The present disclosure relates generally to devices for use in the telecommunications industry, and various methods associated with such devices. More particularly, this disclosure relates to a telecommunications cable having an arrangement of twisted conductor pairs.
A wide variety of cable arrangements having twisted conductor pairs are utilized in the telecommunication industry. The increased need for high-speed communication transmissions (e.g., high-speed data transmissions) has placed a greater demand on twisted conductor pair systems. In general, improvement has been sought with respect to existing cable technology for use with such systems, generally to better accommodate the increasing volume of data transmissions and accommodate the increased capacity demands of such systems.
One aspect of the present disclosure relates to a cable having a first group of inner twisted conductor pairs and a second group of outer twisted conductor pairs. The first group of pairs is twisted at a first twist rate; the second group of pairs is twisted at a second twist rate. Another aspect of the present disclosure relates to a method of manufacturing a cable having first and second groups of twisted conductor pairs that are twisted at different twist rates.
A variety of examples of desirable product features or methods are set forth in part in the description that follows, and in part will be apparent from the description, or may be learned by practicing various aspects of the disclosure. The aspects of the disclosure may relate to individual features as well as combinations of features. It is to be understood that both the foregoing general description and the following detailed description are explanatory only, and are not restrictive of the claimed invention.
Reference will now be made in detail to various features of the present disclosure that are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
Referring to
In the illustrated embodiment, the jacket 16 of the cable 10 includes a first inner jacket layer 18 and a second outer jacket layer 20. A metal layer 22 is disposed between the inner jacket layer 18 and the outer jacket layer 20. The metal layer 22 provides shielding to protect the twisted conductor pairs 12 from interference that can adversely affect signal transmissions through the cable, such as electromagnetic radiation. The inner jacket layer 18 separates the twisted conductor pairs 12 from the shielding or metal layer 22. In the illustrated embodiment, a drain wire 48 is provided to ground or terminate the shield or metal layer 22 of the jacket 16.
In one embodiment, the inner jacket layer 18 and the outer jacket layer 20 are made of a non-conductive material such as polyvinyl chloride (PVC), for example. Other types of non-conductive materials can be used for one or both of the jacket layers. The metal layer 22 is preferably made of a shielding material, such as aluminum, for example. Other types of materials and/or constructions adapted for blocking electromagnetic radiation, such as a copper foil tape or screen, a metallic braid shield, or a corrugated metal shield can also be used in accordance with the principles disclosed.
Referring to
As shown in
Referring to
Still referring to
That is, a distance D2 between adjacent end portions 40 of adjacent retaining members 38 is less than the diameter D1 of the inner twisted conductor pair 24. One or both of the retaining members 38 and the radial extensions 30 is therefore, preferably, made of a material that flexes to permit placement of the inner twisted conductor pair 24 within the pockets 28. In one embodiment, the filler 14, i.e., the radial extensions 30 and the retaining members 38 are made of a non-conductive material. Other materials can be used to manufacture the filler 14 in accordance with the principles disclosed. Because the distance D2 between the end portions 40 of the retaining members 38 is less than the diameter D1 of the inner twisted conductor pairs 24, the pairs 24 are retained within the pockets 28 of the filler 24.
In addition to retaining and separating the inner twisted conductor pairs 24, the filler 14 also functions to space or provide separation between the first grouping of inner twisted conductor pairs 24 and the second grouping of outer conductor pairs 26 (see
Referring again to
Preferably, the inner core 42 of the multi-pair cable 10 is twisted at a first twist rate R1. The first twist rate R1 is the rate at which both of the filler and the first grouping of inner twisted conductor pairs 24 are turned or twisted in unison about a central axis of the filler or inner core. In one embodiment, the first twist rate R1 is approximately 4.8 twists per linear foot. In addition, each of the inner twisted conductor pairs 24 of the inner core 42 has an individual conductor twist rate Ra, Rb, Rc, Rd. The individual conductor twist rate Ra, Rb, Rc, Rd of each of the inner twisted conductor pairs 24 is preferably different from the individual conductor twist rates of the other inner twisted conductor pairs. In one embodiment, the individual conductor twist rates Ra, Rb, Rc, Rd of the inner twisted conductor pairs are between about 27.3 twists per linear foot and 36.8 twists per linear foot.
While the inner core 42 is twisted at the first twist rate R1, the outer layer 44 is preferably twisted at a second twist rate R2 that is different than the first twist rate R1 of the inner core 42. The second twist rate R2 is the rate at which all of the outer twisted conductor pairs 26 are turned or twisted in unison about a central axis of the cable or outer layer. In one embodiment, the second twist rate R2 is approximately 1.333 twists per linear foot of cable. In addition, each of the outer twisted conductor pairs 26 of the outer layer 44 has an individual conductor twist rate Re, Rf, Rg, Rh. In the illustrated embodiment, the twelve outer twisted conductor pairs 26 preferably have one of four different conductor twist rates Re, Rf, Rg, Rh, and are arranged in a sequence as shown in
Preferably, each of the individual twist rates Re, Rf, Rg, Rh of the outer twisted conductor pairs 26 is outside the range of twist rates Ra, Rb, Rc, Rd (27.3 to 36.8 twists per foot) of the inner twisted conductor pairs 24. By this arrangement, the orientation of each of the inner twisted conductor pairs 24 is non-parallel to the orientation of the outer twisted conductor pairs 26 to reduce the likelihood of crosstalk. More preferably, each of the individual twist rates Re, Rf, Rg, Rh of the outer twisted conductor pairs 26 is less than each of the individual twist rates Ra, Rb, Rc, Rd of the inner twisted conductor pairs 24. In one embodiment, the individual conductor twist rates Re, Rf, Rg, Rh of the outer twisted conductor pairs 26 are between about 12.4 twists per linear foot and 27.0 twists per linear foot.
To manufacture the disclosed multi-pair cable 10, the inner twisted conductor pairs 24 are positioned within the pockets 28 of the filler 14. As previously discussed, each of the inner twisted conductor pairs 24 preferably has an individual conductor twist rate that is different from the individual conductor twist rates of the other inner twisted conductor pairs. The filler 14 and the inner twisted conductor pairs 24 (i.e., the inner core 42) are then twisted, in unison about the central axis of the filler 14, at an initial twist rate R0 (FIG. 3—showing only one twisted conductor pair 24 for purposes of clarity). In one embodiment, the initial twist rate R0 is approximately 4 twists per linear foot of cable.
As can be understood, because each of the inner twisted conductor pairs 24 is already twisted at a particular individual conductor twist rate, the individual conductor twist rates of the inner twisted conductor pairs 24 change when the entire inner core 42 is twisted. Preferably, each of the inner twisted conductor pairs 24 has the same direction of twist (e.g. a right-hand twist or a left-hand twist) as the direction in which the inner core 42 is initially twisted. By this, the individual conductor twist rates of the inner twisted conductor pairs 24 increase as the inner core 42 is twisted.
After the inner core 42 has been twisted at the initial twist rate R0, the second grouping of outer twisted conductor pairs 26 are positioned concentrically about the circumference 46 of the inner core 42. The outer layer 44 and the inner core 42 are then twisted at the second twist rate R2 previously described (i.e. the outer twisted conductor pairs 26, the filler 14, and the inner twisted conductor pairs 24 are twisted in unison about the central axis of the cable or filler at the second twist rate). As can be understood, because each of the outer twisted conductor pairs 26 is already twisted at a particular individual conductor twist rate, the individual conductor twist rates of the outer twisted conductor pairs 26 change when the outer layer 44 is twisted. Preferably, each of the outer twisted conductor pairs 26 has the same direction of twist (e.g. a right-hand twist or a left-hand twist) as the direction in which the outer layer 44 is twisted. By this, the individual conductor twist rates of the outer twisted conductor pairs 26 increase as the outer layer 44 is twisted. The resulting individual conductor twist rates of each of the outer twisted conductor pairs 26 are the twist rates Re, Rf, Rg, and Rh previously described.
When the outer layer 44 is twisted at the second twist rate R2, the inner core 42 also twists in unison with the outer layer 44. Preferably, each of the inner core 42 and the outer layer 44 has the same direction of twist. By this, the twist rate of the inner core 42, and accordingly the twist rates of the inner twisted conductor pairs 24, increase as the outer layer 44 is twisted. The resulting twist rate of the inner core 42 is the first twist rate R1 previously described. Likewise, the resulting individual conductor twist rates of each of the inner twisted conductor pairs 24 are the twist rates Ra, Rb, Rc, and Rd previously described.
The above specification provides a complete description of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, certain aspects of the invention reside in the claims hereinafter appended.
Number | Name | Date | Kind |
---|---|---|---|
3025656 | Cook | Mar 1962 | A |
3187495 | Christian, Jr. | Jun 1965 | A |
3324233 | Bryant | Jun 1967 | A |
3546357 | Windeler et al. | Dec 1970 | A |
3584132 | Brauns et al. | Jun 1971 | A |
3678177 | Lawrenson | Jul 1972 | A |
4263471 | Bauguion | Apr 1981 | A |
4372105 | Ellis, Jr. | Feb 1983 | A |
4408443 | Brown et al. | Oct 1983 | A |
4654476 | Barnicol-Ottler et al. | Mar 1987 | A |
4697051 | Beggs et al. | Sep 1987 | A |
4755629 | Beggs et al. | Jul 1988 | A |
5323596 | Nguyen | Jun 1994 | A |
5418878 | Sass et al. | May 1995 | A |
5544270 | Clark et al. | Aug 1996 | A |
5689090 | Bleich et al. | Nov 1997 | A |
5767441 | Brorein et al. | Jun 1998 | A |
5814768 | Wessels et al. | Sep 1998 | A |
5821466 | Clark et al. | Oct 1998 | A |
5883334 | Newmoyer et al. | Mar 1999 | A |
5936205 | Newmoyer | Aug 1999 | A |
5952615 | Prudhon | Sep 1999 | A |
5969295 | Boucino et al. | Oct 1999 | A |
6259031 | Totland et al. | Jul 2001 | B1 |
6288340 | Arnould | Sep 2001 | B1 |
6365836 | Blouin et al. | Apr 2002 | B1 |
6506976 | Neveux, Jr. | Jan 2003 | B1 |
6529031 | Gerstmeier et al. | Mar 2003 | B2 |
6639152 | Glew et al. | Oct 2003 | B2 |
6800811 | Boucino | Oct 2004 | B1 |
6818832 | Hopkinson et al. | Nov 2004 | B2 |
6958444 | Chou | Oct 2005 | B1 |
20030106704 | Isley et al. | Jun 2003 | A1 |
20030132021 | Gareis | Jul 2003 | A1 |
20030168228 | Eichelberger et al. | Sep 2003 | A1 |
20030230427 | Gareis | Dec 2003 | A1 |
20040040736 | Nishimura | Mar 2004 | A1 |
20040149483 | Glew | Aug 2004 | A1 |
20040149484 | Clark | Aug 2004 | A1 |
20050045367 | Somers et al. | Mar 2005 | A1 |
20050061536 | Proulx | Mar 2005 | A1 |
20050103518 | Glew | May 2005 | A1 |
20050199415 | Glew | Sep 2005 | A1 |
20050199416 | Somers et al. | Sep 2005 | A1 |
20050279528 | Kenny et al. | Dec 2005 | A1 |
Number | Date | Country |
---|---|---|
HEI 6-349344 | Dec 1994 | JP |