The present invention relates in general to concrete and enhancing the strength and versatility of concrete as used in various applications by allowing the controlled and quantified placement of various materials into a concrete delivery stream.
The current style of placing concrete on a job site quite often uses a concrete pump, either a boom truck or a smaller trailered pump. Being able to use a pump to deliver the concrete aggregate some distance from the delivery truck, place it directly where it is needed without the manual labor of a wheel barrow, has significantly enhanced the productivity and efficiency of the concrete industry for all but the smallest jobs. The larger the job, the more is gained from using the larger boom trucks.
One thing that has not changed is lack of tensile strength for concrete. From stone aggregates to fiber, steel, and various other additions to the concrete mixture, many things have been tried to enhance the tensile strength of the concrete.
This period of time in history is marked by rapid advances in material science. For one example, the advancing science of graphene and carbon nanotubules, the strongest material ever manipulated by man, is sure to have significant effects in every kind of industry due to its strength and conductive properties. For example, steel was a commonly used structural material similar to those used at the beginning of the twentieth century such as ASTM A36 steel which has a tensile strength of 550 MPa. These days in the beginning of the twenty-first century carbon fiber materials have been developed such as graphene which has a tensile strength of 130,000 MPa.
The present invention advances the science of structural concrete by leveraging the use of concrete delivery systems and fibers, of various types, to uniformly embed materials of high tensile strength in the concrete aggregate. As used in this document, the term “fiber” refers to any of the following: titanium wire, copper wire, carbon nanotubules, braided graphene or any other natural or man-made substance. In addition, the invention allows the inclusion, if necessary, of conductive fibers, for example copper, or conductive carbon fibers, to create an electromagnetic wave barrier to enable creation of a Faraday Cage to exclude electromagnetic radiation. As computer security becomes more necessary, this capability will become more important.
While this document specifically describes the inclusion of various materials into a concrete stream, the method is not limited to concrete but can be applied to any material stream.
A fixed attachment according to the present disclosure comprises three main parts which are appended to the end of a concrete pump boom nozzle or the end of a concrete truck delivery trough. A fixed attachment is rigidly attached to the end of the boom nozzle in stationary relation therewith. The fixed attachment has a control handle which is used both to control the location of an end of the boom nozzle for concrete placement at the site and to control the distribution pattern of fibers via an electric motor. A rotary attachment is rotatably secured to a lower end of the fixed attachment. The rotary attachment is rotated by an electric motor. A fiber distribution ring is removably secured to the lower end of the rotary attachment and may be rapidly detached from and rapidly reattached to the rotary attachment. The fiber distribution ring has a number of fiber box holders which are reloaded repeatedly after each delivery, for example one concrete truck, with fiber boxes. The fiber boxes are boxed containers of the fiber being injected into the concrete stream. A fiber brake is a sleeve moveably disposed between the fixed attachment and the rotary attachment for selectively moving to cover fiber delivery apertures in the fiber distribution ring to control whether fiber is passing into material flowing through the boom or nozzle.
In essence, this device allows the addition of tensile enhancing materials into monolithic slabs which is essentially independent of the actual concrete mixture and its strength, adding additional properties, like EM shielding, without hampering the delivery efficiency of the concrete at the site.
The fiber boxes are secured to a fiber injector for passing fibers into a material. The fiber boxes each include an enclosure for containing one of the fibers for passing into the material flow, an aperture providing a feed hole for passing one of the fibers from an interior of the enclosure to an exterior of the enclosure, and two contacts having ends disposed on an exterior of the enclosure, the ends being spaced apart for registering with mating contacts. A frangible element extends between the two contacts, the frangible element being conductive for providing electrical continuity between the two contacts. A second end of the fiber is secured to the frangible element, such that when all the fiber has been streamed into the material, the end is pulled free breaking the frangible conductor and breaking electrical continuity between the two contacts.
The fiber boxes further include a fiber install tab secured to the first end of the fibers, and sized for fitting through a fiber delivery aperture extending into the fiber injector and the material flow. An angled lower end is provided on the enclosure for cooperatively engaging with an angled interior surface for urging the two contacts to electrically engage with two mating contacts. The two contacts are disposed at a lower portion of a first vertically extending exterior surface of the fiber box. The aperture providing the feed hole is disposed on an upper portion of the vertically extending exterior surface of the fiber box.
For a more complete understanding of the present invention and the advantages thereof, reference is now made to the following description taken in conjunction with the accompanying Drawings in which
The fiber injector 8 has a longitudinal axis 9 and a fixed attachment 10 which is concentrically disposed with the longitudinal axis 9. The fixed attachment 10 is annular shaped and has an upper end 17 and a lower end 19. A fiber brake 24 is a cylindrical sleeve which is slidably mounted to a lower end of the fixed attachment 10. The fiber brake 24 is concentrically disposed around the longitudinal axis 9 and has a cylindrical shaped body 27, a lower terminal end defining a lower rim 29 and an annular-shaped stop 25 which protrudes outward from an upper end of the cylindrical shaped body 27. Two mounting pins 82 extend outward from the stop 25 on opposite sides of the fiber brake 24. A plurality of stanchion windows 74 are formed through the cylindrical shaped body 27 for passing stanchions 13. The stanchions 13 have needle bearings 15 and are fixedly mounted to the lower end 19 of the fixed attachment 10 after the fiber brake 24 is aligned in position for permanently mounting to the fixed attachment 10.
A rotary attachment 30 is ring-shaped and rotatably mounted to the lower end 19 of the fixed attachment 10 concentric with the longitudinal axis 9. The rotary attachment 30 extends around an upper end of the fiber brake 24. The rotary attachment 30 is defined by a gear drive ring 32 having two gear ring halves 76 and 78 which are removably secured together with fasteners 38. The gear ring halves 76 and 78 each have exteriorly protruding gear teeth 80 to together define a cylindrical gear rack for engaging with the pinion gear 18. Two interiorly disposed protrusions extend from an inner surface of the gear drive ring 32 to define a bearing race 36 for fitting around the needle bearings 15, rotatably securing the rotary attachment 30 to the lower end 19 of the fixed attachment 10. The rotary attachment 30 is mounted around the stanchions 13 and needle bearings 15 after the fiber brake sleeve 24 and its attendant brake actuator rod 26 are slid into position on the fixed attachment 10. Fasteners 38 allow the two halves 76 and 78 of the rotary attachment to be fastened around fixed attachment 10 supporting the part via the bearing race 36 which encases the bearing stanchions 13.
A fiber distribution ring 40 is annular shaped and has a cylindrical upper end 45 and a tapered lower end 47 which are concentrically disposed with the longitudinal axis 9. The cylindrical upper end of the ring 40 is mounted to the rotary attachment 30 for rotating therewith about the fixed attachment 10 and the fiber brake 24. The lower end 47 is tapered at a taper angle 49 to the vertical. (Shown in
A control handle 20 is preferably U-shaped and has two terminal ends which are pivotally mounted to a lower portion of the upper end 17 of the fixed attachment 10 by means of two pivot pins 28. The control handle 20 includes two mounting pins 21 which extend from opposite sides, offset from the two terminal ends, and are aligned for pivotally connecting respective ones of two brake actuator rods 26 which pivotally connect to the two mounting pins 82 protruding laterally outward and to the side of the stop 25 of the fiber brake 24. The brake actuator rods 26 provide links pivotally connecting from the two pins 21 to the two mounting pins 82 extending outward from the annular shaped stop 25 of the upper terminal end of the fiber brake 24.
A handle lock set 22 is slidably mounted to the control handle 20 and includes an elongate grip bar 86 which fits into an interior portion of the hand grip portion of the control handle 20. A lock pin 84 extends from a central portion of the grip bar 86 and has a terminal end to which an insert tab 88 is mounted. The insert tab 88 engages a lock positioner 23 which is mounted to a lower end of the upper portion 17 of the fixed attachment 10. The lock positioner 23 has three indentations formed into one side for providing detents 94, 96 and 98 for engaging with the insert tab 88 of the lock pin 84 to selectively position the control handle 20 in three selected positions rotated about the pins 28 and relative to the fixed attachment 10. Each of the detents 94, 96 and 98 are configured in cooperative relation with the control handle 20 and the brake actuator rods 26 to selectively position the fiber brake 24 in the three respective positions shown in
A switch 16 is preferably provided by a proximity switch which detects when the control handle 20 is angularly moved about the pin 28 to be disposed in the upper angular position shown in
A control console 41 is provided on the upper end 17 of the fixed attachment 10. The control console 41 includes a control device 46 which designates how many fiber boxes should be loaded and active, thereby controlling density of material added to the material flow stream, and which is controlled by a control knob 46. In addition, it shows the LED status display 42 which indicates when a fiber box 60 has emptied and which fiber boxes 60 are still active. The LED status display 42 preferably has the LED status lights displayed in a circular pattern. In the center of the LED status display 42 is the system status LED 44 which designates whether the fiber distribution ring 40 currently has loaded the correct number of functioning fiber boxes. There is a battery 43 which powers the LEDs. Whenever the number of fiber boxes designated are not available to stream fiber into the concrete stream, the system status LED 44 will turn red and preferably sound an alarm. Preferably, the contacts 64 of the fiber boxes 60 on the fiber distribution ring 40 are connected to the control console 41 through a wireless connection, such that the control console 41 will correctly display the status of the fiber boxes 60 on the LED display 42. Preferably, a microprocessor based controller will control the wireless signal from the fiber distribution ring 40 corresponding to the status of the fiber 62 in respective ones of the fiber boxes 60. Similarly a microprocessor based controller within the control console 41 will selectively power the LED display 42 according to the fiber box status wireless signal received from the fiber distribution ring 40.
In other embodiments, a conductive coating may be placed on a frangible element which extends between the two contacts 64, such as paper coated with a conductive coating. The end of the fiber 62 may be secured to the frangible element with an adhesive, a rivet, or tied around the frangible element, such that pulling the fiber 62 on the frangible element will tear the frangible element and break electric conductivity between the two contacts 64.
In typical usage, fiber injector 8 is affixed to the boom end of a delivery system, in this example a concrete pump. At the start, a fiber distribution ring 40 is fully loaded with the appropriate type and number of fiber boxes 60 attached to the fiber distribution ring 40 of the fiber injector 8. In general the fiber boxes 60 would be scaled to require no mid-service reloads. For example, the fiber boxes 60 would be scaled to complete a ten yard, or whatever is typical, load from a concrete truck, the used fiber distribution ring 40 is then snapped off and a new pre-loaded fiber ring would be installed and the next load would commence. In order to be most efficient, each system would have two fiber distribution rings 40 so that one could be loaded while the other is being used. The fiber boxes 60 would be pulled out, and the fiber end, fiber install tabs 66 of the new boxes 60 would be threaded though fiber apertures 52, the box inserted validating that the LED is active showing proper installation. After all the boxes 60, or whatever number of the boxes 60 required are loaded, the status LED registers green, then it is ready to be attached to fiber injector 8 for the next load.
In alternative embodiments, the LED status lights of the control console 31 may be mounted on the fiber distribution ring 40, and then a contacts 54 of the fiber box holders 50 may be connected directly to the LED Status lights 42 by hard wiring, to directly connect the contacts 64 of the fiber boxes 60. Other embodiments may use pneumatic or hydraulic components, such as for the motor 12, or for actuating operation of the fiber brake 24. For example, the brake actuator rod 26 may be replaced by a linear actuator, such as that operated by an electric solenoid, stepper motor, pneumatic actuator or hydraulic actuator, connected directly to the fixed attachment 10.
As the concrete is delivered to the deeper areas of the form, the fibers are delivered via either the rotational aspect, or directly without rotation. For example, the typical install for flatwork versus structural columns versus cantilevered structures will evolve. The type, number, and style of fiber application will be dependent and enhanced with further research. As the delivery approaches the upper finished inch, that is, the upper surface of the concrete being deposited, the handle will be put in the DOWN position, stopping the fiber injection, so that the final finished surface is without fibers protruding.
The present invention describes a new way to apply various materials in a quantitative way to pumpable materials, which is in this example concrete. While the current application is described using concrete pumps as an example, there is no reason it cannot be expanded to any number of applications.
The increase in utility of concrete due to the inclusion of more technically superior products, such as carbon graphite fibers, eventually graphene and carbon nanotubules, in such a uniform and quantifiable means controlled at the point of delivery has unlimited growth potential.
Although the preferred embodiment has been described in detail, it should be understood that various changes, substitutions and alterations can be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
937868 | Rosenleaf | Oct 1909 | A |
2533852 | Tietig | Dec 1950 | A |
2550354 | Jacobsen | Apr 1951 | A |
2964244 | Pennington | Dec 1960 | A |
3222149 | Drummond | Dec 1965 | A |
3290197 | Carmody | Dec 1966 | A |
3453356 | Kent, Jr. et al. | Jul 1969 | A |
3533884 | Quackenbush | Oct 1970 | A |
4023779 | Beloy | May 1977 | A |
4175867 | Piazza | Nov 1979 | A |
4183724 | Larive | Jan 1980 | A |
4715722 | Hergeth | Dec 1987 | A |
5285930 | Nielsen | Feb 1994 | A |
5316197 | Tobler | May 1994 | A |
5328493 | Roncato et al. | Jul 1994 | A |
5437827 | Marx | Aug 1995 | A |
5470145 | Lopez | Nov 1995 | A |
5480256 | Itsekson | Jan 1996 | A |
5599095 | Elkin | Feb 1997 | A |
5830304 | Priesnitz et al. | Nov 1998 | A |
5931610 | Rixom | Aug 1999 | A |
6550362 | Galinat | Apr 2003 | B1 |
7228990 | Schmidt | Jun 2007 | B2 |
8677720 | Carson et al. | Mar 2014 | B2 |
8827085 | Seo et al. | Sep 2014 | B2 |
20040255429 | Clausen | Dec 2004 | A1 |
20060070676 | Blackmore, Jr. | Apr 2006 | A1 |
20060087910 | Knepp | Apr 2006 | A1 |
20120192766 | Ferraiolo | Aug 2012 | A1 |
Number | Date | Country |
---|---|---|
0438745 | Jul 1991 | EP |
2098497 | Nov 1982 | GB |
Entry |
---|
Omar Faruk, et al., Bicomposites Reinforced With Natural Fibers: 2000-2010, Progress in Polymer Science 37 (2012) 1552-1596, Published by Elsevier Ltd., (journal home page www.elsevier.com/locate/ppolysci), (Accessed at: https://www.researchgate.net/publication/256923037_Biocomposites_reinforced_with_natural_fibers_2000-2010). |