The present disclosure relates generally to a lamp, and, more particularly, to a concentric coil infrared emitter lamp.
Infrared heater systems may include infrared heat lamp(s) configured to emit infrared radiation, which, in turn, may be used as a deliberate heating source. For example, an infrared heater system may be used to cook and/or heat food and may also be used in industrial manufacturing processes, including, but not limited to curing of coatings, forming of plastics, annealing, plastic welding, and print drying. Additionally, an infrared heater system may be used to heat a surrounding environment, such as one's home or office.
When in operation, an electric current passes through the coiled heating element 104 by way of the first and second terminal ends 106, 108, thereby heating and causing the heating element 104 to emit infrared radiation. The infrared heat lamp 100 may be used as a heating source in a heater system, whereby the heater system may direct the infrared radiation emitted from the heat lamp 100 to a desired application.
The power of a heat lamp may limit use of the heat lamp to a particular application. For example, in regards to a heater system for heating one's home, the power of the heat lamp may be limiting in respect to the size of a room that can be adequately heated by the heat lamp (i.e. the lower the power, the smaller the room that can be heated). As such, some heater systems may include multiple heat lamps in order to increase the overall output of the heater system. Additionally, some individual heat lamps may include multiple heating elements within, such as the coiled heating element 104 described above, to increase the overall power of a heat lamp. For example, a heat lamp may include three 500 W heating elements within, each of the elements running independently from one another, and, when in operation, the heat lamp may have a total combined power of 1500 W. Examples of such heat lamps may be found in U.S. Pat. No. 8,014,652 (Suzuki); and U.S. Pat. No. 7,639,930 (Mizukawa).
However, the methods of increasing the power of a heater system or an individual heat lamp, as described above, present disadvantages. In particular, the additional heat lamps included in a heater system necessarily require an increase in the size of the heater system, so as to accommodate the additional heat lamps. Similarly, including additional heating elements in single heat lamp generally requires an increase in size (e.g. length, width, etc.) of the heat lamp in order to accommodate the additional heating elements. An increase in size of a heater system or an individual heat lamp presents obvious disadvantages.
Features and advantages of the claimed subject matter will be apparent from the following detailed description of embodiments consistent therewith, which description should be considered with reference to the accompanying drawings, wherein:
In general, this disclosure provides an infrared emitter lamp adapted to provide a greater amount of power while having a relatively compact design. The infrared emitter lamp includes a first heating element wound about an intermediate tubular member and a second heating element wound about an inner tubular member and disposed within the intermediate tubular member. The first and second heating elements and associated intermediate and inner tubular members are disposed within an outer tubular member. The first and second heating elements are adapted to emit infrared radiation when electric current is passed there through. The first heating element is adapted to operate at first wattage level and the second heating element is adapted to operate at a second wattage level less than the first wattage level.
An infrared emitter lamp consistent with the present disclosure may allow a greater amount of power output without requiring an increase in size of the lamp to accommodate multiple heating elements. Similarly, an infrared emitter lamp consistent with the present disclosure may be used in a compatible heater system and allow a greater amount of power output of the heater system without requiring multiple heat lamps which would result in an increase in size of the heater system. As such, an infrared emitter lamp consistent with the present disclosure provides a greater amount of power output while providing a compact design and greater concentration of heat.
Turning now to the drawings,
As described in greater detail herein, the intermediate and inner tubular members 210, 226 are adapted to provide support and insulation for the first and second heating elements 214, 230. In the illustrated embodiment, the first heating element 214 is wound about an outer surface 216 of the intermediate tubular member 210. The first heating element 214 includes a first terminal end 218 and a second terminal end 220 and a coiled portion 222 defined between the first and second terminal ends 218, 220. The coiled portion 222 includes a plurality of turns 224 wound about the outer surface 216 of the intermediate tubular member 210. As shown, at least a portion of the second terminal end 220 is disposed within a passageway 212 defined within and extending the length of the intermediate tubular member 210. The passageway 212 is adapted to insulate a portion of the second terminal end 220 disposed within from other portions of the first heating element 214, such as, for example, the turns 224 of the coiled portion 222.
Similar to the intermediate tubular member 210 and first heating element 214, the second heating element 230 is wound about an outer surface 232 of the inner tubular member 226. The second heating element 230 includes a first terminal end 234 and a second terminal end 236 and a coiled portion 238 defined between the first and second terminal ends 234, 234. The coiled portion 238 includes a plurality of turns 240 wound about the outer surface 232 of the inner tubular member 226. As shown, at least a portion of the second terminal end 236 is disposed within a passageway 228 defined within and extending the length of the inner tubular member 226. The passageway 236 is adapted to insulate at least portion of the second terminal end 236 disposed within from other portions of the second heating element 230, such as, for example, the turns 240 of the coiled portion 238.
As shown in
During operation, an electric current passes through at least one of the first and second heating elements 214, 230 and causes at least one of the first and second heating elements 214, 230 to emit infrared radiation. More specifically, electric current may pass through the first heating element 214 via the first and second terminal ends 218, 220, thereby heating and causing the first heating element 214, specifically the coiled portion 222, to emit infrared radiation. Similarly, electric current may pass through the second heating element 230 via the first and second terminal ends 234, 236, thereby heating and causing the second heating element 230, specifically the coiled portion 238, to emit infrared radiation.
In the illustrated embodiment, the first and second heating elements 214, 230 are electrically coupled to one another and form a parallel electrical circuit such that both the first and second heating elements 214, 230 emit infrared radiation. Although shown in a parallel electrical circuit, it should be noted that the first and second heating elements 214, 230 may form a series electrical circuit. Alternatively, the first and second heating elements 214, 230 may be electrically isolated from one another such that the first and second heating elements 214, 230 operate independently from one another. For example, in one embodiment, the lamp 200 may include a means (e.g. control) of selectively coupling an electric current to only the first heating element 214, only the second heating element 230 or both the first and second heating elements 214, 230 so as to allow multiple configurations (i.e. radiation only the first heating element 214, radiation from only the second heating element 230, radiation from both the first and second heating elements 214, 230).
The first and second heating elements 214, 230 each include a single continuous wire, wherein the wire is a flexible, resilient, and durable material configured to be bent and/or shaped into a desired dimension, such as the plurality of turns 224, 240. The first and second heating elements 214, 230 include electrically conductive filament material(s) configured to withstand high temperatures and/or heat, including, but not limited to, tungsten, carbon, alloys of iron, chromium and aluminum, and/or combinations thereof. For example, the first and second heating elements 214, 230 may each include a heating alloy containing iron-chromium-aluminium (FeCrAl) sold under the trade designation Kanthal® offered by Sandvik Group of Sweden.
The first and second heating elements 214, 230 are adapted to operate at first and second wattage levels, respectively, wherein the second wattage level is level than the first wattage level. Accordingly, the second heating element 230 is adapted to operate at a lower wattage level than the first heating element 214. In one embodiment, the first heating element 214 is adapted to operate at 1000 W and the second heating element 230 is adapted to operate at 500 W, wherein the first and second heating elements 214, 230 operate at a cumulative wattage level of 1500 W. It should be noted that, in other embodiments, the first and second heating elements 214, 230 may each be adapted to operate in a range of wattage levels (e.g. between 500 W and 1000 W).
The heat lamp 200 further includes a first end cap 242 coupled to the first end 204 of the outer tubular member 202 and a second end cap 244 coupled to the second end 206 of the outer tubular member 202. At least one of the first and second end caps 242, 244 includes openings through which the first terminal ends 218, 234 and second terminal ends 220, 236 of the first and second heating elements 214, 230 extend. For example, as shown, the first end cap 242 includes a first opening 246 through which the first terminal ends 218, 234 of the first and second heating elements 214, 230 extend. The first end cap 242 further includes a second opening 248 through which the second terminal ends 220, 236 of the first and second heating elements 214, 230 extend. When fully assembled, as shown in
The outer tubular member 202 includes a material configured to withstand high temperatures and/or heat and may be transmissive to infrared radiation. In one embodiment, the outer tubular member 202 includes a heat-resistant quartz (fused silica) glass material. Similarly, the intermediate and inner tubular members 210, 226 each include a material configured to withstand high temperatures and/or heat and may be transmissive to infrared radiation. In one embodiment, the intermediate and inner tubular members 210, 226 include a heat-resistant quartz (fused silica) glass material.
As previously described, a portion of the second terminal end 236 of the second heating element 230 is disposed within and insulated by the passageway 228 of the inner tubular member 226. As shown, a portion 450 of the second heating element 230 extends from the turns 240 of the coiled portion 238 and forms an arcuate portion 452 bending in direction towards the passageway 228 of the inner tubular member 226. An insulated portion 454 further extends from the accurate portion 452 and through the inner tubular member 226 by way of the passageway 228 and terminates at the second terminal end 236. The first heating element 214 is similarly configured. As shown, a portion 456 of the first heating element 214 extends from the turns 224 of the coiled portion 222 and forms an arcuate portion 458 bending in direction towards the passageway 228 of the inner tubular member 226. An insulated portion 460 further extends from the accurate portion 458 and through the inner tubular member 226 by way of the passageway 228 and terminates at the second terminal end 220.
The inner tubular member 226 is adapted to insulate portions 460,454 of the second terminal end 220, 236 of the first and second heating elements 214, 230 from other portions of the first and second heating elements 214, 230. For example, the passageway 228 separates portion 454 of the second terminal end 236 of the second heating element 230 from the coiled portion 238 and first terminal end 234 to prevent short circuiting and/or other foreseeable issues occurring from unintended contact. Similarly, the passageway 228 separates portion 460 of the second terminal end 220 of the first heating element 214 from the coiled portion 222 and first terminal end 218.
Consistent with one embodiment of the present disclosure, an infrared emitter lamp 200 includes an outer tubular member 202 and an intermediate tubular member 210 and first heating element 214 disposed at least partially within the outer tubular member 210. The first heating element 214 has first and second terminal ends 218, 220 and a coiled portion 222 defined between the first and second terminal ends 218, 220. The coiled portion 222 is wound around at least a portion of an outer surface 216 of the intermediate tubular member 210. The intermediate tubular member 210 provides support and electrical insulation for the first heating element 214.
The infrared emitter lamp 200 further includes an inner tubular member 226 and second heating element 230 disposed at least partially within the intermediate tubular member 210 and the outer tubular member 202. The second heating element 230 has first and second terminal ends 234, 236 and a coiled portion 238 defined between the first and second terminal ends 234, 236. The coiled portion 238 is wound around at least a portion of an outer surface 226 of the inner tubular member 226. The inner tubular member 226 provides support and electrical insulation for the second heating element 230. The first heating element 214 is adapted to operate at a first wattage level and the second heating element 230 is adapted to operate at a second wattage level less than the first wattage level.
While several embodiments of the present disclosure have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the functions and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the present disclosure. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the teachings of the present disclosure is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the disclosure described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, the disclosure may be practiced otherwise than as specifically described and claimed. The present disclosure is directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the scope of the present disclosure.
All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms. The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.”
The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases.
The following is a non-limiting list of reference numerals used in the specification: