The present application relates generally to bath filler installation. More specifically, the present application relates to a concrete form for installing a freestanding bath filler.
Freestanding bath fillers may be mounted adjacent to a bathtub for filling the bathtub with water. They are typically mounted onto a floor and have a height sufficient to allow for positioning an outlet of the bath filler above a rim of the bathtub so that water may flow freely into the bathtub. Such freestanding bath fillers come in a wide variety of configurations and have varying feature sets. These bath fillers are connected to plumbing and are mounted in such a way as to stand next to the bathtub without being connected thereto. The present application is directed to improved systems and methods for installing such freestanding bath fillers.
In houses or dwellings without basements and crawl spaces, or in those that have poured concrete floors, freestanding bath fillers are typically installed into the concrete slab foundation. Installation of such a freestanding bath filler would typically require a complex process including excavating below grade, routing supply lines, and pouring concrete. Currently, installers are required to figure out how to install the bath fillers in concrete slabs with little guidance. Some freestanding bath fillers are secured to the floor, which creates a risk of damaging delicate tile. The concrete form disclosed in this application is designed to eliminate the guesswork of placing the bath filler mounting blocks, thus significantly simplifying the installation process.
The following description focuses primarily on concrete flooring installation, but it should be appreciated that the disclosed form can be formed on other floor surfaces in a bathing or shower environment (e.g., bathtubs, etc.) to provide guidance and aligning in various installation processes. Thus, it would be advantageous to provide an improved form that overcomes the foregoing challenges and provides a number of advantages, including having an aesthetically pleasing design and a structure that may be installed in a manner that advantageously helps to prevent cuts and scraped hands during the installation process. These and other advantageous features will become apparent to those reviewing the present disclosure.
At least one embodiment relates to a concrete form for installing a bath filler. The concrete form includes a base having an exposed top surface, a perimeter wall extending along each side of the base and oriented perpendicular to the base, and a rim extending from a top edge of the perimeter wall outwardly from the exposed top surface. The concrete form includes at least one notch disposed along the rim, such that the at least one notch is configured to align with a desired location of the bath filler. The concrete form includes a drill template corresponding with the notches. The drill template includes a plurality of markers configured to indicate drill-hole placement.
Another embodiment relates to a freestanding bath filler system. The freestanding bath filler system includes a concrete form including a base having an exposed top surface, a perimeter wall extending along each side of the base and oriented perpendicular to the base, and a rim extending from a top edge of the perimeter wall outwardly from the exposed top surface. The concrete form includes at least one notch disposed along the rim, such that the at least one notch is configured to align with a desired location of the freestanding bath filler. The concrete form includes a drill template corresponding with the notches. The drill template includes a plurality of markers configured to indicate drill-hole placement. The freestanding bath filler system further includes a concrete pad formed underneath the concrete form, a mounting block configured to couple to the concrete pad through an opening corresponding to the drill template, and a flooring underlayment disposed on the rim of the concrete form. The mounting block is configured to support the freestanding bath filler and to receive a fluid supply line.
Another embodiment relates to a method of using a freestanding bath filler concrete form. The method includes placing a concrete form into a hole, routing at least one fluid supply line through an inlet of the concrete form, and aligning the concrete form, via at least one notch, with an orientation template configured for placement of at least the freestanding bath filler. The method further includes pouring concrete into the hole around the concrete form, drilling mounting holes for the freestanding bath filler mounting block through the concrete form using a drill template disposed on a base of the concrete form, removing the drill template from the concrete form, and coupling the mounting block to the concrete.
This summary is illustrative only and is not intended to be in any way limiting.
The disclosure will become more fully understood from the following detailed description, taken in conjunction with the accompanying figures, wherein like reference numerals refer to like elements, in which:
Before turning to the figures, which illustrate certain exemplary embodiments in detail, it should be understood that the present disclosure is not limited to the details or methodology set forth in the description or illustrated in the figures. It should also be understood that the terminology used herein is for the purpose of description only and should not be regarded as limiting.
Referring generally to the figures, disclosed herein is a freestanding bath filler mounting block concrete form. The concrete form includes an upper flange to align with the existing poured concrete floor and a rim to support tile-backer or flooring underlayment to span the opening and reduce the likelihood of tile breakage or flooring damage. The form may contain pre-formed drill points along the outer perimeters so holes can be placed in numerous locations for routing the supply lines.
Referring to
Referring still to
As shown in
The notches 112 may be used to indicate the center, for instance, of the concrete form 100 in order to allow accurate measurement and alignment with the pre-measured placements/scoring on the floor for the bath, for instance, prior to installation. However, the notches may be offset from the center as well if needed to better align with an off-center placement of the bath filler. The notches 112 allow the installer to visually align the orientation of the concrete form with the intended installation location. For example, an orientation template 200 is illustrated in
As shown in
The base 102 includes a drill template 114. The drill template 114 may be circular, or a similar shape to a mounting block that will be used for the freestanding bath filler. The drill template 114 may have a plurality of markers 116 along its circumference. For example, when the concrete is cured, holes for the mounting block fasteners can be drilled directly through the concrete form 100, as indicated by markers 116 on the drill template 114, thus ensuring proper placement of the mounting block. The drill template 114 may be centered along the base 102 or may be offset from the center in any direction. The drill template 114 is perforated and can be removed (as shown in
Alternatively, if the form is injection molded rather than thermoformed, then it would be advantageous to mold in long bosses into the drill template 114 to form integral “drill bushings” (e.g., the markers 116), as shown in
Referring to
Referring to
The present disclosure describes a concrete form that can, advantageously, provide guidance and alignment for freestanding bath fillers. Benefits of the concrete form and methods described herein include, for example, a template to better position the bath filler mount and water lines prior to thus creating a “knuckle saver” solution, allowing installers to increase efficiently, accuracy and ease during the installation process.
As utilized herein, the terms “approximately,” “about,” “substantially”, and similar terms are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. It should be understood by those of skill in the art who review this disclosure that these terms are intended to allow a description of certain features described and claimed without restricting the scope of these features to the precise numerical ranges provided. Accordingly, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described and claimed are considered to be within the scope of the invention as recited in the appended claims.
References herein to the positions of elements (e.g., “top,” “bottom,” “above,” “below,” etc.) are merely used to describe the orientation of various elements in the FIGURES. It should be noted that the orientation of various elements may differ according to other exemplary embodiments, and that such variations are intended to be encompassed by the present disclosure.
The construction and arrangement of the elements as shown in the exemplary embodiments are illustrative only. Although only a few embodiments of the present disclosure have been described in detail, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements, the position of elements may be reversed or otherwise varied, and the nature or number of discrete elements or positions may be altered or varied.
Additionally, the word “exemplary” is used to mean serving as an example, instance, or illustration. Any embodiment or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments or designs (and such term is not intended to connote that such embodiments are necessarily extraordinary or superlative examples). Rather, use of the word “exemplary” is intended to present concepts in a concrete manner. Accordingly, all such modifications are intended to be included within the scope of the present disclosure. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the preferred and other exemplary embodiments without departing from the scope of the appended claims.
Other substitutions, modifications, changes and omissions may also be made in the design, operating conditions and arrangement of the various exemplary embodiments without departing from the scope of the present invention. For example, any element disclosed in one embodiment may be incorporated or utilized with any other embodiment disclosed herein. Also, for example, the order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Any means-plus-function clause is intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Other substitutions, modifications, changes and omissions may be made in the design, operating configuration, and arrangement of the preferred and other exemplary embodiments without departing from the scope of the appended claims.
While this specification contains many specific implementation details, these should not be construed as limitations on the scope of any inventions or of what may be claimed, but rather as descriptions of features specific to particular embodiments of particular inventions. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or variation of a sub-combination.
Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In some cases, the actions recited herein can be performed in a different order and still achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various components in the embodiments described above should not be understood as requiring such separation in all embodiments.
This application is a continuation of U.S. patent application Ser. No. 17/078,797, filed Oct. 23, 2020, which claims the benefit of and priority to U.S. Provisional Patent App. No. 62/935,991, filed Nov. 15, 2019. The entire disclosures of U.S. patent application Ser. No. 17/078,797 and U.S. Provisional Patent App. No. 62/935,991 are incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
62935991 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17078797 | Oct 2020 | US |
Child | 17853289 | US |