1. Field of the Invention
The present invention relates to systems and methods of removing concrete.
2. Related Art
Concrete floors are generally between four and twelve inches thick. When removing concrete flooring, there are two alternative approaches. The first is to saw trenches into the concrete so that the concrete is cut into rectangular slabs between eighteen and forty-eight inches long in a grid-like pattern. Each piece, which can weigh up to five hundred pounds, must be pried off the ground, lifted by hand, and then placed on a dolly to be removed from the site. This requires the laborer to get his fingers under one end of the slab, lift that end up off of the ground, and roll the slab onto the dolly. Two laborers are generally required to roll the slab onto the dolly.
The second approach is to break the concrete floor into many small pieces and then remove the pieces from the site. This requires the laborer to make many trips with the pieces. It also produces small chunks and dust which are difficult to remove, making it difficult to leave the workplace clean after the concrete floor has been removed.
The present invention is a mechanical device used to grab, lift, and transport slabs of concrete comprising a central support member, a bottom plate, and a jaw which clamps the concrete slab between the jaw and the bottom plate.
The accompanying drawings illustrate several aspects of embodiments of the present invention. The drawings are for the purpose only of illustrating preferred modes of the invention, and are not to be construed as limiting the invention.
The preferred embodiment of the concrete slab lifter 10 is utilized to lift and remove concrete slabs that have been cut from a concrete floor into slabs between eighteen and forty-eight inches long in a grid-like pattern.
The preferred embodiment of the concrete slab lifter 10 comprises a central support 12, a handle 20 attached to a top end of the central support 12, a bottom plate 18 extending generally perpendicularly from at or near the bottom end of the central support 12, a pair of wheels 50 attached near the bottom of the central support 12, and a jaw 30 which is attached to the central support 12 in such a manner as to allow the jaw 30 to pivot in plane parallel to the central support 12, which is a vertical plane when the concrete slab lifter 10 is in an upright position. The extension of the bottom plate 18 from the central support 12 is preferably shorter than the thickness of the concrete slab 5, that is, between three and ten inches for lifting concrete slabs between four and twelve inches thick, to enable the bottom plate 18 to extend along an end of the concrete slab 5, but not extend past the end of the concrete slab 5 and abut against the ground 1. More than one bottom plate 18 could be used, so long as they were collectively strong enough to support the weight of a concrete slab 5. The parts, except for the wheels 50, are preferably made of steel because of its strength; however, aluminum could also be used, which would have the benefit of being lighter in weight. It is envisioned that other materials, those materials preferably being metal, could be used.
The jaw 30 and the central support 12 are attached in such a manner as to enable an operator to vary the distance between the jaw 30 and the bottom plate 18. The preferred means is a telescoping system as follows. The central support 12 is comprised of an inner tube 14 and an outer tube 16. The bottom plate 18 is attached to a bottom end of the inner tube 14. The outer tube 16 is placed on top of and around the inner tube 14 so that, with the inner tube 14 in a stationary position, the outer tube 16 can slide along the inner tube 14, varying the length of the central support 12. The length of the central support 12 may be fixed by passing a set screw 13 through threads in the outer tube 16, creating a friction fit between the set screw 13 and the inner tube 14; a pin or other fasteners could be used. The shape of the outside surface of the inner tube 14 should correspond to the inside surface of the outer tube 16 so that the outer tube 16 will fit over the inner tube 14; however, neither the outer tube 16 nor the inner tube 14 should be in the shape of a circle, which would allow the outer tube 16 to swivel about the inner tube 14. The preferred shape is a square. The jaw 30 is attached to the outer tube 16, causing the distance between the jaw 30 and the bottom plate 18 to vary when the outer tube 16 slides along the inner tube 14.
The jaw 30 is generally u-shaped, and comprises a longitudinal leg which pivotally connects to the central support 12 and extends along the central support 12 typically about one-third to two-thirds the length of the concrete slab 5 to be lifted, a transverse leg which extends generally transverse to the central support 12 and generally parallel to the bottom plate 18, and a gripping leg or “tooth” that extends generally parallel to the longitudinal leg and generally perpendicular to the bottom plate 18.
In the preferred embodiment, the jaw 30 is preferably comprised of a first member 32, a second member 34, and a tooth 36. The preferred means of pivotal connection between the first member 32 and the outer tube 16 is a bolt 38 which passes through a pair of holes in each of the first member 32 and the outer tube 16; the bolt 38 is held in place with a nut. The first member 32 may be locked flush against the outer tube 16, preferably by means of a latch 40, as shown in
An alternative means of configuring the jaw 30 and central support 12 is for the central support 12 to be comprised of a larger bottom tube with two slots, and for the jaw 30 to be attached to a smaller top tube by a pivot pin. The smaller top tube slides into the larger bottom tube. The pivot pin rides in the two slots on opposite sides of the larger bottom tube; the ends of the slots create limits to how far the pin, and therefore, the smaller top tube, can slide. A set screw is inserted into threads in the larger bottom tube to create a friction fit with the smaller top tube. The handle is then attached to the smaller top tube. However, this embodiment is more difficult to manufacture, and is therefore less preferred.
The axle 52 of the wheels 50 is preferably connected to the inner tube 14 by means of a hinge 54 in such a manner as to allow the wheels 50 to pivot from a first lowered position in which they extend down as far as or past the bottom plate 18, enabling an operator to move the concrete slab lifter 10 by tipping the concrete slab lifter 10 back a small amount and rolling the concrete slab lifter 10 along the wheels 50, to a second raised position in which the wheels 50 will touch the ground 1 only when the concrete slab lifter 10 is nearly parallel to the ground 1, as shown in
The use of the concrete slab lifter 10 is shown in
Between
The length of the first portion 32 is preferably between one-third and two-thirds, and most preferably about half, the length of the concrete slab 5 to be lifted. This places the point of pivotal connection between the jaw 30 and the central support 12 near the center of gravity of the concrete slab 5, and maximizes the operator's ability to control and lift the concrete slab 5. Preferably, the central support 12 extends out beyond the jaw 30 for leverage; the total length of the central support 12 with the jaw 30 clamping the concrete slab 5 is preferably between one-and-one-half and two-and-one-half times the length of the concrete slab 5, so that the effective lever arm is between three and five times as long as the distance between the pivot point and the center of gravity of the concrete slab 5. If the first member 32 were shorter than one-third the length of the concrete slab 5, then the point of pivotal connection would be so far above the center of gravity of the concrete slab 5 that the jaw 30 would easily pivot open while grasping the concrete slab 5, and the concrete slab 5 would be liable to slip out of the concrete slab lifter 10. If the first member 32 were longer than two-thirds the length of the concrete slab 5, then the point of pivotal connection, which is the point on the central support 12 which bears the load of the concrete slab 5, would be so low that the torque would cause a risk of bending the central support 12, rendering the concrete slab lifter 10 inoperable. For lifting concrete slabs 5 between eighteen and forty-eight inches long, the first portion 32 is preferably between six and thirty-two inches long, and most preferably twelve inches long.
When the tooth 36 is under the concrete slab 5, the latch 40 is released, unlocking the jaw 30 from the outer tube 16. As the handle 20 connected to the central support 12 is pulled up away from the ground 1, gravity causes the jaw 30 to pivot toward the ground 1 so that the first member 32 is no longer flush with the outer tube 16, and the distance between the union of the tooth 36 and second member 34, and the bottom plate 18, is decreased, clamping the concrete slab 5 in place, as shown in
As the operator lifts the concrete slab lifter 10 and concrete slab 5 from the position shown in
During the process of pivoting the lifter 10 from the position in
With the concrete slab lifter 10 in the upright position, gravity will cause the wheels 50 to pivot back to a lowered position, as shown in
If the concrete slab lifter 10 were simply tilted backward from its upright position with the wheels 50 in their lowered position, then the wheels 50 might pivot upward. To prevent this, the operator preferably places his foot on the kickstop 53 while tilting the concrete slab lifter 10 backward from the position shown in
This embodiment could also be used to pick up preformed pieces of concrete, such as, for example, those manufactured for stepping stones.
The preferred embodiment requires no outside power source, and will work in confined areas. One operator can remove concrete slabs without help in most cases. Thus, labor requirements are reduced. There are also fewer injuries using the concrete slab lifter 10 than lifting concrete slabs by hand. Less dirt and debris are left on the job site, leaving less to clean up. The length of the central support 12 provides greater leverage for larger, heavier pieces. The concrete slab lifter 10 is able to lift and hold concrete slabs 5 with a single jaw 30 because the jaw 30 clamps the concrete slab 5 tightly against the bottom plate 18.
It is envisioned that a larger variant of the present invention could be used in combination with an outside power source, such as a crane or backhoe, to lift larger slabs of concrete, such as slabs that are ten feet wide by ten feet long. This embodiment would still utilize the combination of jaw 30 and central support 12 to grasp the slab, but would not need benefit of torque created by a relatively long central support 12 because the lifting force would be supplied by the crane or backhoe.
Although this invention has been described above with reference to particular means, materials and embodiments, it is to be understood that the invention is not limited to these disclosed particulars, but extends instead to all equivalents within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
384078 | Roche | Jun 1888 | A |
2086318 | Jackson | Jul 1937 | A |
2329439 | Leif | Sep 1943 | A |
2650786 | Platt | Sep 1953 | A |
2710106 | Hanson | Jun 1955 | A |
3358863 | Griffith et al. | Dec 1967 | A |
3980190 | Paterson | Sep 1976 | A |
5017080 | Thorndike et al. | May 1991 | A |
6131927 | Krawczyk | Oct 2000 | A |
6682049 | Thompson | Jan 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20060272276 A1 | Dec 2006 | US |