Not applicable
Not applicable
I. Field of the Invention
The present invention relates generally to the production of precast concrete panels and, more particularly, to a process and plant or mechanized system for the continuous production of concrete panels using a continuous casting system that includes a generally vertical infusion chamber characterized by a hollow form describing a panel shape defined by movable members which is fed premixed concrete pumped by infusion nozzles through an infusion slot at the entry end of the form. The movable members advance at the rate of panel generation. Precast panels exiting the form structure are sufficiently cured to be handled in a vertical posture as panels.
II. Related Art
Precast concrete articles including panels for constructing concrete walls and buildings are known. In particular, precasting of panels using horizontally disposed stationary molds and forms for receiving pours of premixed concrete have been used for some time. The poured panels require a cure time of up to thirty (30) days before they can be safely handled by cranes or similar devices to load them onto transports and used in construction projects.
More recently, systems and processes have been devised to produce multiple cast concrete articles on a continuous basis using combined molding and conveying techniques. Examples of these are found in Zan (U.S. Pat. No. 4,952,129) and Pardo (U.S. Pat. No. 4,909,717). It is also known to manufacture precast reinforced concrete panels that have edge structures designed to fit together to create a composite structure such as a wall. Examples are depicted in Larson et al (U.S. Pat. No. 5,029,426) and Mossi (U.S. Pat. No. 6,071,458).
While known techniques and systems have generally met with success and have simplified building construction, the molds or forms generally take up a great deal of space and the cast panels or other shapes require a relatively long cure time before they can be moved and used as designed. Thus, there remains a definite need to improve the production of precast concrete building panels and other cast forms, particularly in terms of reducing required production space and cure time to use.
By means of the present invention, there is provided a technique and plant or mechanized system for the production of precast concrete panel material by infusion of premixed concrete into a generally vertical infusion chamber form. The technique includes infusing premixed concrete through a plurality of infusion nozzles through an infusion slot into an infusion chamber characterized by a hollow structure or form describing the panel shape to be produced. The hollow structure or form is defined by a plurality of movable members that define the interior surfaces of the hollow form structure and which cooperate to move the infused material along at the rate of formation of the panel shape. The formed panel material is subjected to heat and pressure to effect a rapid cure sufficient to stabilize the structure by the time it is discharged from the discharge end of the infusion chamber.
In a preferred embodiment, premixed, low slump concrete material is introduced into the hollow form structure through a vertical slot using a plurality of sets of converging infusion nozzles which are operated to pivot vertically and cover the length of the infusion slot from bottom to top, thereby filling the hollow form structure. Preferably, the nozzles are in the form of spaced pairs of converging nozzles which are pivoted generally through about 90° from a downward angle of about 45° to an upward angle of about 45° such that the entire slot is infused in an orderly fashion. The nozzles are fed premixed concrete material using a pump and splitter arrangement to supply substantially equal amounts of material to all nozzles. High pressure air is also supplied to the nozzles to infuse the concrete in a pressurized manner.
The mechanized system for generating the infused precast concrete panels is in the form of an elongated self-contained manufacturing plant in which low slump concrete is infused and sufficiently cured under heat and pressure to enable handling of panels exiting the elongated apparatus. Generally, in one embodiment, the rate of panel generation may be about 1 foot per minute for an 8 inch thick panel having a height of about 8 feet. Thus, for a plant having an infusion chamber about 300 feet long, the concrete may have a dwell time of about 5 hours.
The system includes a housing reinforced by a heavy external structural frame. A generally vertical infusion chamber defines a hollow structure or form describing the panel to be cast. The hollow structure or form is defined by a plurality of endless belt members supported by heavy-duty intermeshing roller systems carried by structural frame members. These include bottom and side belts which run the length of the infusion chamber of the manufacturing plant. A shorter top belt is provided which imparts an edge shape to the top of the panel as it is generated. The belts are operated by a coordinated drive system so that a continuous panel is cast and moved along the hollow form structure at the rate of panel generation.
The plant or mechanized system also includes a source of heat, preferably steam, to heat the entire infusion chamber such that heat is transmitted to the moving concrete through the endless belts. The side or vertical belts which are generally vertically disposed are also enabled to be adjusted laterally about a centerline so that the thickness of a slab generated can be varied.
The concrete supply system includes a pump and splitter arrangement that supplies generally equal amounts of low slump concrete to the infusion nozzles from a source of premixed concrete. A source of high pressure air is also provided which is introduced into each of the infusion nozzles just above an infusion tip such that the concrete is blown into the infusion chamber under high pressure. The air may be supplied at 100 psi or above. The concrete is pressurized and squeezed even further as it progresses through the initial entry portion of the hollow form structure.
In the drawing wherein like reference characters represent like parts throughout the same:
There follows a detailed description of an embodiment of the present invention which is presented as an example of a typical embodiment to allow an understanding of the inventive concepts involving the continuous production of concrete panel units. It will be understood, however, that the embodiment presented is intended merely as an example and is not meant to limit the scope of the invention in any manner.
In
As best seen in
It will be appreciated that the weight of infused concrete concentrated on the belt 36 is considerable and the sidewalls defined by belts 32 and 34 are also designed to apply considerable horizontal or lateral force against the precast panel material as it moves through the chamber 30. Accordingly, the belts 32, 34, 36 must be supported or buttressed by an adequate support structure. As can be seen particularly in
The supporting framework includes columns as at 78 (
As also shown in
It will be appreciated that each of the rollers 70 as mounted for rotation on a shaft 72 includes appropriate ball or roller bearings as are readily available. The intermeshed design provides continuous support to a precast panel as it is processed along the generally vertical infusion chamber 30 using moving belts 32, 34, 36. As shown in
As seen in
The manufacturing plant or mechanized system further includes coils of reinforcing materials shown as primary wire-feeding coils 104 and back-up coils 106. A thermo-break feed is shown at 108. The system is further provided with an overpour return pipe 110, which returns overpoured material to the inlet side of the pump. A pair of vents are provided and vent pipes are depicted at 112. Steam manifolds used to supply steam along the length of the endless belts 32 and 34 are shown in part at 114 and 116 flanking the respective vertical side belts 32 and 34. The steam manifolds provide heat to accelerate the cure of the infused concrete panel material as it moves along the mechanized form.
An important aspect of the present concept is contained in the premixed concrete supply or feed system, components of which are best shown in
Concrete of the desired formula and consistency can be obtained as from a conventional ready-mix plant, which may be a portable or permanently installed plant. A mixer is shown at 120 in
Pumping of ready-mixed concrete for building construction and other operations is well known in the art and a conventional pump may have an output line nominally 5 inches (12.7 cm) inside diameter. A fragment of an output line is shown at 130 in
The splitter assembly 132 successfully divides the flow equally between the four off-chute pipes 136 in part due to the use of a central divider pin 140 which acts as a symmetrical flow diverter to incoming pumped concrete.
As indicated previously and seen in
Each infusion nozzle is pivotally mounted in a fixed support as at 162, which may include a shaft journaled in a pair of mounts connected to a support base 168 strengthened by side plate members 170. Each infusion nozzle is pivoted using an attached member 172 which is pivotally connected to the rod end of a fluid cylinder 174 as at 176. A piston rod fragment is shown at 178 connected pivotally to member 172 at 179. The cylinder 174 is, in turn, pivotally mounted to a fixed mount at 180 so that it may follow the proper arc in pivoting the nozzle 102. Thus, extension and retraction of each cylinder rod 178 rotates the corresponding attached nozzle through its full vertical arc, which is generally about 90°. As shown in the drawing, four infusion nozzles 102 are typically provided in vertically spaced pairs of converging nozzles which together cover the entire length of the infusion slot 100 during a pivot cycle. The upper nozzles are typically mounted on an upward directed fixed support 162 and the lower nozzles on an inverted or downward directed fixed support of similar construction as is shown generally at 190.
In operation, the plant may be started up by first adjusting the width of the infusion chamber and introducing heat through the steam manifolds 112 to bring the plant up to temperature. At the same time, a batch of concrete is prepared and, when the system has reached the desired temperature, concrete is pumped to the infusion nozzles and high pressure air is supplied to the nozzles such that the nozzles can be operated and aerated mixed concrete can be infused at high pressure through the infusion slot 100. As the concrete panel material is infused through the infusion slot 100, the belts 32, 34, 36 are coordinated and controlled to move at the speed of the infusion of concrete as it fills the infusion chamber 30 from top to bottom by the swiveling action of the infusion nozzles.
Once the process begins, concrete may be supplied continuously and the material moved along the infusion chamber where heat and pressure effect a sufficient cure such that the material exiting the discharge end of the infusion chamber is sufficiently cured such that separated panel members are sufficiently solid to be handled in a vertical posture. Panels may be separated by the use of a concrete saw at the discharge end of the infusion chamber (not shown) or by other separation means used during the generation of the panel material.
It will be appreciated that fiber additives or other reinforcing material may be added to the concrete mix or to the material as the panels are formed as desired.
This invention has been described herein in considerable detail in order to comply with the patent statutes and to provide those skilled in the art with the information needed to apply the novel principles and to construct and use embodiments of the example as required. However, it is to be understood that the invention can be carried out by specifically different devices and that various modifications can be accomplished without departing from the scope of the invention itself.