The invention relates to the field of printing systems, and in particular, to dryers of printing systems.
Businesses or other entities having a need for volume printing typically use a production printing system capable of printing hundreds of pages per minute. A web of print media, such as paper, is stored the form of a large roll and unraveled as a continuous sheet. During printing, the web is quickly passed underneath printheads which discharge small drops of ink at particular intervals to form pixel images on the web. The web may then be dried and cut to produce a printed product.
Since production printers print high quality images at high speed, it is important that the drying process of the web is quick, effective, and efficient. Advanced dryers may be equipped with an array of heat sources (e.g., radiant energy sources, air knives, etc.) and thermally conductive surfaces (e.g., drum, rollers, etc.) to precisely control heat applied to the web. Due to the large amount of heat produced by the heat components (e.g., in excess of 100 degrees Celsius), typical climate control solutions such as localized direct current (DC) fans are insufficient for distributing and exhausting air inside the dryer. High performance drying applications therefore often use a duct system to supply/remove air and control the environment inside the dryer.
A high performance dryer system may require continual high velocity air used to accelerate the drying process coupled with localized air removal to prevent saturation of the air and condensation of volatiles in unwanted areas. A conventional duct system that enables this type of airflow includes an entangled network of flexible tube ducts that connect the airflow components inside the dryer to an air handling unit placed within the printing system or on the floor of the print shop outside the dryer. Each airflow component inside the dryer may connect with at least one tube duct for supply air and at least one tube duct for return air. Due to the large number of flexible tubes and the size of the air handling equipment, a relatively large distance between the dryer and air handling unit is necessary. This configuration operates inefficiently due to losses in heat transfer and pressure over the large distance, takes up a large amount of floor space in the print shop, and makes it difficult to service the dryer and its components for maintenance.
Embodiments described herein provide a concentric duct system for a dryer of a printing system. The duct system includes a central hub with concentric supply/return plenums that are stacked with one on top of the other. The concentric, stacked configuration enables the central hub to be attached to a side of the dryer so that it does not take up floor space in the print shop. The configuration also enables the central hub to be located in close proximity to the air intake/return devices inside the dryer for higher operating efficiency. The duct system also includes easily removable ducts that connect around the concentric supply/return cabinets to supply/remove air from the airflow components inside the dryer.
One embodiment is a system that includes a dryer of a printing system and a duct system for the dryer. The dryer includes web conditioners configured to heat a web of print media, intake ports configured to supply air for the web conditioners, and outlet ports configured to remove air for the web conditioners. The duct system includes a supply hub and a return hub. The supply hub includes a tubular body with a lower portion and an upper portion, and supply nodes around the lower portion. The return hub includes a body around the upper portion of the supply hub, and return nodes around the body. The duct system further includes supply ducts configured to connect the supply nodes and the intake ports of the dryer, and return ducts configured to connect the return nodes and the outlet ports of the dryer.
Another embodiment is an apparatus that includes a supply hub including a tubular body with a lower portion and an upper portion, and including supply nodes around the lower portion. The supply hub configured to provide air to intake ports of a dryer applying airflow to a web of print media. The apparatus also includes a return hub including a body around the upper portion of the supply hub, and including return nodes around the body, the return hub configured to receive air from outlet ports of the dryer. The apparatus further includes supply ducts configured to connect the supply nodes of the supply hub and the intake ports of the dryer, and return ducts configured to connect the return nodes of the return hub and the outlet ports of the dryer.
Yet another embodiment is a system that includes a dryer of a printing system comprising: web conditioners configured to condition a web of print media, intake ports configured to supply air for the web conditioners, and outlet ports configured to remove air for the web conditioners. The system also includes a duct system for the dryer comprising: a supply hub with first air passages removably attached around a perimeter of the first hub configured to removably attach with the intake ports of the web conditioners, and a return hub with second air passages removably attached around a perimeter of the second hub configured to removably attach with the outlet ports of the web conditioners. The supply hub and the return hub are positioned concentrically with one another on a side of the dryer. In a further embodiment, the supply hub is stacked on top of an upper portion of the return hub. In an alternative further embodiment, the return hub is stacked on top of an upper portion of the supply hub.
The above summary provides a basic understanding of some aspects of the specification. This summary is not an extensive overview of the specification. It is not intended to identify key or critical elements of the specification nor to delineate any scope of particular embodiments of the specification, or any scope of the claims. Its sole purpose is to present some concepts of the specification in a simplified form as a prelude to the more detailed description that is presented later. The features, functions, and advantages that have been discussed can be achieved independently in various embodiments or may be combined in yet other embodiments, further details of which can be seen with reference to the following description and drawings.
Some embodiments of the present invention are now described, by way of example only, and with reference to the accompanying drawings. The same reference number may represent the same element or the same type of element on all drawings.
The figures and the following description illustrate specific exemplary embodiments. It will thus be appreciated that those skilled in the art will be able to devise various arrangements that, although not explicitly described or shown herein, embody the principles of the embodiments and are included within the scope of the embodiments. Furthermore, any examples described herein are intended to aid in understanding the principles of the embodiments, and are to be construed as being without limitation to such specifically recited examples and conditions. As a result, the inventive concept(s) is not limited to the specific embodiments or examples described below, but by the claims and their equivalents.
In addition, drying system 140 may include a series of first web conditioners 310-320 positioned outside first rollers 350-359 and spaced along the arc (e.g., along the arc and beyond first rollers 350-359 in radial direction 214 from drum 210). Drying system 140 may also include a series of second web conditioners 350-352 positioned along the arc between second rollers 360-369 and drum 210. Each web conditioner 310-320/350-352 may include one or more radiant energy sources that emit heat energy (e.g., infrared (IR) or near-infrared (NIR) energy), one or more air knives (or other type of positive airflow device) that emit air jets, or some combination thereof.
After printing, web 120 enters an enclosure 302 of drying system 140 at dryer entrance 304 with a marked side 324 that is wet with an applied ink and an unmarked side 326 that does not have ink (or which has been previously marked and already dried). Web 120 may travel over one or more entrance rollers 370-372 before encountering the first rollers 350-359 (and one or more first web conditioners 310-320 (e.g., first web conditioners 310-312) may optionally be positioned over entrance rollers 370-372 which are not arranged along the arc as shown in
Second web conditioners 350-352 may also include air knives that emit air jets toward the marked side 324 of web 120 as web 120 wraps around drum 210. Alternatively or additionally, the air knives may emit air jets toward the marked side 324 of web 120 as web 120 travels over second rollers 360-369. In alternative embodiments, second web conditioners 350-352 may include one or more radiant energy sources that emit heat energy toward the marked side 324 of web 120 as web 120 wraps around drum 210. Alternatively or additionally, the radiant energy sources may emit heat energy toward the marked side 324 of web 120 as web 120 travels over second rollers 360-369. Thus, second web conditioners 350-352 may direct web conditioning (e.g., radiant heat, jetted air, or some combination thereof) toward a portion of the web path that wraps around drum 210 and/or direct web conditioning toward a portion of the web path that is between the dryer entrance 304 and drum 210.
After traveling around drum 210, web 120 encounters the second rollers 360-369. A roller (e.g., roller 369) among the second rollers 360-369 which is first to receive web 120 from drum 210 may be positioned adjacent to the last roller (e.g., roller 359) of the first rollers 350-359. Accordingly, rollers 369/359 may transport or guide web 120 around a substantial circumferential portion of drum 210 (e.g., wrap/contact angle of 300 degrees or more). The second rollers 360-369 transport web 120 along a second path of the arc in a second direction which is generally opposite from the first direction (e.g., counter-clockwise direction or a second circular direction opposite to the first circular direction). After traveling the arc again in the reversed direction, web 120 may travel over one or more exit rollers 373-374 before leaving drying system 140 through dryer exit 306 of enclosure 302.
In this configuration with rollers 350-359/360-369 and web conditioners 310-320/350-352 in curved, spiral-like patterns around drum 210, there is an increased path length of web 120 inside dryer 140 and also an increased number of options for conditioning web 120 with precise control in comparison with conventional drum dryers. As shown in
Each web conditioner 310-320/350-352 may include a housing that surrounds its components with at least one intake port 420 and at least one outlet port 430 on a side or surface of the housing that act as supply/return vents for the web conditioner 310-320/350-352. Previous supply/return sources of air for dryers of printing systems are implemented inside a cabinet placed outside the dryer on the floor of the print shop (e.g., in a plane along feet 410 of drying system 140 that support drying system 140 on the floor). As described in greater detail below, the concentric arrangement of components inside drying system 140 enables an improved duct system for web conditioners 310-320/350-352. It will be appreciated, however, that drying system 140 shown and described with respect to
As shown in
Supply ducts 520 each include a structure that is hollow for air passage from a base end 624 coupled with supply node 690 to one or more distal ends 620 coupled with intake ports 420 of web conditioner 310-320/350-352 inside drying system 140. In that regard, supply duct 520 may include branches 640 that divide the air supply from the main body of supply duct 520 into multiple distal ends 620.
Supply duct 520 may comprise dimensions (e.g., length, shape, etc.) such that base end 624 aligns/couples with supply node 690 and distal end(s) 620 align/couple with intake port(s) 420. In other words, each supply duct 520 may be sized for a base end 624 to align with a supply node 690 (e.g., at an appropriate alignment location/shape along circumferential direction 216 relative to supply hub 550) and for one or more distal ends 624 to align with one or more intake ports 420 (e.g., at an appropriate alignment location/shape along radial direction 214 relative to supply hub 550). Accordingly, supply ducts 520 may include a rigid body (e.g., sheet metal, cast metal, etc.) which is adapted to the configuration of web conditioner 310-320/350-352 (and corresponding intake ports 420) inside drying system 140 and which is removably attached at supply hub 550 and/or intake ports 420 inside drying system 140. Supply ducts 520 may alternatively or additionally include flexible tube material for flexibly attaching to intake ports 420.
For supply ducts 520 with branches 640 and multiple distal ends 620, the relative position between distal ends 620 may facilitate alignment/coupling between base end 624 and an appropriate supply node 690 of supply hub 550 as well as alignment/coupling between one distal end 620 of supply duct 520 and an intake port 420 at a first distance along radial direction 214 and also alignment/coupling between another distal end 620 of supply duct 520 and a different intake port 420 (e.g., of a different web conditioner 310-320/350-352) at a second distance along radial direction 214 that is larger than the first distance. Additionally, one or more supply ducts 520 may be interchangeable with other supply ducts 520 operable to connect to supply hub 550. Referring to
To couple supply duct 520 with supply node 690, each supply node 690 may include a gasket 692 that borders or lines the shape of an aligned contacting surfaces (e.g., rectangular or some other shape) between supply node 690 and base end 624 of supply duct 520 to seal the connection thereof. Each supply node 690 may further include one or more latches 626 or other mechanical fasteners for removably attaching base end 624 of supply duct 520 to supply node 690 of supply hub 550. For instance, base end 624 may include a flange or rim that may be levered into a sealed connection via one or more latches 626. Alternatively or additionally, gasket lined connections, latches 626, etc. may be included at base end 624 of supply duct 520. Also, one or more supply nodes 690 may include a plug that covers/seals supply node 690 for instances in which supply node 690 is not used or does not couple with a supply duct 520. This allows supply ducts 520 to be selectively installed around supply hub 550 according to the desired configuration of components in drying system 140.
To couple supply duct 520 with intake port 420, each distal end 620 may include one or more latches 622 for removably attaching to intake port 420 of web conditioners 310-320/350-352. Distal end 620 and/or intake port 420 may additionally or alternatively include flanges, gasket lined connections, and/or other fastener means similar to that already described to seal supply duct 520 and intake port 420 for passage of air from supply hub 550 to the housing of a web conditioner 310-320/350-352. Accordingly, each supply duct 520 may connect supply hub 550 with one or multiple intake ports 420 of drying system 140 so that air is supplied efficiently over a few number of shorter supply ducts 520 which may be easily attached and detached from supply hub 550 and components of drying system 140. Furthermore, supply ducts 520 may be broken into parts to facilitate ease of installation while maintaining accurate connection points to intake ports 420 of the airflow components of web conditioners 310-320/350-352. For instance, one or more pieces of a supply duct 520 may be assembled together with one or more interface plates (e.g., a surface with guiding walls for mounting), bolts, latches, etc. Alternatively or additionally, a portion of a supply duct 520 may be sized such that a direct current (DC) fan may be integrated into supply duct 520 in embodiments in which a positively pressured blower is not included in air supply system 500. Fans may be removably attached to supply ducts 520 so that the fans may be replaced when it is desired to use a blower or another external positive airflow source for dryer applications that use higher temperatures and/or flow rates. Supply duct 520 may include sealable cutouts near attachment points for fans to facilitate attachment and removal for switching depending on the availability and/or desirability of external air supply sources.
Return ducts 720 may attach around a perimeter or circumference of return hub 750 to connect return hub 750 with outlet ports 430 of web conditioners 310-320/350-352. One return duct 720 may connect return hub 750 with multiple outlet ports 430 along radial direction 214. For example, a return duct 720 may extend from return hub 750 in radial direction 214 to connect an outlet port 430 of a second web conditioner 350-352 in an inner arc position and also connect to an outlet port 430 of a first web conditioner 310-320 in an outer arc position. However, some return ducts 720 may include bent air channels, may connect with a single outlet port 430 and/or web conditioner 310-320/350-352, and/or may connect with multiple outlet ports 430 of the same web conditioner 310-320/350-352 as shown in
The air return system of duct system 700 includes many similarities with air supply system 500 already described above, including a plurality of supply nodes 890 that define hollow spaces around a perimeter or circumference of upper portion 880 of return hub 750 for air passage from return ducts 720 to return hub 750. Each return duct 720 includes a structure that is hollow for air passage from one or more distal ends 830 coupled with outlet ports 430 to a base end 834 coupled with return node 890. Return ducts 720 may include branches 840 that combine air from multiple distal ends 830 into the main body of return duct 720 to circulate air from drying system 140 back to return hub 750 via return node 890. As such, return ducts 720 may be sized to align/couple base end 834 with return node 890 and to align/couple one or more distal ends 830 with one or more outlet ports 430 (similar to that described for supply ducts 520, supply nodes 690, and intake ports 420). Alternatively or additionally to branching along radial direction 214, the relative positon between distal ends 830 may facilitate alignment/coupling with multiple outlet ports 430 of the same web conditioner 310-320/350-352 (e.g., branch along circumferential direction 216 relative to supply hub 550). Return ducts 720 may include a rigid body (e.g., sheet metal) adapted to the configuration of web conditioner 310-320/350-352 (and corresponding outlet ports 430) inside drying system 140, and/or may include flexible tube material for flexibly attaching to outlet ports 430. One or more return ducts 720 may be interchangeable with other return ducts 720 operable to connect to return hub 750, similar to that already described for supply ducts 520 and supply hub 550.
To couple return duct 720 with return node 890, each return node 890 may include a gasket 892 that lines the shape of appropriately aligned and connecting surfaces (e.g., rectangular or some other shape) between return node 890 and base end 834 of return duct 720 to seal the connection thereof. Each return node 890 may further include one or more latches 826 or other mechanical fasteners for removably attaching base end 834 of return duct 720 to return node 890 of return hub 750. For instance, base end 834 may include a flange or rim that may be levered into a sealed connection via latch 826. Alternatively or additionally, gasket lined connections, latches 826, etc. may be included at base end 834 of return duct 720. Also, one or more return nodes 890 may include a plug that covers/seals supply node 890 for instances in which supply node 890 is not used or does not couple with a return duct 720. This allows return ducts 720 to be selectively installed around return hub 750 according to the desired configuration of drying system 140. Return ducts 720 may also include multiple attachable/detachable pieces similar to that described above for supply ducts 520 to facilitate ease of installation while maintaining accurate connection points to outlet ports 430 of the airflow components of web conditioners 310-320/350-352. Return ducts 720 may be sized to match the total overall airflow volume. For example, if return ducts 720 connect to a fewer number of outlet ports 430 (e.g., three total), the size of each return ducts 720 may be larger with tapered ends so that it is still sized to connect to individual outlet ports 430 and return nodes 890.
To couple return duct 720 with outlet port 430, each distal end 830 may include a latch 832 for removably attaching to outlet port 430 of web conditioners 310-320/350-352. Distal end 300 and/or outlet port 430 may additionally or alternatively include flanges, gasket lined connections, and/or other fastener means similar to that already described to seal return duct 720 and outlet port 430 for passage of air from web conditioner 310-320/350-352 to return hub 750. Each return duct 720 may connect return hub 750 with one or multiple outlet ports 430 of drying system 140 so that air is distributed efficiently over a few number of shorter return ducts 720 which may be easily attached and detached from return hub 750 and components of drying system 140. This configuration also enables supply hub 550 and return hub 750 to be easily assembled and disassembled for maintenance of duct system 700 and/or drying system 140.
In one embodiment, distal axial end 694 of lower portion 682 has an opening (e.g., one or more holes and/or slots) to supply air near drum 210 and/or components that heat drum 210. Alternatively or additionally, low points in return hub 750 and/or return ducts 720 may include drain ports to drain/collect condensation build up from vaporized ink carrier fluid. In another embodiment, dampers may be integrated into supply ducts 520 and/or return ducts 720 to restrict/expand air flow at particular locations according to desired balance of air flow in drying system 140. Alternatively or additionally, dampers may be integrated into supply hub 550 and/or return hub 750 to focus airflow. In yet another embodiments, fins located between supply hub 550 and return hub 650 may further improve heat transfer. It will be appreciated that alternative concentric/stacked configurations of supply hub 550 and return hub 750, including a switched stack/concentric positional relationship, different shapes, relative sizes, etc. are possible for enhancing air distribution in drying system 140 with duct system 700 other than that explicitly shown and described in
The particular arrangement, number, and configuration of components described herein is exemplary and non-limiting. Although specific embodiments were described herein, the scope of the inventive concepts is not limited to those specific embodiments. The scope of the inventive concepts is defined by the following claims and any equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
2661544 | Tanasse | Dec 1953 | A |
3659352 | Cook | May 1972 | A |
3739491 | Creapo | Jun 1973 | A |
3859735 | Katterjohn | Jan 1975 | A |
3874091 | Fukumoto | Apr 1975 | A |
4779355 | Petros | Oct 1988 | A |
5018281 | Bulluck | May 1991 | A |
5152080 | Wimberger | Oct 1992 | A |
5210961 | Jacobs et al. | May 1993 | A |
9010892 | Frydman et al. | Apr 2015 | B2 |
9423176 | Girardi | Aug 2016 | B1 |
20060199520 | Chung et al. | Sep 2006 | A1 |
20120233876 | Weldon et al. | Sep 2012 | A1 |
20140041251 | Barreto | Feb 2014 | A1 |
20140096409 | Ohtsu et al. | Apr 2014 | A1 |