The present invention relates to concrete blocks. More specifically, the present invention relates to concrete blocks having a foam insulator.
In one embodiment, the invention provides an insulator for use in combination with a structural block having top and bottom surfaces that are connected by side surfaces. The side surfaces and the top and bottom surfaces define a continuous periphery that at least partially forms a mortar joint with adjacent blocks. The periphery has a generally vertical height bounded by the top and bottom surfaces, and a width bounded by the side surfaces. The insulator is a pre-formed portion of insulating material having top, bottom and side surfaces. The top and bottom surfaces define a height greater than the generally vertical height of the periphery of the block. The side surfaces define a width greater than the periphery of the block, so that the insulator extends into and insulates, on at least a portion of all surfaces forming the block periphery, the mortar joint between the block and adjacent blocks.
In another embodiment, the invention provides a structural element having a structural block with top and bottom surfaces, and side surfaces that connect the top and bottom surfaces to define a continuous periphery that at least partially forms a mortar joint with adjacent blocks. The periphery has a height bounded by the top and bottom surfaces, and a width bounded by the side surfaces. An insulating portion has top, bottom and side surfaces. The top and bottom surfaces define a height greater than the height of the periphery of the block, and the side surfaces define a width greater than the width of the periphery of the block. The insulator extends into and insulates, on at least a portion of all surfaces forming the periphery of the block, the mortar joint formed between the block and adjacent blocks.
In yet another embodiment the invention provides structure comprised of a plurality of structural elements operable to form a wall. The plurality of structural elements include at least first and second structural blocks. The blocks each have top and bottom surfaces, and side surfaces that connecting the top and bottom surfaces to define a continuous periphery that at least partially forms a first mortar joint between the adjacent side surfaces of the first and second blocks. The periphery has a height bounded by the top and bottom surfaces, and a width bounded by the side surfaces. At least first and second insulators each include top, bottom and side surfaces. The top and bottom surfaces define a height greater than the height of the periphery of the block, and the side surfaces defining a width greater than the width of the periphery of the block. The first and second insulators extend into and insulates, on at least a portion of all surfaces forming the periphery of the respective first and second blocks.
Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.
The insulator 15 may be formed of any suitable insulating material. In one form, the insulator 15 is formed from extruded polystyrene foam having a density of at least 1.6 pounds per cubic foot. The insulator has a compressive strength within the range of 15-35 pounds per square inch, a more preferred compressive strength in a range of 20-30 pounds per square inch, and a density of 25 pounds per square inch. In another form, the insulator 15 has a density of about 1.3 pounds per cubit foot and a compressive strength of about 15 pounds per square inch. In a third form, the insulator 15 has a density of about 1.8 pounds per cubic foot and a compressive strength of about 40 pounds per square inch. In a fourth form, the insulator 15 has a density of about 2.2 pounds per cubic foot and a compressive strength of about 60 pounds per square inch. In yet another form, the insulator 15 has a density of about 3 pounds per cubic foot and a compressive strength of about 100 pounds per square inch. While the preceding examples have been given, it is to be understood that intermediate densities and compressive strength values are included within the scope of the invention. Further, densities and compressive strength values that are not within the range of examples can be attained by changing the material used to form the insulator 15.
As discussed in more detail below, the angled surfaces 40, 45 abut with the angled surfaces 40, 45 of the adjacent insulators 15 to reduce air flow and heat transfer through the structure formed with the concrete blocks 10. Other surface configurations e.g. complementary and mating convolutions such as surfaces that have projections and complementary apertures that reduce air flow and heat transfer through the structure. In still other surface configurations, the concrete blocks 10 have combinations of interface surfaces, such as having a first column of concrete blocks 10 having a first interfacing surfaces and a second column of concrete blocks 10 having a second interfacing surfaces, e.g. the first column has planar angled surfaces that incline upward in the inward direction while the second column has planar angled surfaces that incline upward in the outward direction with respect to the inward and outward portions of the surface.
The inner edges 60 are positioned generally between the top and bottom surfaces 20, 25 of the concrete block 10, while the outer edges 65 are positioned beyond the top and bottom surfaces 20, 25. In the illustrated embodiment, the top surface 40 of the insulator 15 has two notches 105 adjacent to the cross-wall members 90, so that the insulator 15 is inserted into the concrete block 10 without interference between the cross-wall members 90 and the insulator 15. The side surfaces 108 of the insulator 15 extend beyond and are generally parallel to the side surfaces 80 of the concrete block 10.
A first concrete block 10a and a first insulator 15a are positioned adjacent a second concrete block 10b and a second insulator 15b, such that the side surfaces 80 of the first and second concrete blocks, 10a, 10b, respectively form a first mortar joint 140a. The illustrated first mortar joint 140a is generally vertical. The first and second insulators 15a, 15b, respectively extend into the space between the first and second concrete blocks 10a, 10b, respectively, that is defined by the first mortar joint 140a. In some embodiments, the first and second insulators 15a, 15b, are in contact with each other. In the illustrated embodiment, a third concrete block 10c and insulator 15c are placed on top of the second concrete block 10b and insulator 15b to form a second mortar joint 140b therebetween. The top and bottom surfaces 40, 45, of the insulators 15b, 15c, are inclined to form inner and outer edges 60, 65. The outer edges 65 extend beyond the top and bottom surfaces 30, 35 of the concrete blocks 10b 10c, while the inner edges 60 of the illustrated embodiment do not extend beyond the top and bottom surfaces 20, 25 of the concrete blocks, 10b, 10c. In some embodiments, the inclined surfaces 40, 45 of the insulators 15b, 15c are in contact with one another.
The remaining slots 70 are included in the concrete block 10 such that another cutout 75 can be made in each of the concrete block cross-wall members 90 to receive a second insulator 15′, as is illustrated in
The wall 125 may have a variety of thermal resistance values, depending on the thickness of the insulator 15, the number of insulators 15 per block 10, the density of the insulator 15, and the relative dimensions of the block 10 and insulator 15. One example includes a first wall having one 2″ wide insulator per block. The first wall has a thermal resistance within the range of 4-17 (hr sq.ft ° F./Btu inch). A second example includes a second wall having two 2″ wide insulators per block. The second wall has a thermal resistance within the range of 6-30 (hr sq.ft ° F./Btu inch). A third example includes a third wall having one 1″ wide insulator per block. The third wall has a thermal resistance within the range of 3-12 (hr sq.ft ° F./Btu inch). The block 10 used in these examples has dimensions of 15.69″×11.64″×3.72″, although this dimensions are not critical and the block 10 could be nearly any size or shape. The insulator(s) 15 used in these examples has length of about 16″ and a width of about 12″. Thus, the insulator dimensions are slightly larger than the block 10. In some embodiments, the insulator 15 can be as much as ⅜″ greater in length and height than the block 10. In some embodiments, the insulator 15 is more than ⅜″ wider and taller than the block 10. The width of the insulator 15 has been shown in examples to range from 1-2 inches, but can range from as narrow at ¾″ to as wide as 4″.
Various features and advantages of the invention are set forth in the following claims.
The present application claims the benefit of co-pending provisional patent application Ser. No. 60/904,085, filed Feb. 28, 2007 (attorney docket number 021448-9057-00), the subject matter of which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60904085 | Feb 2007 | US |