The invention relates generally to structural framed buildings, and, more specifically to modular components for structural framed buildings.
Structurally framed buildings generally include a steel or concrete frame of columns, girders, and beams that support concrete decks. The construction of steel framed building floors and platforms are assembled onsite without any aggregation of components into modules prior to arriving on the building site. Concrete floors are poured onsite at each building under construction. Onsite pouring of concrete is laden with variability and problems compared to a factory controlled mix and setting of concrete. Many factors affect the life, strength, and overall quality of concrete, including weather conditions and the quality of skilled labor.
Embodiments of a deck assembly module for a steel framed building are disclosed. In an embodiment, a deck assembly module includes a modular concrete deck platform. The modular concrete deck platform includes a concrete slab having a top major surface and a bottom major surface and a structural grid pattern of reinforcing bar within the concrete slab. The concrete slab further includes a shear connector opening on a side surface of a side of the concrete slab. The shear connector opening is a recess on the side surface of the concrete slab. The modular concrete deck platform further includes an integrated attachment assembly within the shear connector opening on the side of the concrete slab. The integrated attachment assembly includes a shear connector rebar including an extension of continuous reinforcing bar extending out of the shear connector opening and back into the shear connector opening. The shear connector rebar and the shear connector opening form a closed loop.
Embodiments of a steel framed building are disclosed. In an embodiment, a steel framed building includes a structural frame defining a footprint of the steel framed building, the structural frame including vertical columns and horizontal beams and girders. The horizontal beams and girders define bays within the steel framed building. The steel framed building further includes modular concrete deck platforms attached to the structural frame. The modular concrete deck platforms include a concrete slab having a top major surface and a bottom major surface and a structural grid pattern of reinforcing bar within the concrete slab. The concrete slab further includes a shear connector opening on a side surface of a side of the concrete slab. There may be at least one shear connector opening on all sides of the concrete slab. The shear connector opening is a recess on the side surface of the concrete slab. The modular concrete deck platforms further include an integrated attachment assembly within the shear connector opening on the side of the concrete slab. The integrated attachment assembly includes a shear connector rebar including an extension of continuous reinforcing bar extending out of the shear connector opening and back into the shear connector opening. The shear connector rebar and the shear connector opening form a closed loop.
Embodiments of a method for constructing a floor in a steel framed building are disclosed. In an embodiment, the method includes placing a modular concrete deck platform on horizontal beams and girders of a steel framed building, the modular concrete deck platform having a perimeter shape that corresponds to dimensions of a bay of the steel framed building. The beams and girders outline the perimeter of the bay. The placing the modular concrete deck platform includes placing the perimeter edges of a bottom surface of the modular concrete deck platform on a portion of a top surface of the beams and girders. Shear connector openings located on the sides of the modular concrete deck expose a portion of the top surface. The shear connector openings are recesses on side surfaces of the modular concrete deck platform. A shear connector rebar extends out of each shear connector opening. The shear connector rebar includes an extension of reinforcing bar extending out of each shear connector opening and back into each shear connector opening and the shear connector openings forms a closed loop. The method further includes attaching shear connections to the horizontal beams and girders of the steel framed building in the exposed portion of the top surface and within the closed loop.
Other aspects and advantages of embodiments of the present invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrated by way of example of the principles of the invention.
Throughout the description, similar reference numbers may be used to identify similar elements. Additionally, in some cases, reference numbers are not repeated in each figure in order to preserve the clarity and avoid cluttering of the figures.
It will be readily understood that the components of the embodiments as generally described herein and illustrated in the appended figures could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of various embodiments, as represented in the figures, is not intended to limit the scope of the present disclosure, but is merely representative of various embodiments. While the various aspects of the embodiments are presented in drawings, the drawings are not necessarily drawn to scale unless specifically indicated. In addition, the drawing shapes are illustrative only unless specifically indicated.
The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by this detailed description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
Reference throughout this specification to features, advantages, or similar language does not imply that all of the features and advantages that may be realized with the present invention should be or are in any single embodiment. Rather, language referring to the features and advantages is understood to mean that a specific feature, advantage, or characteristic described in connection with an embodiment is included in at least one embodiment. Thus, discussions of the features and advantages, and similar language, throughout this specification may, but do not necessarily, refer to the same embodiment.
Furthermore, the described features, advantages, and characteristics of the invention may be combined in any suitable manner in one or more embodiments. One skilled in the relevant art will recognize, in light of the description herein, that the invention can be practiced without one or more of the specific features or advantages of a particular embodiment. In other instances, additional features and advantages may be recognized in certain embodiments that may not be present in all embodiments of the invention.
Reference throughout this specification to “one embodiment,” “an embodiment,” or similar language means that a particular feature, structure, or characteristic described in connection with the indicated embodiment is included in at least one embodiment. Thus, the phrases “in one embodiment,” “in an embodiment,” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment.
While many embodiments are described herein, at least some of the described embodiments allow for fabrication of modular concrete deck platforms at a central facility before being transported to a building site for placement on a steel frame of a building. The modular concrete deck platforms may be fabricated in a facility allowing for more optimal control of the curing of the concrete to better meet building requirements. The modular concrete deck platforms may be fabricated to the standard size of bays of a steel frame building. The modular concrete deck platforms have an integrated attachment assembly located within recesses on the side of the modular concrete deck platforms. The platforms may be placed on the steel frame with the recesses exposing the integrated attachment assemblies and the beam on which the platforms are placed. Shear connections may then be attached to the beams and can interface with the integrated attachment assemblies. The recesses and any gaps between the platforms may then be filled with a grout material to create a seamless floor for the building.
Some embodiments allow for better quality control as platforms may be fabricated at a central site. Greater quality control allows for potential reduced overall weight of the platforms without sacrificing design requirements. Some embodiments allow for rapid connection of platforms to a steel frame. The crew would not need to wait for concrete floors to set before proceeding to fabricate the next floor. Buildings utilizing embodiments described herein may be erected significantly faster as platforms will have already been fabricated.
Some embodiments allow for savings in fireproofing material and time. Embodiments allow for reduction of fire proofing material (as well as the labor time to apply it) during the fireproofing of a steel frame building. Fireproofing material is sprayed on metal decks to meet building codes. Some building codes require fireproofing to be over-sprayed by at least 12″ when conductive material touches a structural steel frame. The use of concrete decks may eliminate or reduce costly fireproofing material.
In one embodiment, the structural frames 100 are steel frames. In one embodiment, the columns 102 are “I” shaped steel beams, referred to as “I-beams”. In general, the I-beams may be spaced apart in a grid structure to create varying sizes of buildings. The structural frames 100 may be any type, shape, or material used for framing the framed building. The material for the framed building may include a composite of more than one material.
The spacing of the girders 104 may be determined by the spacing of the columns 102. The spacing of the beams 106 may be more flexible than the spacing of the girders 104. The beams 106 may be located between pairs of columns 102, and additional beams 106 may be located between columns 102.
In the embodiment of
In the embodiment of
The spacing of the girders 104 is dictated by the spacing of the columns 102. The spacing of the beams 106 is more flexible. In an embodiment, beams 106 are located between pairs of columns 102 and additional beams 106 are located between columns 102. In an embodiment, beams are spaced apart by about 10 feet, although other spacing is possible. As will be described below, the spacing of the columns, girders, and beams forms “bays,” where a bay is generally defined as the area bordered by a pair of parallel girders and a pair of parallel beams. The dimensions of the bays may be the same from bay-to-bay or may vary depending on the building. In an embodiment, some of the bays in a building have similar dimensions while other bays of the building have dimensions that are customized to correspond to specific features of the building. As is described below, the deck assembly modules are sized such that a deck assembly module fills a bay. The shape of a bay may vary depending on whether the bay is a mid-bay or an end-bay, where a mid-bay is bordered by girders and beams but does not include any column connection points and an end-bay includes at least one column connection point.
In an embodiment, each deck assembly module is configured to have a shape that corresponds to the shape of the bays 204 that are formed by the steel frame 200. For example, deck assembly modules intended for the mid-bays 204a are shaped to correspond to the shape of the mid-bays 204a and deck assembly modules intended for the end-bays 204b are shaped to correspond to the shape of the end-bays 204b. Additionally, deck assembly modules that are intended for end-bays 204b are shaped to correspond to the particular location of the columns 102. For example, the two corners of a deck assembly module that will abut to a column 102 are dependent on the location of the deck assembly module relative to the columns 102. With reference to
In an embodiment, the exact size and shape of the deck assembly module may be governed in part by at least one of the following parameters: structural performance requirements of the steel frame 200; structural requirements per regulatory requirements or design codes; the framing geometry of the steel frame 200; transportation requirements of the jurisdictions in which the deck assembly module is transported on public roads; and vehicle availability for transport. In an embodiment, the deck assembly module is designed with a 10′-0″ maximum width dimension and a fifty foot maximum length dimension so that the deck assembly module can be transported as one piece on public roads using conventional transportation means. In another embodiment, the deck assembly module is designed with a 15′-0″ maximum width dimension and a fifty foot maximum length dimension, although it should be understood that other dimensions are possible.
Other building design requirements may affect the size and shape of deck assembly modules, as well as the materials used. Appropriately sized reinforcing bar (or rebar) and other materials and additives may be dictated by the specific use of a building. The deck assembly modules may be designed for a range of vertical gravity loads, to deflect no more than required under dead and live loading values, to limit cracking to structurally acceptable values, to achieve an appropriate fire rating, and to appropriately cover various shaped bays in a framed building. The deck assembly modules may be designed such that they can be tiled or patterned in any configuration over the plan of a building with only shear connection openings (which is described in more detail below). The shear force in deck assembly modules may be influenced by many factors, including but not limited to, seismic design category, soil category, the lateral system, building height, and building weight.
While the majority of steel framed buildings use orthogonal geometry for framing, the deck assembly modules may be fabricated to other polygonal and/or curvilinear shapes to correspond to the structural framing of a building.
The illustrated embodiment further depicts shear connector openings 302 on the side surface of sides of the modular concrete deck platforms 202. The modular concrete deck platforms 202 are formed into a concrete slab. Within the concrete slab is reinforcing bar (not shown). The shear connector openings 302 occur on the sides of the concrete slabs. In the illustrated embodiment, each modular concrete deck platform 202 has three shear connector openings 302 on the long sides of the modular concrete deck platform 202 and one shear connector opening 302 on the short sides of the modular concrete deck platform 202. These shear connector openings 302 may house an integrated attachment assembly to allow for stabilizing of the modular concrete deck platforms 202 to the beams 106 and girders 104 of a building frame. In some embodiments, the shear connector openings 302 may be spaced evenly in standardized increments along the side of a modular concrete deck platform 202. In some embodiments, the shear connector openings 302 may be staggered in uneven increments. Some embodiments may have more or less shear connector openings 302 than are illustrated in
The shear connector openings 302 are notches or recesses on the side of the concrete slab. The sides of the concrete slab are fabricated to match the geometry of bays 204 of a building. The shear connector openings 302 are recesses within the matching geometry that allow for access to a beam 106 or girder 104 after setting a modular concrete deck platform 202 in place. The illustrated embodiment of
The integrated attachment assembly includes a shear connector rebar 602. The shear connector rebar 602 is an extension of continuous reinforcing bar extending out of the surface of the shear connector opening 302 and back into the surface of the shear connector opening 302. The concrete slab 504 is formed around the reinforcing bar but exposes a portion or extension of continuous reinforcing bar within the shear connector opening 302. The extension of continuous reinforcing bar and the surface of the shear connector opening form a closed loop. The closed loop formed by the shear connector rebar and shear connector opening surface interfaces with shear connections that are described more fully below. The shear connections are attached to the beams and girders of a building.
In an embodiment, an integrated attachment assembly is integrated into each side of each modular concrete deck platform 202, at appropriate points to resist shear forces. In an embodiment, the shear connector openings 302 are of a sufficient size to allow the use of this system with any beams with a flange width of 6″ or greater. In some embodiments, the shear connector openings 302 of adjacent modular concrete deck platforms 302 align. In some embodiments, shear connector openings 302 of adjacent modular concrete deck platforms 302 do not align. The integrated attachment assembly is designed for the appropriate loads to transfer forces to the beams. In an embodiment, the shear connector rebar 602 focuses the horizontal shear force transfer in the deck platform 202 to the beam 106 below, as compared to conventional means where the transfer is distributed through the length of the beam 106. Such embodiments allow the deck platform 202 to be manufactured off site and connected to the beam 106 on site because of the efficient use of integrated attachment assemblies. In an embodiment, each connection capacity is based on the minimum design requirement and translated into the specific number and capacity of the shear connections 604, the factored shear capacity of the concrete and the top layer of horizontal reinforcement, and the factored shear capacity of the stirrup legs crossing the interface between the pre-cast slab and post-installed grout.
In the illustrated embodiment, the integrated attachment assembly is a loop of rebar 602. In some embodiments, the rebar 602 interfaces within the structural grid of reinforcing bar 502. For example, the rebar 602 may form a loop around the reinforcing bar 502. In some embodiments, the rebar 602 is separate from the structural grid pattern of reinforcing bar 502. In some embodiments, the rebar 602 is integrated into or connected to the structural grid pattern of reinforcing bar 502. For example, the structural grid pattern of reinforcing bar 502 may have a portion of the grid exposed within the geometry of the shear connector opening. This exposed portion may be the shear connector rebar that interfaces with the shear connections 604.
The illustrated embodiments of
After the modular concrete deck platform 502 is placed on the beam 106, and the shear connections 604 are attached to the beam 106, the shear connector openings 302 and any gap between adjacent modular concrete deck platforms 202 may be filled with grout. Grout may be any material or substance that fills in the space within the shear connector openings 302. In some embodiments, the grout may be a concrete similar to the concrete of the concrete slab of the modular concrete deck platform 202. In some embodiments, the grout will be of strength equal to or greater than the strength of the concrete slab itself. In an embodiment, such grouting at the shear connection and between the platform pieces will complete the fire-rating requirement of the floor slab through the platform pieces and create a composite assembly for the structure.
In the above description, specific details of various embodiments are provided. However, some embodiments may be practiced with less than all of these specific details. In other instances, certain methods, procedures, components, structures, and/or functions are described in no more detail than to enable the various embodiments of the invention, for the sake of brevity and clarity.
Although specific embodiments of the invention have been described and illustrated, the invention is not to be limited to the specific forms or arrangements of parts so described and illustrated. The scope of the invention is to be defined by the claims appended hereto and their equivalents.
This application is a Divisional of co-pending U.S. patent application Ser. No. 14/484,051, filed Sep. 9, 2014, which is entitled to the benefit of provisional U.S. Patent Application Ser. No. 61/876,475, filed Sep. 11, 2013, entitled “Concrete Deck for an Integrated Building System Assembly Platform,” which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61876475 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14484051 | Sep 2014 | US |
Child | 15148546 | US |