The present invention relates to concrete form block modules for use in a concrete forming system for construction of a building structure and further relates to concrete form panels and panel structures.
Concrete blocks have been used for many years as the main structural component for walls in buildings, especially larger buildings such a commercial buildings, and the like. In order to form a wall or similar structure from concrete blocks, the concrete blocks are set in place in horizontal rows, one horizontal row on top of the other in vertically overlapping relation in order to maximize structural integrity. Various shapes of walls can be made. Typically, buildings are composed of straight walls adjoined at corners. The concrete blocks are merely oriented at a right angle (90 degrees) at the corner, while still vertically overlapping one another.
Concrete blocks are rough in appearance since the exterior surface of concrete blocks is merely the rough concrete itself. In order to have a building exterior that is attractive, it is necessary to have a separate exterior covering mounted onto the concrete structure, which is costly and time consuming. Such exterior coverings are typically metal siding, which is inexpensive and can be readily coloured, but is only reasonably attractive. Alternatively, other types of structural blocks, such as ones having a natural stone appearance, can be added to the exterior of the concrete block structure, or at least an exposed portion thereof.
Further, concrete block walls are time consuming to construct, and more expensive than necessary. Also, if the interior of a concrete block wall becomes damp, various types of mold or the like can form, which is highly undesirable. An even more serious problem is that of structural integrity. It is well known that if concrete blocks become damp internally for an extended period of time, the structural integrity of the concrete blocks can be compromised, which is very highly undesirable.
Various other types of wall structures exist that offer an improvement over conventional concrete blocks for erecting buildings, retaining walls and the like. A well-known method of forming a wall is to use insulating concrete forms (ICFs) as a supporting form used during the construction of a poured concrete wall, or similar structure. Insulating concrete forms are stay-in-place formwork for energy-efficient, cast-in-place reinforced-concrete walls. The forms are interlocking modular units that are dry-stacked (without mortar) and filled with concrete. The forms lock together and serve to create a form for the structural walls of a building. Concrete is pumped into the cavity to form the structural element of the walls. Usually, reinforcing steel (rebar) is added before concrete placement to give the resulting walls flexural strength. After the concrete is cured, or firmed up, the forms are left in place permanently to provide thermal and acoustic insulation and fire protection.
Insulating concrete forms can be made from a variety of materials, including expanded polystyrene (EPS), cement-bonded wood fiber, and cement-bonded polystyrene beads. The majority of forms are made of foam insulation, such as expanded polystyrene (EPS), and are either separate panels connected with plastic connectors or ties, or are pre-formed interlocking blocks connected with plastic or steel connectors or ties. Most forms have vertically oriented furring strips built into the forms on 6″, 8″ or 12″ centers and these strips are used to secure interior and exterior fmishes.
The disadvantage of using insulating concrete forms (ICFs) as a supporting form used during the construction of a poured concrete wall, or similar structure is that they must be braced during the process of pouring the concrete wall until the concrete wall has fully set, and that an exterior wall material, such as bricks, needs to be added after formation of the concrete wall.
U.S. Pat. No. 6,681,539 issued Jan. 27, 2004 to Louis L. Yost, et al., describes a concrete form assembly made with opposed insulation panels with a plurality of vertical studs formed on the outer face of each panel. The panels are connected by a plurality of bridges and retaining clips are disposed on the ends of each of the bridges against the studs on each panel. The concrete can be received between the panels to form a wall structure. After the concrete has been poured and allowed to set, the retainers can be removed and the form panel may be removed. In one embodiment of this system, the panel on the inside of the concrete wall is not removed so as to provide an insulated panel for thermal stability of the building. Plumbing and electrical connections can be mounted inside the insulated panel by cutting a channel in the panel to receive same.
Despite these known methods for wall construction, there is still a need for improved concrete form modules for construction of a building structure or similar wall structure, and there is also a need for improved concrete formed panels and panel structures than can remain in place after concrete has been poured using such panels or panel structures.
According to one embodiment of the present invention, a concrete form module for the construction of a building structure includes a first panel device having first inner and outer faces and a second panel device having second inner and outer faces. The first and second panel devices are disposed such that the inner faces of these devices are oriented towards one another and are substantially opposite one another. A plurality of projecting connectors are disposed on each of the first inner face and the second inner face with each connector having a pin-receiving aperture formed therein. A plurality of substantially U-shaped couplers for connecting the first panel device to the second panel device so that the inner faces are substantially parallel are provided. Each connector has two substantially parallel legs forming first and second spaced-apart connecting pins. The first connecting pins are adapted for insertion into the pin-receiving apertures in the connectors of the first panel device and the second connecting pins are adapted for insertion into the pin-receiving apertures in the connectors of the second panel device. Each connecting pin is pivotable in its respective pin-receiving aperture after insertion therein. When the panel devices are connected together with these couplers, they can be moved from a collapsed configuration with reduced space between the inner faces and an usable configuration with substantially more space between these inner faces suitable for pouring concrete between the panel devices in order to form a body of structure supporting concrete when the concrete has hardened.
In one exemplary embodiment of this module, the U-shaped couplers are each integrally formed from a thermoplastic resin of sufficient strength and rigidity that the connectors can together withstand pressure of the concrete poured between the panel devices.
According to another embodiment of the invention, a concrete form panel structure for construction of a building or similar structure includes a substantially planar inner wall portion having a first surface for facing poured concrete and forming same and an opposite second surface. The panel structure further includes a substantially planar outer wall portion spaced from the inner wall portion and having an inner surface facing the second surface and an opposite outer surface. Connecting members extend between and rigidly connect the inner and outer wall portions. An upper, elongate channel forming frame is rigidly connected to the outer surface of the outer wall portion and includes an upper support plate which extends substantially the length of the channel forming frame, extends parallel to the outer surface, and is spaced from the outer surface. A lower elongate channel forming frame is rigidly connected to the outer surface of the outer wall portion as well and is spaced from the upper channel forming frame so that an elongate channel for receiving equipment for one or more utilities is formed between the channel forming frames. The lower channel forming frame includes a lower support plate which extends substantially the length of the lower channel forming frame, extends parallel to the outer surface, and is spaced from the outer surface. In use, the concrete form panel structure remains in place after the pouring of concrete when the panel structure is used to hold and form the concrete. Thus, after the initial use for forming, the form panel structure forms part of the building or similar structure.
In an exemplary version of this form panel structure, the connecting members are vertically extending ribs and hollow spaces are formed between the inner and outer wall portions and between the ribs and are adapted to receive and hold thermal insulating material.
According to still another embodiment of the invention, a concrete form panel for the construction of a building or other walled structure includes a substantially planar outer wall portion having an interior surface and an opposite second surface which is visible after completion of the building or walled structure. The form panel also has a substantially planar inner wall portion spaced from the outer wall portion and having a first surface for facing poured concrete and forming same and an opposite second surface facing the interior surface. The inner and outer wall portions are molded of thermoplastic material of sufficient strength and rigidity to support and form poured concrete. The inner wall portion is formed with a plurality of connectors distributed over the second surface thereof and usable for joining the form panel to an adjacent form panel which is spaced apart from the concrete form panel. Connecting members extend between and rigidly connect the inner and outer wall portions. The second surface of the outer wall portion is molded to form a decorative molded pattern on the second surface. In use, this form panel remains in place after the pouring of concrete using the form panel and forms part of the completed building.
In an exemplary version of this formed panel, the connecting members are vertically extending ribs and hollow spaces are formed between the inner and outer wall portions and between the ribs and are adapted to receive and hold thermal insulating material.
Further advantages, features and characteristics will become apparent for the following detailed description of exemplary embodiments, taken in conjunction with the accompanying drawings.
In the drawings,
Illustrated in
The aforementioned panel devices are connected or coupled together by means of a coupling means or coupling mechanism in order to provide the form module. In the illustrated exemplary embodiment, a plurality of projecting connectors 31 are disposed on the inner surface 101 and similar connectors 41 are provided on the inner face 104 of the panel device 40. Formed in the connectors 31 are respective pin-receiving apertures 33 and formed in the connectors 41 are similar pin-receiving apertures 43. The connectors are in the form of projections which will extend into the poured concrete and which will be embedded therein when the concrete hardens. The connectors or projections can be integrally formed on their respective panel device, for example by a molding process if the panel device is molded. As shown in
A plurality of couplers are used in combination with the connectors 31, 41 to join the two panel devices together. An exemplary form of coupler 72 is illustrated in
Turning now to the exemplary versions of the first and second panel devices that are illustrated in
In an exemplary embodiment of the panel device or form panel 30, its outer face or outer surface is molded to form decorative molding on the surface. In the illustrated embodiment, the outer surface simulates a wall made of layers of bricks or blocks with grooves 106 extending between adjacent simulated bricks or block shapes 108, which can be seen in
The interior face of an outer wall portion 32 of the panel device 30 can optionally be vertically corrugated as shown in
Turning now to the construction of an exemplary second panel device 40, this panel device, which can also be formed as an integral unitary device by a single mold, comprises a substantially planar outer wall portion 42 and a substantially planar inner wall portion 44. These wall portions are connected together and spaced apart from one another by means of rigid connecting members which can take various forms. For example, they can be of different lengths, shape, size and thickness, depending on the particular requirements of the form module. In the illustrated embodiment, these connecting members are rib portions 46a, which can extend parallel to one another and substantially the height of the second panel device 40 and 46b (
The exemplary first panel device 30 and the second panel device 40 are formed as unitary, integral elements for the purpose of ease of manufacture and for cost reduction. In particular, these exemplary embodiments are molded from a strong, rigid thermoplastic material capable of withstanding pressure of concrete poured between the panel devices. Possible plastic materials include polypropylene and PVC but other known plastic materials can be used provided they have sufficient strength to enable the form module to withstand the lateral pressure rising from the weight of the liquid concrete when it is poured. Exemplary materials for these panel devices are reprocessed, recycled TCS PET 5VA5 natural and TCS PET mixed color. The first of these two is manufactured from recycled water bottles and can be used to form building exterior surfaces. The second of these can be used for the interior of a building. The illustrated external panel device 30 and internal panel device 40 each having a height greater than its respective thickness, which is possible due to the strength and rigidity of each of these panel devices.
An exemplary form of the panel device 40, which can also be described as a concrete block form panel structure, has an upper, elongate channel forming frame 50 rigidly connected to the outer surface of the outer wall portion 42. This frame 50 extends the length of the panel device 40 and includes an upper support plate 52 which is vertically disposed when the panel structure is in the upright position. The upper support plate extends the length of the frame 50, extends parallel to the outer surface 107 of the outer wall portion, and is spaced from this outer surface. The plate 52 is securely connected to the outer wall portion 42 by means of upper spacers 54. These upper spacers each comprise a horizontal portion 56 and at least one connecting panel 58. The spacers 54 at the opposite ends of the frame have only one panel 58 but the intermediate spacers have two panels 58. The two panels 58 for each intermediate spacer 54 are located at opposite ends of the portion 56. Rectangular holes 59 are formed between the portions 56. The horizontal portions 56 are level with the top edges of the outer wall portion 42 and the inner wall portion 44 (except for upwardly projecting tongues to be described).
The exemplary second panel device 40 is also provided with a lower, elongate channel forming frame 60 rigidly connected to the outer surface of the outer wall portion 42 and spaced from the upper frame 50 so that an elongate channel 61 for receiving equipment for one or more utilities is formed between the channel forming frames. The lower frame 60 extends substantially the length of the forming element or panel device 40 and includes a lower support plate 62, which is vertically disposed when the panel device 40 is in the upright position. The plate 62 is securely connected to the outer wall portion 42 by a plurality of lower spacers 64. The lower support plate 62 is substantially planar with the upper support plate 52 so that they form a substantially planar split surface that is adapted to mount wallboard or similarly interior building panels and the like for the fmishing of an interior of a building. The support plates 52, 56 can be made of suitable thermoplastic material which enables them to receive and retain fasteners to mount the wallboard or other interior building panels. This plastic material can be the same as that used for the main body of the panel devices 30 and 40. An exemplary form of each lower spacer 64 comprises a horizontal portion 66 and a pair of connecting panels 68 securely connected to the ends of the horizontal portion 66. The portions 66 are level with the bottom edges of the outer wall portion 42 and the inner wall portion 44. Formed between the horizontal portions 66 are a series of spaced apart, rectangular holes 120.
Thus, in the exemplary internal panel device 40 shown, the upper spacers 54 and the lower spacers 64 together define vertical channels indicated generally at 122 capable of receiving equipment for utilities, such as electrical wiring, plumbing pipes and so on therein. It will be appreciated that these vertical channels together with the horizontal channels 61 formed between the upper and lower frames, when the form modules have been mounted on site and are in an in use form, define a utility matrix that permits electrical wiring, plumbing pipes and so on to be easily run anywhere along the structure created by the form modules 20 and the concrete.
In one embodiment of the form module 20, the second panel device 40 is formed with a first pair of substantially parallel, vertically extending tongues 85, which project beyond the upper and lower frames 50 and 60 (see
Turning now to the construction of the male end segment 102 shown separately in
As indicated, the exemplary forming modules 20 can be expanded manually from a collapsed shipping and storing configuration to a larger in-use configuration of maximum width. To enable this expansion, the connecting pins 76 of the couplers can pivot in their respective pin-receiving apertures of the connectors 31, 41. In the expanded state, the main body portion 74 of the coupler 72 can abut against a stopping surface formed by a protuberance 170 formed on the connector (see
In order to assemble the above described form modules and components to provide a formwork array for pouring concrete, the form block modules and components in their in-use configuration are arranged on site in horizontally extending rows and in end-to-end relation with the lowermost horizontal row placed on a suitable, standard foundation. Vertically and horizontally extending tongues are provided in order to properly align and hold together the form modules into the array. The horizontally extending tongues form part of a horizontally extending alignment mechanism while the vertically extending tongues form part of a further alignment mechanism extending along the vertical edges of each panel device. The horizontal alignment mechanism provides means for laterally aligning the form block modules and panel devices with other form modules and panel devices in the array disposed immediately above and below. In the exemplary form module, the horizontally extending alignment mechanism is provided both on the external panel device 30 and the internal panel device 40. In the exemplary illustrated embodiment, this alignment mechanism includes a first pair of substantially parallel horizontally extending tongues 81 projecting upwardly from the top of the internal panel device 40 and a second pair of substantially parallel, horizontally extending tongues 82 projecting upwardly from the top edge of the external panel device 30. The rib portions 46, which connect together these panel devices, terminate above the bottom edges of the inner and outer wall portions of each panel device, thereby providing longitudinal recesses 83 and 84, which are sized to receive the tongues. In particular, the tongues 81 are insertable in close fitting relation into the longitudinal recess 83 of another form module 20 located above the first form module. The tongues 82 are insertable in close fitting relation in the longitudinal recess 84 of the other form module. These pairs of tongues are able to hold the pressure from the concrete when it is poured. At the time of pouring, there is a pressure of 960 lbs per square inch on the form. The use of double tongues helps to avoid the use of bracing when the concrete is poured.
In an exemplary form of the tongues 81, they are each provided with at least one elongate protrusion on one side thereof for engaging a cooperating slot of the tongue receiving recess of the adjacent panel device during use of the form module in order to provide a mechanism for locking the two adjacent panel devices together. In the illustrated tongues, each tongue is provided with a pair of protrusions 81a that engage in cooperating slots 81b of the adjacent form panel. Alternately, it is possible to provide the protrusions 81a on only one of the two tongues. Similarly, each of the tongues 82 can be provided with a similar pair of elongate, horizontally extending protrusions that engage cooperating slots in one or both of the outer wall portion 32 and the inner wall portion 34 of the adjacent external panel device to provide a locking mechanism that locks together the vertically adjacent modules.
The alignment mechanism on the vertical edges of each panel device includes at least one vertically extending tongue projecting horizontally from one of the vertical edges of the panel device. In the version of
Once the form modules have been put in place and connected as described, concrete is poured into the space or hollow interior 90 of the formwork array to form a finished wall structure when the concrete is set and cured. It will be appreciated that a method of forming a building or other walled structure has also been described herein. This method includes the provision of a plurality of the described form block modules 20 and arranging them in an array placed on a suitable foundation in interconnected relation as described above. The structure forming method is then completed by pouring liquid concrete into the formwork formed by the block modules to form a fmished structure when the concrete is set.
Exemplary versions of the coupler 72 can also be used to hold metal reinforcing rod 29 in place in the formwork. As shown in
The internal corner connector 204 is formed with two longitudinally extending dovetail grooves 214 located on opposite sides of the connector. Alternatively it is possible to provide only one dovetail groove 214 on one side of the connector. Also formed on this connector are two dovetail shaped tongue connectors 216 located on opposite sides of the connector. For connection to the connector 204, the internal panel device 40′ is formed with a dovetail shaped tongue connector 218 at one end that extends vertically and at the opposite end this panel device has a dovetail groove 220. The tongue connector 216 fits snugly into the groove 220 while the tongue connector 218 fits snugly into the groove 214 of the connector.
The internal corner connector 204 is shown separately in
Turning now to the connectors extending along the opposite vertical edges of the panel device, extending along one vertical edge is a dovetail shaped channel 256. This channel is formed in panel edge wall 258, extending between wall portions 240 and 242. Extending along the opposite vertical edge of the panel device is an elongate dovetail connector 260, which has an external dovetail shape as shown. In the exemplary embodiment, this connector is formed by two tongues 262, 264, which are separated by a gap 266. Because the two tongues are constructed of plastic having some flexibility, this connector construction facilitates the insertion of the connector 260 in the channel 256 of a horizontally adjacent panel device. It will be understood that the external dimensions of the connector 260 corresponds substantially to the dimensions of the channel 256 and thus when two of the panel devices 234 are connected using their respective connector 260 and channel 256, the connection is strong and able to withstand the pressure created by liquid concrete. In one particular embodiment of the panel device, the height of the tongues 262, 264 is 0.75″ and the depth of the channel 256 is 0.77″.
As in the embodiment of
Turning now to the construction of the male end segment 278, this end segment has two pairs of vertically extending tongues indicated at 282 and 284. It will be understood that each of these pairs forms a dovetail connector for the end segment. The tongues are separated by a gap so that they can be pressed inwardly in order to facilitate insertion of these connectors into dovetail grooves or channels 256 and 286. Except for the difference in the connectors, the male end segment 278 is similar in its construction to the male end segment 102 of
Variations of the above described form modules and form panel structures and components will be apparent to those skilled in the manufacturing and construction of concrete forms and concrete forming panels and such variations are considered to be within the scope of the present invention. Thus modifications and alterations can be used in the construction and manufacture of the form modules and form panels of the present invention without departing from the scope of the invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA2009/001531 | 10/23/2009 | WO | 00 | 4/21/2011 |
Number | Date | Country | |
---|---|---|---|
61108484 | Oct 2008 | US |