1. Field of the Invention
The present invention pertains to masonry tools and specifically to a concrete mixing tool.
2. Background of the Invention
Tools for mixing concrete have been regularly used by masons for forming a concrete slurry mixture from, for example, a standard sixty pound (60 lb) bag of pre-blended concrete such as Sakrete Concrete Mix, which is readily purchased, en mass, from Home
Depot. Such a mixture is required when, for example, preparing a footing for a four by four by eight foot (4′×4′×8′) pressure treated fence post.
One example of a mixing tool is disclosed in U.S. Pat. No. 5,470,148 to Gorr for a “Portable Cement-Mixing Apparatus Having Upper and Lower Notched Plates Affixed to a Shaft”, issued on Nov. 28, 1995. This reference provides an engine driven shaft having plural paddles disposed thereon. This reference discloses that the shaft is sized to fit the mixing container in which it is typically used. For example, the shaft is thirteen inches (13″) if it used with a wheelbarrow, twenty five inches (25″) if it is used with a mortar box and thirty six inches (36″) if it used for a sono tube. Opposing wings or vanes on the tool form an open volume therebetween which causes the mixture to flow properly.
Another example of a mixing tool is disclosed in U.S. Pat. No. 6,412,569 to Webb for a “Concrete Mixing Hoe”, issued on Jul. 2, 2002. The reference discloses a hoe used with a nascent slurry of dry concrete pre-mix components including finely divided Portland cement particles, sand and gravel aggregate, and water for intermixing the ingredients. Plural holes are provided on a blade so that water and less viscous slurry can pass through a lower hole while gravel aggregate, sand and more viscous slurry can pass through an upper hole.
None of the above structures provide visual reference means disposed on the mixing tool for providing a visual indicator of when water level in a mixing container is high enough to mix with a preselected volume of pre-blended concrete.
In view of the deficiencies in the prior art, it is an object of the invention to provide a visual reference means disposed on a mason's mixing tool for serving as a visual indicator of when water level in a mixing container, such as a pail, is high enough to properly mix a bag of pre-blended concrete.
In accordance with the objects of the invention, a mixing tool is provided for mixing, in a mixing container, plural materials including a first material and a second material. The mixing tool has a shaft and a first mixing member. The first mixing member has a visual reference for indicating when a predetermined volume of the first material is deposited in the mixing container.
In order that the manner in which the above recited objectives are realized, a particular description of the invention will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. Understanding that the drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
As illustrated in
On the bottom end 22 of the shaft 18 is a first mixing member 26. The first mixing member 26 is manufactured from a material which is strong enough to handle repetitive mixing of pre-blended concrete over an extended useful life. The first mixing member can be a plate, a square stock, a rod, or any other known and suitable material. For exemplarily purposes, the first mixing member 26 is illustrated as, and will be referred to hereinafter as, a first mixing plate 26. The first mixing plate 26 is same material thickness and material type as the shaft 18, e.g., one-quarter inch (¼″) thick iron.
The first mixing plate 26 has a length which runs perpendicular to the axial length of the tool shaft 18 and a height which runs parallel to the axial length of the tool shaft 18. The length of the first mixing plate 26 is such that pre-blended concrete is easily and freely mixed within the mixing pail 12. For example, where the mixing pail 12 has a ten inch (10″) bottom diameter, the first mixing plate 26 has a length of nine inches (9″).
The first mixing plate 26 is connected to the shaft 18 via a notch (not shown), large enough to seat the first mixing plate 26, disposed in the bottom 22 of the shaft 18. Once seated, the first mixing plate 26 is welded against the shaft 18 or removably bolted to the shaft 18.
The top portion of the first mixing plate 26 includes visual reference means 30 for indicating when water level in the mixing pail 12 is high enough to properly mix the volume of pre-blended concrete. The visual reference means functions by positioning the bottom 22 of the shaft 18 against the bottom 16 of the substantially empty mixing pail 12 and partially filling the mixing pail 12 with water. As water rises toward the top of the first mixing plate 26, the mason stops filling the mixing pail 12 upon receiving a proper visual indicator (discussed below) from the visual reference means 30. Thereafter, the mason loads into the mixing pail 12 the pre-blended volume of concrete.
Using the ratio of the pre-blended concrete mix and water within the mixing pail 12, an optimal concrete slurry can be mixed using the mixing tool 10 without having to further adjust the contents therein.
The first mixing plate 26 illustrated in
One of ordinary skill would appreciate that the weight of a sixty pound bag of pre-blended concrete, unloaded into the bucket at one time, might hinder some tired or weaker masons from effectively utilizing the mixing tool for mixing the water with the pre-blended concrete. With the confidence that the proper water is in the pail, the mason can unload portions of the bag of pre-blended concrete into the pail, mix the pail contents into a slurry, and thereafter unload further portions of the bag of pre-blended concrete until the contents of the bag of pre-blended concrete are entirely within the pail.
As an example, testing has shown that approximately three inches of water in the aforementioned United States Plastic Corp mixing pail is enough to create an optimal concrete mix from a sixty pound (60 lb) bag of pre-blended concrete. Accordingly, if the mason intends on mixing concrete using a sixty pound (60 lb) bag of pre-blended concrete, the first mixing plate 26 would be three inches high. When water comes up to the height of the top edge of the first mixing plate 26, there would be just enough water in the pail to properly mix the sixty pound (60 lb) bag of pre-blended concrete.
As can be appreciated, the mason may want to use the tool with different types of mixing containers and/or to mix different volumes of pre-mixed concrete. If the mason were to use forty pound (40 lb) or fifty pound (50 lb) bag of pre-blended concrete, the height of the rectangular mixing plate would need to be different than that for a sixty pound (60 lb) bag to properly position the visual reference means 30. Removeably connecting the first removable plate 26 to the tool 10 enables a mason to swap-out the first removable plate 26 for a plate of a different height. That is, providing a plate with a different height would move the location of the visual reference means 30 to an appropriate location
A second mixing member 34 is provided between top and bottom ends 20 and 22 of the shaft 18. The second member 34 serves as an aid for agitating and mixing the pre-blended concrete into the required slurry. For exemplarily purposes, the material and outer dimensions of the second mixing member 34 are the same as those for the first mixing plate 26, and the second mixing member will be referred to hereinafter as the second mixing plate 34.
The second mixing plate 34 can be connected to the shaft 18 in the same way as the first mixing plate 26. For example, a slot 36 (
The second plate 34 is located such that a top edge 38 thereof would be within the slurry of concrete mix and not above the slurry when the bottom 22 of the shaft 18 is against the bottom 16 of the mixing pail 12. For example, testing has shown that when mixing a sixty pound bag of pre-blended concrete in a United States Plastic Corp. mixing pail, the top edge 38 of the second mixing plate 34 is properly located a eight and a half inches (8½″) from the bottom 22 of the shaft 18.
In the embodiment illustrated in
On the top end 20 of the shaft 18 is a handle 39. The handle 39 is long enough to enable a mason to easily mix pre-blended concrete. For example, the handle 39 has a total length of sixteen inches (16″). The handle 39 is preferably made of the same type of material as the shaft 18. For example, the handle 39 may be one inch (1″) square iron stock having a wall thickness of an eighth of an inch (⅛″). The handle 39 is connected to the shaft 18 in the same way that the first mixing plate 26 is connected. That is, the handle 39 is connected via a notch (not shown), large enough to seat the handle 39, where the notch is disposed in the top 20 of the shaft 18. At the top 20 of the shaft 18, the handle 39 is welded against the shaft 18 or removably bolted to the shaft 18.
The handle 39 and second mixing plate 34 extend parallel to each other relative to the long axis of the shaft 18. This provides for ease of transportation because the largest portion of the assembled mixing tool 10 is positioned in a single plane. Further ease of transportation is achieved by unbolting and removing the first mixing plate 26 from the mixing tool 10 so that the entire mixing tool 10 is configured a single plane. With the first mixing plate 26 removed, the entire mixing tool 10 can rest on a flat surface (e.g., the floor of a mason's truck) and not project from the surface more than the thickness of the shaft 18.
Of course, if the tool 10 is designed to be driven by a drill, the top end 20 of the shaft would not have a handle 39 but would instead be formed to fit in a drill chuck.
It is to be noted that the mixing tool 10 can be readily manufactured from iron as disclosed, but also from aluminum, plastic, wood, composites, etc. The materials can be square stock, round stock, or any other available and appropriate stock, and the mixing tool 10 can be solid or hallow. Determining the precise materials and dimensions thereof will be within the skill level of one of ordinary skill in the art after reading the present disclosure.
While the mixing tool 10 and mixing pail 12 can be sold in a kit, the mixing tool 10 can be sold separately when used with a standard pail, such as the United States Plastic Corp mixing pail. Such pail or equivalent thereof is readily available.
As can be seen by viewing the above disclosure of the mixing tool 10, a mason using the tool 10 when filling the mixing pail 12 with water need not worry about periodically measuring the amount of water filling the mixing pail 12 or guessing whether the proper amount of water has filled the mixing pail 12. Inexact proportions of water to pre-blended concrete will cease to be an issue.
Various alternative embodiments will now be disclosed without departing from the spirit of the invention.
In one alternative embodiment of the invention, illustrated in
In a second alternative embodiment of the invention, illustrated in
In a third alternative embodiment of the invention, illustrated in
The notches illustrated in
Furthermore, the top edge 32 of the first mixing plate 26 can be provided with plural contours. For example, the bottom edge of one notch 48 or 50, 56 or 58 in either pair of disclosed notches can be located at a same or different height level as compared with the other notch in the mixing plate 26. Different height levels provide a visual indication of sufficient water levels for different volumes of pre-mixed concrete. For example, one bottom edge can provide a visual indicator of when enough water is in the mixing pail 12 to mix a forty pound (40 lb) bag of pre-mixed concrete while the other bottom edge can provide a visual indicator of when enough water is in the mixing pail 12 to mix a sixty pound (60 lb) bag of pre-mixed concrete.
In a fifth alternative embodiment of the invention, illustrated in
In sixth alternative embodiment of the invention, illustrated in
In a seventh alternative embodiment of the invention, illustrated in
In a ninth alternative embodiment of the invention, illustrated in
As illustrated in
In a tenth alternative embodiment of the invention, illustrated in
It is to be appreciated that the inventive mixing system could modified for mixing mortar, spackle, grout or the like. Such modification would be within the capabilities of one of ordinary skill having read the disclosure of the invention and such modifications would be within the scope and breath of the claimed invention.
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not as restrictive. The scope of the invention is, therefore, indicated by the appended claims and their combination in whole or in part rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application is a continuation of and claims the benefit of priority to U.S. patent application Ser. No. 12/392,835, filed Feb. 25, 2009, which in turn is a continuation-in-part of and claims the benefit of priority to U.S. patent application Ser. No. 12/361,198, filed Jan. 28, 2009, which in turn claims the benefit of priority to U.S. Provisional Patent Application No. 61/026,517, filed on Feb. 6, 2008. Each of the foregoing patent applications is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
61026517 | Feb 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12392835 | Feb 2009 | US |
Child | 13570244 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12361198 | Jan 2009 | US |
Child | 12392835 | US |