Not Applicable
1. Field of the Invention
The present invention relates in general to concrete products and more particularly to methods for creating an aesthetic surface on a concrete product, including fabricating a module for use in creating the aesthetic surface upon a generally vertical concrete face and a method of installing the aesthetic surface upon the generally vertical concrete face utilizing the module.
2. Description of the Related Art
As is well known in the building and construction trade, concrete is extensively utilized as a building material for industrial, commercial and residential applications. Due to its durability, water resistance, and cost economy, concrete has gained wide spread use. With this widespread use, the public is currently demanding variations in color, surface texture and overall appearance of concrete so that the concrete possesses improved aesthetics similar to more conventional and costly surfaces such as stone, mosaic, and terrazzo.
In order to meet this demand, the concrete trade has developed various coloring and surface finishing techniques to enhance the aesthetics of concrete. Examples of such finishing techniques include salt finish, multiple broom finish, form press finish (e.g. stamped concrete), and exposed aggregate finish.
In addition to the extensive use of concrete in building and construction, the use of mosaics in flooring, walls, and other decorative structures and elements has also become significantly widespread. Such products typically include a picture or decorative design. The design is made by completing several steps. First, with regard to flooring, for example, the flooring surface must be prepared, which may include leveling the surface. Secondly, an adhesive, such as mortar or a tile adhesive, is spread upon the surface. After the adhesive is in place, small individual colored mosaic pieces, such as stone or tile, are set into the surface. Once the adhesive is substantially dried, a grouting product is then set between the mosaic pieces to create a uniform surface and further secure the mosaic pieces to the surface. The resultant product is frequently very beautiful and may be very ornate and detailed. However, due to the extensive amount of time and several additional steps that such a product requires in comparison to other flooring products, mosaic flooring are usually quite expensive. Further, construction of mosaics in walls and other decorative structures and elements may also be quite laborious and expensive.
Although concrete and mosaic products have advanced significantly over recent years to meet the demands of customers and innovative builders, there is no current concrete product for use in flooring, walls, or other decorative structures and elements that makes the creation of mosaics more affordable or efficient than the basic process described above.
Therefore, there exists a need in the art for an improved process of creating mosaic products that is more cost and time efficient, particularly for creating a mosaic upon a vertical surface. Various aspects of the present invention are directed toward addressing this particular need, as will be discussed in more detail below.
According to various aspects of the present invention, there is provided a method of installing a tile mosaic upon a vertical concrete surface. In general, the method includes forming the mosaic on a template and securing the template to a concrete form used to frame the concrete surface. After the concrete has been poured and hardens, the form and template may be removed to reveal the mosaic, which is embedded within the hardened concrete. The method advantageously provides a quick and easy process by which a template may be formed on a generally vertical concrete surface. Furthermore, it is contemplated that the template may be easily constructed off-site and subsequently transported to the construction site for implementation into the concrete surface. As such, valuable space at the construction site may not be required for construction of the mosaic template.
According to one embodiment, the method includes providing a plurality of tiles, a tile support, and a concrete form. The plurality of tiles are adhered to the tile support to define a mosaic assembly. The tiles are positioned on the tile support corresponding to the mosaic. The mosaic assembly is connected to the concrete form, and concrete is poured within the concrete form such that a portion of the tiles become embedded within the concrete. The tile support is subsequently detached from the concrete form and the concrete form is removed from the hardened concrete. The tile support is additionally removed from the plurality of tiles to reveal the mosaic on vertical surface of the concrete structure.
It is contemplated that the concrete form may be stripped or removed while the concrete is in a semi-plastic state. A float may be passed over the tile/concrete surface to create a more uniform surface. Furthermore, a brush, sponge, power washer and/or surface retarder may be used to expose the surface of the concrete.
It is additionally contemplated that various aspects of the present invention are directed toward forming an aesthetic surface on a structure which does not include a face form, such as a structure formed from Shotcrete, Gunite, or the like. The method includes the steps of providing a plurality of aesthetic elements and a support mesh, and adhering the aesthetic elements to the support mesh with a water soluble adhesive. A concrete material is disposed on a base surface, with the concrete material defining an exposed surface. The aesthetic elements are then placed within the exposed surface of the concrete material.
The method may include pneumatically projecting the concrete material onto the base surface. A hose may be used to convey the concrete material from a pressurized source of the concrete material to the base surface.
The step of placing the aesthetic elements in the concrete material may include placing the mesh within the cement mixture.
The method may also include removing the mesh from the aesthetic elements.
The present invention is best understood by reference to the following detailed description when read in conjunction with the accompanying drawings.
These and other features and advantages of the various embodiments disclosed herein will be better understood with respect to the following description and drawings, in which like numbers refer to like parts throughout, and in which:
Common reference numerals are used throughout the drawings and detailed description to indicate like elements.
The detailed description set forth below is intended as a description of the presently preferred embodiment of the invention, and is not intended to represent the only form in which the present invention may be constructed or utilized. The description sets forth the functions and sequences of steps for constructing and operating the invention. It is to be understood, however, that the same or equivalent functions and sequences may be accomplished by different embodiments and that they are also intended to be encompassed within the scope of the invention.
Referring now to the drawings wherein the showings are for purposes of illustrating a preferred embodiment of the invention only, and not for purposes of limiting the same,
As used herein, the word “vertical” refers to a direction having a directional component aligned with an axis defined by the force of gravity (i.e., the gravitational axis). A vertical face may extend generally upward from a lower support, or generally downward from an upper support. “Vertical” may also indicate a direction that is substantially perpendicular to the horizontal. Along these lines, a vertical surface is not limited to being substantially upright or perpendicular to the horizontal. In this regard, the vertical surface may be slightly offset from the perpendicular to the horizontal.
Furthermore, as used herein, the word “tile” may refer to any aesthetic element adhered to a support mesh/tile support 16. The tile/aesthetic element 14 may include aggregates, stones, shells, glass, other aesthetic materials known by those skilled in the art, and combinations thereof.
Referring now to
The mosaic 10 is comprised of a plurality of tiles 14 which may collectively form an artistic or decorative pattern. It is also contemplated that the mosaic 10 may include a random arrangement of aesthetic elements or tiles 14. The transfer of the tiles 14 to the concrete structure 15 is facilitated by the use of a support mesh or tile support 16 to which the tiles 14 are preferably temporarily adhered. The tile support 16 may include a porous material, such as mesh, cloth or paper that is strong enough to support the plurality of tiles 14 included in the mosaic design. As will be described in more detail below, the tiles 14 are adhered to the tile support 16 to maintain the tiles 14 in position while the concrete is poured into the pour cavity 22, as well as maintaining the tiles 14 in position during the hardening process.
Referring now to
According to one embodiment, the exposed surfaces 24 of the tiles 14 are temporarily adhered to the tile support 16. When the exposed surfaces 24 of the tiles 14 are adhered to the tiles support 16, the tiles 14 are arranged on the tile support 16 in a “reverse image” configuration, such that when the tiles 14 are placed onto the vertical surface 12, the tiles 14 appear in the correct configuration. However, as noted above, the tiles 14 may also be arranged in a random fashion on the vertical surface 12 of the concrete structure 15.
An adhesive 28 may be disposed between the tiles 14 and the tile support 16 to temporarily adhere the tiles 14 to the tile support 16. The adhesive 28 is preferably a water soluble adhesive 28 to facilitate separation of the tile support 16 from the tiles 14 after the concrete hardens and the tiles 14 are embedded within the concrete structure.
In one particular implementation, the adhesive 28 is disposed on the tile support 16 prior to placing the tiles 14 on the tile support 16 in the mosaic arrangement, i.e., arranged to a define a pattern or shape, or alternatively in a random arrangement. In this regard, it may be easier to apply the adhesive 28 to the tile support 16, rather than applying the adhesive 28 to each tile 14 individually. After the adhesive 28 is completely disposed on the tile support 16, the tiles 14 are then placed on the tile support 16.
According to another implementation, the adhesive 28 is applied to the exposed surface 24 of the tiles 14 before the tiles 14 are placed on the tile support 16. Applying the adhesive 28 to each individual tile 14 may result in a more efficient use of the adhesive 28 (i.e., less adhesive 28 may be used). After the adhesive 28 has been placed on the tiles 14, the tiles 14 may be placed upon the tiles support 16, with the adhesive 28 being disposed between the exposed surface 24 of the tiles 14 and the tile support 16.
The tile support 16 and the tiles 14 placed on the tile support 16 collectively define a mosaic assembly 30 (See
The concrete 32 is poured into the pour cavity 22 and is allowed to settle and set-up/harden. During at least a portion of the hardening process, the mosaic assembly 30 remains adjacent the inner surface of the form 18. It is contemplated that the exposed surface 24 of the tiles 14 may become partially or completely embedded within the concrete 32 when the concrete 32 is poured into the cavity 22. However, as discussed in more detail below, a finishing process may be performed to remove a portion of the concrete 32 and thereby uncover the exposed surfaces 24.
After the concrete 32 has been poured, the form 18 and tile support 16 are removed from the concrete structure and the tiles 14. According to one implementation, the form 18 is removed while the concrete is in a semi-plastic state. The tile support 16 may be configured to peel away from the tiles 14 when the form 18 is removed from the concrete structure. In other words, the tile support 16 and the form 18 may be removed at the same time. In an alternate embodiment, the concrete form 18 and tile support 16 are removed separately. Along these lines, the concrete form 18 is first removed from the concrete structure by separating the tile support 16 from the form 18, and then removing the form 18 from the concrete structure. Subsequently, the tile support 16 may be removed from the tiles 14. To this end, the adhesive 28 binding the tile support 16 to the tiles 14 may be dissolved or otherwise rendered inoperable by spraying water or applying another agent onto the tile support 16. After the adhesive 28 has been dissolved, the tile support 16 may be separated from the tiles 14, leaving the tiles 14 embedded within the concrete 32.
An optional finishing step may be performed to the concrete structure and the tiles 14 after the form 18 has been removed. For instance, a float may be passed over the tiles 14 and concrete before the concrete sets up, so as to create a more uniform surface. The concrete structure may be sandblasted, acid washed, brushed, sponged, or power washed to remove the top layer of concrete 32, which may further uncover the tiles 14 to more prominently display the mosaic 10, as well as to expose the concrete fines to produce a more aesthetic appearance. In addition, a surface retarder may be applied to the form 18 or concrete directly to more prominently display the mosaic 10.
The foregoing describes a method of connecting the tiles 14 to the tile support 16 wherein the exposed surfaces 24 of the tiles 14 are connected to the tile support 16 (referred to as an “outer support” method because the “outer” portion of the tiles 14 are connected to the tile support 15). The following describes an alternative method wherein the embedded surface 26 of the tiles 14 are connected to the tile support 16 (referred to as an “inner support” method because the “inner” portion of the tiles 14 are connected to the tile support 16).
According to the inner support method, the embedded portions 26 of the tiles 14 are coupled to the tile support 16. The tiles 14 may be more permanently adhered to the tile support 16 because the tile support 16 may be embedded within the concrete structure with the tiles 14 in the finished product. In other words, the tile support 16 may not be separated from the tiles 14 after the concrete structure has hardened. However, the adhesives 28 described above in relation to the outer support method may also be used for the inner support method.
Given that the embedded portion 26 of the tiles 14 are connected to the tile support 16, the tiles 14 may be placed on the tile support 16 in the configuration which they are to be displayed on the vertical surface 12. In other words, the tiles 14 do not need to be placed in the “reverse” configuration as discussed above in relation to the outer support method. Rather, the tiles 14 can be placed as they will appear in the mosaic 10 on the vertical wall 12.
After the tiles 14 are adhered to the tile support 16 to define the mosaic assembly 30, the mosaic assembly 30 is disposed within the pour cavity 22 adjacent the inner surface of the concrete form 18. The tile support 16 may be attached to the concrete form 18, or to another readily available anchor point. Alternatively, the tile support 16 may have enough rigidity to support itself, i.e., without being anchored to a separate structure. For instance, the tile support 16 may be formed from a wire mesh having an internal rigidity sufficient for supporting the mosaic assembly 30 in an upright, standing configuration.
After the mosaic assembly 30 is disposed within the pour cavity 22, the concrete 32 is poured and is allowed to harden/set-up. The mosaic assembly 30 is positioned within the pour cavity 22 such that when the concrete 32 hardens, the exposed surfaces 24 of the tiles 14 are exposed and the embedded portions 26 of the tiles 14 are embedded within the concrete 32. After the concrete 32 hardens, the concrete form 18 is removed and the finishing steps described above may be performed to the concrete structure.
The foregoing generally describes the steps of forming the aesthetic surface on the concrete structure 15. However, there are slight modifications to the process depending on whether the wall is “short” or “tall.” According to one embodiment, a short wall is a wall up to eight (8) feet, while a tall wall can range anywhere from four (4) feet to twenty (20) feet, and in some cases higher. For shorter walls, the concrete form 18 may be stripped from the concrete structure 15 on the same day that the concrete is poured. In this regard, the concrete form 18 may be stripped within 24 hours after the concrete is poured. It is also contemplated that the concrete form 18 may be stripped within 18 hours or even 12 hours of pouring the concrete.
After the concrete form 18 is stripped, the aesthetic surface may be floated or trowelled and the tiles/aggregates 14 may be exposed. The concrete surface 12 may be sponged to expose the tiles/aggregates 14. The concrete structure 15 may then be allowed to harden.
With regard to taller walls, the concrete form 18 may be stripped a day after the concrete is poured into the form 18, in particular, more than 24 hours after the concrete is poured into the form 18. After the form 18 is stripped, the concrete structure 15 may be washed with a surface retarder to expose the aggregates 14. The concrete structure 15 may then be allowed to harden.
The foregoing description relates to cast-in-place concrete structures which utilize a face form to contain concrete poured into the form during the formation process. As noted above, the face form may used as an anchor or base structure to which the mosaic assembly may be fastened or connected. However, it is understood that other concrete/cement products, such as Shotcrete, Gunite, or the like, do not require a face form due to its low slump concrete mix (i.e., the mixture generally does not flow once it is projected onto a surface). Therefore, other aspects of the present invention relate to forming the aesthetic surface on a concrete/cement structure formed with Shotcrete, Gunite, or similar materials known in the art, which are typically not shaped with a face form. In such structures, the mosaic assembly is not connected to a face form (due to the absence of a face form), and instead, the mosaic assembly is worked directly into the exposed surface of the concrete/cement material.
Referring now specifically to
As shown in
Reinforcement members 120, i.e., rebar, may be placed within the cavity 106 to enhance the structural strength of the concrete structure. The reinforcement members 120 may be arranged in an intersecting pattern to define a lattice framework, as shown in
With the back form 104 constructed and properly positioned, the concrete material may be dispensed into the cavity 106.
When the cavity 106 is filled with the concrete mixture 102, the concrete mixture 102 defines an exposed surface 124, which extends between the first and second side form members 110, 112. The exposed surface 124 may be floated or trowelled to define a smooth surface. The mosaic assembly 126 is then placed within the exposed surface 124 of the concrete mixture 102. As described in more detail above, the mosaic assembly 126 includes a mesh base 128 and a plurality of aesthetic elements 130 coupled to the mesh base 128. The aesthetic elements 130 may be arranged according to a specific design or pattern; or alternatively, the aesthetic elements 130 may be randomly positioned on the mesh base 128. Furthermore, the aesthetic elements 130 may include rocks, stones, aggregates, shells, glass fragments, tiles, bricks, ceramic pieces and/or other aesthetic elements known by those skilled in the art.
It is contemplated that the mosaic assembly 126 may be arranged in several different orientations to effectuate placoncrete of the mosaic within the concrete mixture 102. According to one embodiment, and as shown in
The mosaic assembly 126 is pressed into the concrete mixture 102 until the aesthetic elements 130 are sufficiently embedded within the concrete mixture 102. Preferably, a portion of the aesthetic element 130 remains exposed and may partially protrude from the exposed surface 124 of the concrete mixture 102. Furthermore, the mesh base 128 is preferably not embedded within the concrete mixture 102. Along these lines, the mesh base 128 is disconnected from the aesthetic elements 130 and is peeled away to expose the aesthetic elements 130 and the concrete mixture 102. According to one embodiment, the aesthetic elements 120 may be connected to the mesh base 128 via a water soluble adhesive which is deactivated or dissolved by pouring or spraying water over the mosaic assembly 126. Once the adhesive is dissolved, removed or otherwise deactivated, the mesh base 128 may be easily removed from the aesthetic elements 130.
According to another embodiment, the mosaic assembly 126 may be pressed into the concrete mixture 102 such that the aesthetic elements 130 are “on top” of the mesh base 128 as the mosaic assembly 126 is pressed into the concrete mixture 102. This is contrasted with the embodiment described above, wherein the aesthetic elements 130 reside “underneath” the mesh base 128 as the mosaic assembly 126 is pressed into the concrete mixture 102. The “on top” configuration is analogous to the “inner support” method described above because the inner/embedded portion of the aesthetic elements 130 are connected to the mesh base 128. In the “on top” configuration, the mosaic assembly 126 is pressed into the concrete mixture 102 such that the mesh base 128 becomes embedded therein. The mesh base 128 is preferably worked into the concrete mixture 102 until it is no longer visible. The aesthetic elements 130 also become embedded within the concrete mixture 102, although at least a portion of the aesthetic elements 130 remain visible and preferably protrude from the exposed surface 124.
After the aesthetic elements 130 are embedded within the concrete mixture 102, the aesthetic elements 130 may be further exposed by sponging, using a surface retarder, sandblasting or other methods/techniques known by those skilled in the art. The concrete structure may then be allowed to harden, and then the structure may be washed and sealed.
It should be noted that although the embodiment depicted in
The above description is given by way of example, and not limitation. Given the above disclosure, one skilled in the art could devise variations that are within the scope of the invention disclosed herein, including various ways of creating different textures, colors, patterns, utilizing various types of mosaic pieces, etc. Further, the various features of the embodiments disclosed herein can be used alone, or in varying combinations with each other and are not intended to be limited to the specific combination described herein. Thus, the scope of the claims is not to be limited by the illustrated embodiments.
This is a continuation-in-part application of U.S. application Ser. No. 13/294,434, filed Nov. 11, 2011, the contents of which are expressly incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 13294434 | Nov 2011 | US |
Child | 13783052 | US |