Vane compressors generally include a stationary or fixed cylinder with a slot for a reciprocating vane. An orbiting cylinder is positioned within the fixed cylinder, and the reciprocating vane (e.g., with a vane spring) is inserted into the vane slot on the outer fixed cylinder, with one end maintaining contact with the smaller orbiting cylinder. The vane provides a barrier between high and low pressure regions within a cylinder cavity formed between the stationary or fixed cylinder and the orbiting cylinder.
A positive displacement device includes a first cylinder, a second cylinder disposed within the first cylinder, and a third cylinder disposed around the first cylinder. An interior surface of the first cylinder and an exterior surface of the second cylinder define an inner cavity. An exterior surface of the first cylinder and an interior surface of the third cylinder define an outer cavity. A partition between the interior surface of the first cylinder and the exterior surface of the second cylinder divides the inner cavity into inner regions, and another partition between the exterior surface of the first cylinder and the interior surface of the third cylinder divides the outer cavity into outer regions. The second cylinder and the third cylinder orbit with respect to the first cylinder to create alternating regions of high pressure and low pressure in the inner regions and the outer regions.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
The Detailed Description is described with reference to the accompanying figures. The use of the same reference numbers in different instances in the description and the figures may indicate similar or identical items.
A conventional vane compressor is comprised of a stationary or fixed cylinder with a slot for receiving a reciprocating vane, an orbiting cylinder, a reciprocating vane with a vane spring, bearings, and a crankshaft with an eccentrically mounted shaft. The vane is inserted into the vane slot on the outer fixed cylinder with one end maintaining contact with the smaller orbiting cylinder providing a barrier between high and low pressure within the cylinder cavity.
As described herein, a positive displacement device, which can be configured as a vane compressor, can include two orbiting cylinders, rigidly connected at one end by a plate, rather than one orbiting cylinder within a larger fixed cylinder. In embodiments of the disclosure, the inner cylinder is smaller than the fixed cylinder and the larger orbiting cylinder is larger than the fixed cylinder. In some embodiments, a common vane may pass through a vane slot in the fixed cylinder wall, maintaining sealing contact with both the inner and outer orbiting cylinder surfaces. In this configuration, the smaller orbiting cylinder controls the vane position from below while the larger orbiting cylinder controls the vane position from above. Thus, a vane spring, which is typically used to maintain contact between the vane tip radius and the orbiting cylinder, is not necessarily required.
While a conventional vane compressor provides one compression cavity divided into low and high pressure regions, the positive displacement devices described herein can provide two compression cavities, each divided into low and high pressure regions. The inner cavity is formed between the inner orbiting cylinder surface and the fixed cylinder surface, and has a smaller displaced volume than that of the outer cavity. The outer compression cavity is formed between the fixed cylinder surface and the outer orbiting cylinder surface, and has the larger displaced volume. Thus, a positive displacement device as described herein may be configured as either a single stage compressor or a two stage compressor, e.g., with a single fixed and orbiting cylinder set. For a two stage design, the larger outer cavity may be used for the first stage, and the smaller inner cavity may be used for the second stage.
It should be noted that the outer and inner compression cavities, while sharing a common vane and common orbiting and fixed cylinders, are two separate cavities with compression cycles sequenced one hundred and eighty degrees (180°) apart. This configuration can reduce peak compressor torque and/or associated noise and vibration while increasing motor running efficiency. Further, dual concentric sequential compression chambers can support the addition of flow control valves for switching between four levels of mass flow and single stage or two stage compression to increase efficiency (e.g., as weather conditions vary) while also enabling start relief (e.g., for the compressor motor). In embodiments of the disclosure, flow control valves can be located within a compressor enclosure and/or outside of the enclosure. When placed outside of a compressor enclosure, ease of maintenance and/or improved control wiring access may be provided. Additionally, an outside placement can provide for simplified control features and/or upgrade options with a common compressor design. Available features may range from a baseline unit without control valves, two or three additional mass flow levels plus single or two stage compression options, a start relief option, and so on. With outside flow control valves, these options may be available from a manufacturer and/or may added in the field.
Referring now to
In embodiments of the disclosure, a positive displacement device 100 includes a first cylinder 102 having a wall 104 with an interior surface 106 and an exterior surface 108. The positive displacement device 100 also includes a second cylinder 110 disposed within the first cylinder 102. The second cylinder 110 has an exterior surface 112. The interior surface 106 of the first cylinder 102 and the exterior surface 112 of the second cylinder 110 define an inner cavity 114. The positive displacement device 100 also includes a partition between the interior surface 106 of the first cylinder 102 and the exterior surface 112 of the second cylinder 110 to divide the inner cavity 114 into a first inner region 116 and a second inner region 118, where a first port (e.g., first intake port 120) is in fluid communication with the first inner region 116 of the inner cavity 114, and a second port (e.g., first exhaust port 122 is in fluid communication with the second inner region 118 of the inner cavity 114.
The positive displacement device 100 also includes a third cylinder 124 disposed around the first cylinder 102. The third cylinder 124 has an interior surface 126. The exterior surface 108 of the first cylinder 102 and the interior surface 126 of the third cylinder 124 define an outer cavity 128. The positive displacement device 100 also includes another partition between the exterior surface 108 of the first cylinder 102 and the interior surface 126 of the third cylinder 124 to divide the outer cavity 128 into a first outer region 130 and a second outer region 132, where a third port (e.g., second intake port 134) is in fluid communication with the first outer region 130 of the outer cavity 128, and a fourth port (e.g., second exhaust port 136) is in fluid communication with the second outer region 132 of the outer cavity 128. For the purposes of the present disclosure, the term “third cylinder” shall be defined as any three-dimensional shape having a cylindrical interior surface, and shall encompass the shapes described with reference to the accompanying figures, along with other shapes not described in the accompanying figures. For example, a third cylinder as described herein may be a rectangular prism having a cylindrical interior surface, a hexagonal prism having a cylindrical interior surface, and so on.
The positive displacement device 100 includes one sealing interface for sealing first ends of the inner cavity 114 and the outer cavity 128, and another sealing interface for sealing second ends of the inner cavity 114 and the outer cavity 128. For example, the first cylinder 102 is connected to one end plate 138, and the second and third cylinders 110 and 124 are connected to another end plate 140. In embodiments of the disclosure, the second cylinder 110 and the third cylinder 124 are configured to orbit with respect to the center of the first cylinder 102 to create alternating regions of high pressure and low pressure in the first and second inner regions 116 and 118 of the inner cavity 114 and the first and second outer regions 130 and 132 of the outer cavity 128.
With reference to
Referring now to
In embodiments of the disclosure, the first and second intake ports 120 and 134 are provided for supplying a fluid or gas to the positive displacement device 100, while the first and second exhaust ports 122 and 136 are provided for supplying the fluid or gas from the positive displacement device 100. In some embodiments, the first cylinder 102, the second cylinder 110, and the third cylinder 124 can be placed within an outer shell, or an outer compressor housing 156. As the second and third cylinders 110 and 124 orbit the center of the first cylinder 102, pockets of space, or compression cavities, are created adjacent to the first and second intake ports 120 and 134. Fluid or gas enters these compression cavities via the first and second intake ports 120 and 134. As the second and third cylinders 110 and 124 continue to orbit the center of the first cylinder 102, the compression cavities are separated from the first and second intake ports 120 and 134 and migrate toward the first and second exhaust ports 122 and 136. When the compression cavities are adjacent to the first and second exhaust ports 122 and 136, the fluid or gas is supplied from the positive displacement device 100. For instance, compressed gas may be supplied to a storage tank, or the like.
It should be noted that while two second and third cylinders 110 and 124 are illustrated in the accompanying figures, more or fewer cylinders may be included with a positive displacement device 100. For example, the third cylinder 124 may be replaced with a compression spring and/or another biasing mechanism for biasing the vane 152 against the first cylinder 102. Further, additional cylinders and/or additional vanes may be included to create additional compression chambers.
In embodiments of the disclosure, surfaces on both the second and third cylinders 110 and 124, and the first cylinder 102, are circular in cross-section, or formed by constant radii. Because the vane 152 inserted between the second and third cylinders 110 and 124 is a separate part, the constant radius compression cavity surfaces on the second and third cylinders 110 and 124, and the first cylinder 102, can be machined using conventional turning processes, which may be performed with greater accuracy and/or at a comparatively lower cost (e.g., when compared to a non-constant radius configuration).
Referring now to
R2, which is equal to the inside radius of the interior surface 126 of the third cylinder 124, or the radius of the compression surface of the third cylinder 124, can then be determined as follows:
R2=R1+S+W
R3, which is equal to the inside radius of the interior surface 106 of the first cylinder 102, or the radius of the inside compression surface of the first cylinder 102, can be determined as follows:
R3=R1+S/2
R4, which is equal to the outside radius of the exterior surface 108 of the first cylinder 102, or the radius of the outer compression surface of the first cylinder 102, can be determined as follows:
R4=R3+W
In embodiments of the disclosure, VW, which is equal to the width of the vane 152, can be selected to allow the vane 152 to travel radially through the first cylinder 102, while providing minimum clearance for gas sealing purposes. The width of the vane 152 may be selected based upon space requirements, and the width of the vane slot 154 in the first cylinder 102 may be equal to the vane width VW plus a desired seal clearance. It should be noted that a comparatively small vane width VW may increase the bending stress on the vane 152 (e.g., due to gas pressure and/or friction between the vane 152 and the second and third cylinders 110 and 124). Further, a vane width VW that permits the second and third cylinders 110 and 124 to contact the edge of the vane 152 may cause a loss of vane seal and/or excessive wear between the vane 152 and the orbiting surfaces the second and third cylinders 110 and 124. Thus, the width of the vane 152 can be selected to be greater than at least a minimum vane width. For instance, VWm, which is equal to this minimum vane width, can be determined as follows:
VWm=S*(R2−R1)/(R2+R1)
VL, which is equal to the length of the vane 152, or the distance between the two outer ends of the vane, can be determined as follows:
VL=R2−R1
In embodiments of the disclosure, the vane 152 includes a tip radius, or a radius at the two outer ends of the vane. VTR, which is equal to this vane tip radius, can be determined as follows:
VTR=VL/2
It should be noted that the positive displacement device 100 may include other dimensional relationships and that the dimensional relationships heretofore described are provided by way of example only and not meant to limit the present disclosure. Thus, the positive displacement device 100 of the present invention is not necessarily limited to these dimensional relationships. Additionally, for the purposes of the present disclosure, the term “equal to” shall be understood to mean equal to within the limits of precision machinability.
Because the surfaces on the second and third cylinders 110 and 124 are circular, rotational orientation of the second and third cylinders 110 and 124 is not necessarily required. Thus, the need for an external anti-rotation device may be eliminated, allowing the second and third cylinders 110 and 124 to freely rotate while orbiting the center of the first cylinder 102. A cost savings may be achieved by eliminating the anti-rotation device. Additionally, wear on the surfaces of the second and third cylinders 110 and 124, which may be caused by the vane 152, the first cylinder 102, and/or the housing 156, can be uniformly distributed over the entire mating surfaces (e.g., rather than being concentrated in a small region). Additionally, free rotation of the second and third cylinders 110 and 124 can uniformly distribute the heat of gas compression over the entire mating surfaces (e.g., again, rather than being concentrated in a small region). The apparatus, systems, and techniques described herein can provide a reduced peak wear rate and/or uniformity of temperature over the second and third cylinders 110 and 124, and reduction of temperatures in the high pressure region, resulting in less part distortion, lower gas temperatures, and so forth.
It should be noted that while the compression cavities created by the inner and outer second and third cylinders 110 and 124 may share a common vane 152, they can act as separate compression chambers, sequenced one hundred and eighty degrees (180°) apart. The apparatus, systems, and techniques described herein can reduce peak torque for single stage compressors, and may provide a two stage compressor design using the second and third cylinders 110 and 124. For a two stage design, the larger outer cavity can be used for the first stage, and the smaller inner cavity can be used for the second stage. For example, in some embodiments, the first intake port 120 can be connected to (e.g., in fluid communication with) the second exhaust port 136 to form a two stage compressor. In this manner, fluid may flow from the second intake port 134 into the outer cavity 128 and from the outer cavity 128 to the second exhaust port 136 (forming a first compressor stage), from the second exhaust port 136 to the first intake port 120, and then from the first intake port 120 into the inner cavity 114 and from the inner cavity 114 to the first exhaust port 122 (forming a second compressor stage).
It is noted that a large contributor to vane wear in typical stationary vane compressors is the pressure differential across the vane. Since these are predominantly single stage compressors, the maximum pressure differential across the vane is the discharge pressure minus the suction pressure. In the two stage version of the positive displacement device 100 described herein, the intermediate pressure is between the suction pressure and the discharge pressures. The differential pressure across the first stage end of the vane is the intermediate pressure minus the suction pressure. The differential pressure across the second stage end of the vane is the discharge pressure minus the intermediate pressure. Both of these differential pressures and resulting vane forces may be significantly lower than those of a typical stationary vane compressor. Thus, the resulting vane wear of a positive displacement device 100 may be comparatively lower than that of a typical stationary vane compressor.
As described herein, the center region of a positive displacement device 100 can be enlarged, moving the discharge port and compression cavities radially outward, without increasing the dead space adjacent to the discharge port at the end of the compression cycle. This configuration may yield a high compression ratio design. Enlarging the central region can be done to allow room for an eccentric, an eccentric bearing, a shaft, and shaft bearings, with the shaft passing through the eccentric and supported by shaft bearings on each side of the eccentric. This can reduce the radial forces on the shaft bearings, allowing the use of smaller bearings and/or shafting. Additionally, the eccentric can be located axially within the plane of the second and third cylinders 110 and 124 and the first cylinder 102, allowing radial pressure forces between the second and third cylinders 110 and 124 to pass through the plane of the eccentric bearing and reduce non-symmetric axial thrust between the second and third cylinders 110 and 124 and the first cylinder 102.
A positive displacement device 100 may have one or both of the second and third cylinders 110 and 124, and/or the first cylinder 102, coated with an abradable coating of sufficient thickness to cause interference at all sealing surfaces between the members. During the manufacturing or assembly sequence, the second and third cylinders 110 and 124, and the first cylinder 102, can be assembled and operated, causing the excess coating to abrade away leaving a near perfect match between the surfaces of the second and third cylinders 110 and 124 and the first cylinder 102. This process may reduce the need for precise machining.
Although the subject matter has been described in language specific to structural features and/or process operations, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
Number | Name | Date | Kind |
---|---|---|---|
1872361 | Tackman | Aug 1932 | A |
3195470 | Smith | Jul 1965 | A |
3410478 | Geisenhaver | Nov 1968 | A |
4568253 | Wood | Feb 1986 | A |
4629403 | Wood | Dec 1986 | A |
5169299 | Gannaway | Dec 1992 | A |
5222885 | Cooksey | Jun 1993 | A |
5364247 | Fukanuma et al. | Nov 1994 | A |
5399076 | Matsuda et al. | Mar 1995 | A |
6348688 | Vestal | Feb 2002 | B1 |
6607371 | Raymond et al. | Aug 2003 | B1 |
6746223 | Manole | Jun 2004 | B2 |
7265345 | Hashimoto et al. | Sep 2007 | B2 |
7341437 | Hwang et al. | Mar 2008 | B2 |
7367790 | Hwang et al. | May 2008 | B2 |
7378650 | Hashimoto et al. | May 2008 | B2 |
7718960 | Hashimoto et al. | May 2010 | B2 |
8517702 | Byun et al. | Aug 2013 | B2 |
8879064 | O'Connor et al. | Nov 2014 | B2 |
9524856 | Hilliard et al. | Dec 2016 | B2 |
9683965 | Clemmer et al. | Jun 2017 | B2 |
10030658 | Wood | Jul 2018 | B2 |
20010018028 | Kikuchi et al. | Aug 2001 | A1 |
20020014586 | Clemmer | Feb 2002 | A1 |
20020070338 | Loboda | Jun 2002 | A1 |
20020070339 | Clemmer | Jun 2002 | A1 |
20020102171 | Jurgen et al. | Aug 2002 | A1 |
20030020012 | Guevremont | Jan 2003 | A1 |
20060056988 | Seok et al. | Mar 2006 | A1 |
20060071159 | Hashimoto et al. | Apr 2006 | A1 |
20060210415 | Ohtake | Sep 2006 | A1 |
20100119378 | Shibamoto et al. | May 2010 | A1 |
20100127164 | Atkinson et al. | May 2010 | A1 |
20100230588 | Atkinson et al. | Sep 2010 | A1 |
20100252731 | Reilly | Oct 2010 | A1 |
20110133074 | Nakanishi et al. | Jun 2011 | A1 |
20110198493 | Clemmer et al. | Aug 2011 | A1 |
20120228491 | Wu et al. | Sep 2012 | A1 |
20120326023 | Kozole | Dec 2012 | A1 |
20130011290 | Okamoto et al. | Jan 2013 | A1 |
20130292562 | Clemmer et al. | Nov 2013 | A1 |
20140339417 | Hendrikse | Nov 2014 | A1 |
20180047551 | Jones et al. | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
1233186 | Aug 2002 | EP |
1233186 | Sep 2004 | EP |
2005273453 | Oct 2005 | JP |
2013024806 | Feb 2013 | JP |
2015147744 | Oct 2015 | WO |
Entry |
---|
Lee, Jeong-Bae, et al, “Development of a Miniature Twin Rotary Compressor,” 22nd International Compressor Engineering Conference at Purdue, Jul. 14-17, 2014 (http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=3316&context=icec). |
International Search Report and Written Opinion dated May 30, 2017 for PCT/US2017/020162. |
International Preliminary Report on Patentability for PCT/US2017/020162, dated Oct. 30, 2018. |
International Search Report and Written Opinion for PCT/US2016/060807, dated Jul. 25, 2017. |
Number | Date | Country | |
---|---|---|---|
20190024661 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15139608 | Apr 2016 | US |
Child | 16044106 | US |