The present invention relates generally to reciprocating, internal combustion engines, and more particularly to a concentric cylinder engine in which the outer cylinder and piston of each cylinder pair perform the intake and compression functions of the conventional four-stroke Otto cycle of operation, with the inner cylinder and piston of the pair performing the power and exhaust functions.
A number of different reciprocating piston internal combustion engines have been developed in the past. The most common of these engine configurations is the conventional Otto cycle spark ignition engine, with such engines having four distinct phases (i.e., intake, compression, power, and exhaust) that occur during four piston strokes in two revolutions of the crankshaft. Two-stroke cycle engines are also known and generally used in smaller engine applications. Such two stroke engines carry out two of the operating phases during each piston stroke, to complete the cycle in a single crankshaft revolution. Somewhat analogous operation occurs in compression ignition (i.e., Diesel) engines, with there being both two-stroke cycle and four-stroke cycle Diesel engines.
A chronic problem with such engines, and particularly with two-stroke cycle engines, is the contamination of the intake charge with exhaust gas and lubricating oil in the cylinder during operation. While this problem has been greatly reduced as greater emphasis has been placed upon the lowering of exhaust emissions in consideration of the environment, it nonetheless still exists in both two- and four-stroke cycle engines, and the equipment required to reduce such exhaust emissions has added hundreds of dollars to the cost of the typical automobile.
Simultaneously with the above considerations, a greater need has arisen for fuel economy. Improving fuel economy has a two-folded effect, in that it reduces the amount of exhaust emissions produced and also lowers operating costs and consumption of a finite resource. However, the modern Otto cycle reciprocating internal combustion gasoline powered engine has very nearly reached its practicable limits insofar as efficiency is concerned, with no major breakthroughs likely to be developed in the future; any such improvements are much more likely to be incremental and relatively small. Considering future planned requirements for the continuing reduction of exhaust emissions and improvements in fuel economy, it appears to some that the conventional Otto cycle gasoline powered engine may not be able to meet these standards very far into the future.
Supercharging, i.e., forced air induction wherein a greater mass of intake is provided under pressure, has been used in many cases to provide more power from a relatively smaller (and therefore lighter and more compact) engine. However, such supercharged engines universally require an external compressor, either mechanically powered or powered by exhaust pressure from the engine. The Diesel engine, particularly in its supercharged form, provides greater efficiency and fuel economy, but the emissions produced by Diesel engines are at least as difficult to control as those produced by spark ignition engines.
Thus, an engine solving the aforementioned problems is desired. The instant invention of a concentric cylinder engine is designed to address the above mentioned problems.
The concentric cylinder engine includes an outer piston having a toroidal planform, and a generally conventional inner piston. An outer cylinder and sleeve surround the outer piston, with the inner cylinder of the inner piston comprising a fixed sleeve and a sliding sleeve that acts as a transfer valve between the two cylinder volumes. The outer piston and cylinder perform the intake and compression phases of the engine operation, while the inner piston and cylinder perform the power and exhaust functions of engine operation. The two pistons are connected to a common crankshaft, with the inner piston throw and the outer piston throws being generally opposite one another, although this may be adjusted, if desired.
The inner piston drives the operation of the engine during its downward power stroke, as the outer piston rises in its outer cylinder to compress the previously ingested intake charge. The sleeve valve separating the two pistons opens at or near the end of the two phases, with the compressed intake charge from the outer cylinder flowing into the larger volume of the inner cylinder at this point as the inner piston is at or near the bottom of its travel. The flow path of the intake charge delivers this intake charge to the lowermost portion of the inner cylinder, below the exhaust gases escaping through the now open exhaust valve(s) in the cylinder head and assisting in scavenging the exhaust gases from the cylinder.
When these two simultaneous phases have been completed, the sleeve valve closes and the direction of travel of both pistons reverses, with the inner piston rising to expel the spent exhaust gases from the inner cylinder and further compressing the fresh intake charge, once the exhaust valve closes. The outer piston simultaneously descends in its cylinder to draw in a fresh intake charge. Thus, the concentric cylinder engine operates using four distinct phases of operation, i.e., intake, compression, power, and exhaust, but accomplishes these phases in only two strokes of each piston in a single crankshaft revolution due to the simultaneous operation of the two pistons.
The concentric cylinder engine may be constructed as a spark ignition engine or as a compression ignition (i.e., Diesel) engine, as desired. Fuel delivery may be accomplished by conventional means, i.e., carburetion, or throttle valve or direct fuel injection. Cooling may be provided by liquid or air-cooling means. Cooling requirements may be reduced due to the flow path of the intake charge as it enters the transfer sleeve assembly at the relatively hotter cylinder head and flows along the walls of the inner cylinder. It will be seen that the relative displacements of the inner and outer cylinders may be adjusted, e.g., to provide a relatively larger intake and compression volume for the outer cylinder to serve as a supercharger for the inner cylinder. As the throws of the crankshaft are distinct for the two pistons, such adjustment of the relative displacements of the two cylinders may be accomplished by adjusting the inner and outer diameters of the outer cylinder, and/or adjusting the relative stroke length between the two pistons.
These and other features of the present invention will become readily apparent upon further review of the following specification and drawings.
For the purpose of illustrating the invention, there is shown in the figures a form that is presently preferred; it being understood, however, that this invention is not limited to the precise arrangements and instrumentalities shown.
Similar reference characters denote corresponding features consistently throughout the attached drawings.
The concentric cylinder engine of the instant invention has an outer cylinder and outer piston of toroidal configuration that provides the intake and compression functions of engine operation, and an inner cylinder and inner circular piston that provide the power and exhaust functions. As the two pistons reciprocate generally opposite one another, two phases of the conventional four-stroke cycle are carried out simultaneously at all times, thus delivering all four phases of the cycle in only two strokes of each piston, i.e., a single crankshaft revolution.
Concentric, as used herein, is used to describe objects that share the same center, axis or origin with one inside the other (e.g., circles, tubes, cylindrical shafts, disks, and spheres may be concentric to one another). Concentric objects generally have different radii, as concentric objects with the same radius are equal. One of the most familiar examples of concentric circles are the evenly spaced circles of a target used in target archery or firearms, and accordingly any concentric design may be called a “target” or a “bullseye” (after the center).
Toroidal, as used herein, is a term used to describe a toroid or doughnut-shaped object, such as an O-ring. The annular shape of a toroid is generated by revolving a geometrical figure around an axis external to that figure. For example, when a rectangle is rotated around an axis parallel to one of its edges then a hollow cylinder may be produced, which may resemble a piece of pipe with a wall thickness.
Referring to the drawings, wherein like numerals indicate like elements, there is shown in
A crankshaft 16 rotates within the crankcase 12, the crankshaft 16 having two outer piston throws 18a, 18b and an inner piston throw 20 disposed therebetween. The inner piston throw 20 is generally 180D opposite the two outer piston throws 18a, 18b, and is shown as such in the appropriate drawings. However, it will be understood that these outer and inner piston throws may have less than 180° opposite therebetween, if so desired. The rotational angle between the two outer throws 18a, 18b and the inner throw 20 may be adjusted to alter the mechanical timing between the various intake, compression, power, and exhaust phases provided by the engine 10.
Two outer piston connecting rods 22a and 22b extend from the two outer crankshaft throws 18a, 18b, and a single inner connecting rod 24 extends from the single inner throw 20 of the crankshaft 16. The two outer rods 22a, 22b connect to opposite sides of an outer piston 26, with the single inner rod 24 connecting to the inner piston 28. The inner piston 28 has a generally conventional configuration, i.e., a circular planform. However, the outer piston 26 has a toroidal planform, with a circular outer surface 26a that reciprocates within the outer cylinder 14 (or more precisely the outer cylinder liner, as shown) and a circular inner surface 26b that bears against a sleeve assembly separating the toroidal outer piston 26 from the inner piston 28.
The sleeve assembly comprises a fixed inner sleeve 30 and an outer sleeve 32 that reciprocates concentrically about the inner sleeve. The inner sleeve 30 is affixed to and depends from the cylinder head 34 into the outer cylinder 14, with the cylinder head 34 being affixed to and closing the outer cylinder 14 opposite the crankcase 12. The outer sleeve 32 is a reciprocating sleeve valve, with actuation provided by a series of sleeve valve actuators 36 that pass through the cylinder head 34 and attach (e.g., threaded connections, etc.) to the sleeve valve 32. The actuators 36 may be operated conventionally, e.g., via cams or rockers and shafts driven from the crankshaft, etc.
The fixed inner sleeve 30 and reciprocating outer sleeve valve 32 define a generally toroidal intake charge passage 38 therebetween, with the inner surface of the fixed inner sleeve 30 having closely fitting guides 40 thereon (shown in
In
Simultaneously with the above, the inner piston 28 has reached top dead center, thereby minimizing the inner cylinder volume 48. At the point shown in
In
When this occurs, the compressed intake charge is forced form the outer cylinder intake and compression volume 46 through the upper circumferential passage 52, downwardly between the fixed inner sleeve 30 and the sleeve valve 32, and through the lower circumferential passage 54 into the lower portion of the inner cylinder volume 48. Although the exhaust valve 44 is open simultaneously with the inflow of the fresh intake charge described above and shown in
The incoming fresh intake charge, thus, provides certain benefits as it flows into the inner cylinder volume. First, the expansion of the intake charge as it flows from the high pressure area of the compressed outer cylinder volume 46 to the lower pressure of the inner cylinder 48, provides some cooling of the inner cylinder walls. Also, the entrance of the fresh intake charge into the lower portion of the inner cylinder volume 48 assists in flushing the spent exhaust gases through the open exhaust valve 44 in the cylinder head 34. This allows the exhaust valve 44 to be closed somewhat earlier than might be the case with conventional Otto cycle engines, thereby providing significant additional compression of the intake charge within the inner cylinder volume 48 as the inner piston 28 rises.
The sleeve transfer valve 132 is shown opened in
It will be readily recognized that various additional alternative embodiments may be developed for the concentric cylinder engine 10. It is important to note that although only a single cylinder engine is illustrated in
The concentric cylinder engine 10 in its various embodiments is an inherently smooth running engine, particularly when the masses of the inner and outer pistons and rods are balanced relative to one another, as is preferable in the engine. This is due to the opposite reciprocation of the inner and outer pistons relative to one another during operation, particularly when the inner and outer piston crank throws are essentially 180° opposed to one another.
It will also be seen that while the illustrations in
Also, while a connecting rod and offset crankshaft throws have been illustrated and described for the transfer of the reciprocating motion of the pistons to the rotary motion of the crankshaft (and vice versa), it will be seen that other means for carrying out this motion transfer may be provided. For example, the reciprocating motion of either of the pistons may be used to drive a rack thereon that, in turn, rotates a pinion to drive a rack residing on the opposite piston. Alternatively, a rocker shaft and rocker arm arrangement may be used to drive the opposite reciprocation of the two pistons, the two ends of the rocker arm oscillating in opposite directions about a central pivot to drive the two pistons oppositely.
The present invention may be embodied in other forms without departing from the spirit and the essential attributes thereof, and, accordingly, reference should be made to the appended claims, rather than to the forgoing specification, as indicated in the scope of the invention. As a result, it is to be understood that the present invention is not limited to the embodiments described above, but encompasses any and all embodiments within the scope of the following claims.
This application claims the benefit of provisional application Ser. No. 61/282,327 filed Jan. 25, 2010.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2011/021795 | 1/20/2011 | WO | 00 | 7/24/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/091097 | 7/28/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1024711 | Whidbourne et al. | Apr 1912 | A |
1090991 | Knight | Mar 1914 | A |
2734494 | Waterval | Feb 1956 | A |
4148284 | Prosen | Apr 1979 | A |
4434752 | Bachmann | Mar 1984 | A |
4580532 | Jackson | Apr 1986 | A |
Number | Date | Country | |
---|---|---|---|
20120291743 A1 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
61282327 | Jan 2010 | US |