape, any other physical storage medium with patterns of holes, a RAM, a PROM and EPROM, a FLASH-EPROM, any other memory chip or cartridge, a carrier wave transporting data or instructions, cables or links transporting such a carrier wave, or any other medium from which a computer can read programming code and/or data. Many of these forms of computer readable media may be involved in carrying one or more sequences of one or more instructions to a processor for execution.
While the foregoing has described what are considered to be the best mode and/or other examples, it is understood that various modifications may be made therein and that the subject matter disclosed herein may be implemented in various forms and examples, and that the teachings may be applied in numerous applications, only some of which have been described herein. It is intended by the following claims to claim any and all applications, modifications and variations that fall within the true scope of the present teachings.
Unless otherwise stated, all measurements, values, ratings, positions, magnitudes, sizes, and other specifications that are set forth in this specification, including in the claims that follow, are approximate, not exact. They are intended to have a reasonable range that is consistent with the functions to which they relate and with what is customary in the art to which they pertain.
The scope of protection is limited solely by the claims that now follow. That scope is intended and should be interpreted to be as broad as is consistent with the ordinary meaning of the language that is used in the claims when interpreted in light of this specification and the prosecution history that follows and to encompass all structural and functional equivalents. Notwithstanding, none of the claims are intended to embrace subject matter that fails to satisfy the requirement of Sections 101, 102, or 103 of the Patent Act, nor should they be interpreted in such a way. Any unintended embracement of such subject matter is hereby disclaimed.
Except as stated immediately above, nothing that has been stated or illustrated is intended or should be interpreted to cause a dedication of any component, step, feature, object, benefit, advantage, or equivalent to the public, regardless of whether it is or is not recited in the claims.
It will be understood that the terms and expressions used herein have the ordinary meaning as is accorded to such terms and expressions with respect to their corresponding respective areas of inquiry and study except where specific meanings have otherwise been set forth herein. Relational terms such as first and second and the like may be used solely to distinguish one entity or action from another without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “a” or “an” does not, without further constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.
The Abstract of the Disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.
Application claims priority to and benefit of U.S. Provisional Patent Application Ser. No. 61/403,317 filed Sep. 14, 2010, Attorney Docket No. 028080-0603, and entitled “Concentric Bipolar Electrochemical Impedance Spectroscopy to Assess Vascular Oxidative Stress,” the entire content of which is incorporated herein by reference.
This invention was made with Government support under Contract Nos. NHLBI 083015 and NHBLI 068689, awarded by the National Institutes of Health. The Government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
61403317 | Sep 2010 | US |