Not applicable.
Not applicable.
Not applicable.
The invention disclosed herein generally relates to concrete construction, particularly concrete form bracing. This invention provides accurate spacing between concrete form members and a convenient means to position rebar at multiple depths within the poured concrete and at optimal vertical spacing for “L” vertical rebar tie in.
In modern construction, reinforced concrete is often specified for the construction of building foundation footings. Footings are typically constructed by forming the specified footing below the frostline with forming elements. Form elements are usually comprised of dimensional lumber units, or dedicated steel concrete forms, which are connected in a means to form the inside and outside perimeter of the specified footing. The form elements are usually secured together by various means to maintain a consistent distance between the form elements. There are many concrete form bracing and/or spacing options that exist in the art.
Rebar, or other reinforcing material is generally placed within the form prior to the concrete being poured. Rebar functions to add strength to concrete due to its high tensile strength. Rebar installation parameters and coverage specifications generally call for accurate rebar placement to maximize the effectiveness of the rebar. Improperly placed rebar, or rebar outside of coverage tolerances can detrimentally impact the strength of the concrete structure. Therefore, it is critical to accurately place rebar within the concrete structure to maximize the rebar's effectiveness. Rebar can be specified for both horizontal and vertical placement; therefore, it would be advantageous to have a convenient means of bracing concrete forms, which also incorporate rebar placement and securement means.
Various concrete form braces in the art have rebar attachment means. However, the prior art lacks concrete form bracing options, which also provide a convenient means to secure rebar at multiple depths within poured concrete. Furthermore, the prior art lacks concrete form bracing options, which provide a means to secure horizontal rebar at optimal vertical depths for accurate “L” shaped vertical rebar securement.
Applicant's invention provides a means to secure rebar at multiple depths by utilizing a system of struts within the brace coupled with integrated “U” shaped saddle rebar securing mechanisms. The use of struts increases the rigidity of the overall concrete brace, while providing the means for multi-depth horizontal rebar securement and accurate “L” shaped vertical rebar securement.
All patents, patent applications, provisional patent applications and publications referred to or cited herein, are incorporated by reference in their entirety to the extent they are not inconsistent with the teachings of the specification.
The described concrete form brace with multi-depth rebar positioning is comprised of opposing attachment members, which secure the brace to the concrete form elements. The attachment members have a first top end, and a second bottom end. The corresponding bottom ends of the attachment members are connected by a spanning element, which spans the width of the concrete form. The attachment members and spanning element are further connected by a plurality of reinforcing struts. Rebar attachment means at multiple vertical depths within the concrete form are integrated or connected to the reinforcing struts to provide rebar securement means at multiple depths within the poured concrete.
The preferred embodiment also features vertical spacing between horizontally placed rebar to accommodate “L” hook vertical rebar placement for applications where vertical rebar is specified.
The length of the attachment members 11 engage the inside 23 of the concrete form elements 12. The second bottom end 14 of the attachment members 11 include a spanning element 24, which connects the opposing bottom ends 14 of the attachment members 11. The attachment members 11 and spanning element are further connected by a plurality of reinforcing struts 25, which serve to structurally reinforce said Concrete Form Brace 10 and provide attachment points for a plurality of rebar securing mechanisms 26. While the preferred embodiment is demonstrated in
Said rebar securing mechanisms 26 can be incorporated into said reinforcing struts 25 as shown in
One feature of the preferred embodiment is the ability to quickly and accurately install vertical “L” rebar 31 as demonstrated in
It is understood that the foregoing examples are merely illustrative of the present invention. Certain modifications of the articles and/or methods may be made and still achieve the objectives of the invention. Such modifications are contemplated as within the scope of the claimed invention.
This is a Non-provisional application, which claims priority from U.S. Provisional Application No. 62/795,382 filed on Jan. 22, 2019, the disclosure of which is incorporated by reference in its entirety to provide continuity of disclosure.
Number | Date | Country | |
---|---|---|---|
62795382 | Jan 2019 | US |