1. Field of the Invention
The invention relates generally to concrete finishing trowels and, more particularly, to a steering system for finishing trowels that support an operator during use, i.e. riding trowels.
2. Description of the Related Art
A variety of machines are available for smoothing or otherwise finishing wet concrete. These machines range from simple hand trowels, to walk-behind trowels, to self-propelled riding trowels. Regardless of the mode of operation of such trowels, the powered trowels generally include one to three rotors that rotate relative to the concrete surface. Riding finishing trowels can finish large sections of concrete more rapidly and efficiently than manually pushed or guided hand-held or walk behind finishing trowels. The present invention is directed to riding finishing trowels.
More particularly, the invention relates to a concrete finishing trowel, such as a riding trowel, having rotor assemblies that can be tilted for a steering operation. Riding concrete finishing trowels of this type typically include a frame having a cage that generally encloses two, and sometimes three or more, rotor assemblies. Each rotor assembly includes a driven shaft and a plurality of trowel blades mounted on and extending radially outwardly from the bottom end of the driven shaft. The driven shafts of the rotor assemblies are driven by one or more engines mounted on the frame and typically linked to the driven shafts by gearboxes of the respective rotor assemblies.
The weight of the finishing trowel, including the operator, is transmitted frictionally to the concrete surface by the rotating blades, thereby smoothing the concrete surface. The pitch of individual blades can altered relative to the driven shafts via operation of a lever and/or linkage system during use of the machine. Such a construction allows the operator to adjust blade pitch during operation of the power trowel. As commonly understood, blade pitch adjustment alters the pressure applied to the surface being finished by the machine. This blade pitch adjustment permits the finishing characteristics of the machine to be adjusted. For instance, in an ideal finishing operation, the operator first performs an initial “floating” operation in which the blades are operated at low speeds (on the order of about 30 rpm) but at high torque. Then, the concrete is allowed to cure for another 15 minutes to one-half hour, and the machine is operated at progressively increasing speeds and progressively increasing blade pitches up to the performance of a finishing or “burning” operation at the highest possible speed—preferably above about 150 rpm and up to about 200 rpm.
The rotor assemblies of riding trowels also can be tilted relative to the vertical for steering purposes. By tilting the rotor assemblies, the operator can utilize the frictional forces imposed on the blades by the concrete surface to propel the vehicle. Generally, the vehicle will travel in a direction perpendicular to the direction of tilt of the driven shaft. Specifically, tilting the rotor assembly from side-to-side and fore-and-aft steers the vehicle in the forward/reverse and the left/right directions, respectively. It is also commonly understood that, in the case of a riding trowel having two rotor assemblies, the driven shafts of both rotor assemblies should be tiltable side-to-side for forward/reverse steering control, whereas only the driven shaft of one of the rotor assemblies needs to be tilted fore and aft for left/right steering control.
Many steering assemblies are mechanically operated. These assemblies typically include two steering control handles mounted adjacent the operator's seat and accessible by the operator's left and right hands, respectively. Each lever is coupled, via a mechanical linkage assembly, to a pivotable gearbox of an associated rotor assembly. The operator steers the vehicle by tilting the levers fore-and-aft and side-to-side to tilt the gearboxes side-to-side and fore-and-aft, respectively. Steering assemblies of this type are disclosed, e.g., in U.S. Pat. No. 4,046,484 to Holz and U.S. Pat. No. 5,108,220 to Allen et al.
Mechanically operated steering control assemblies of the type disclosed in the Holz and Allen et al. patents are somewhat difficult to operate because they require the imposition of a significant physical force by the operator both to move the handles to a particular position and to retain them in that position. The typical steering control handle requires 20-40 pounds of force to operate in either its fore-and-aft direction or its side-to-side direction. Most operators experience fatigue when exerting these forces, particularly when one considers that the operator must exert these forces continuously or nearly continuously for several hours at a time with little or no rest. Operator fatigue is particularly problematic with respect to side-to-side motions, which, due to the ergonomics of the machines, are considerably more difficult for operators to impose than fore-and-aft motions.
Proposals have been made to replace the traditional mechanically operated steering control assemblies of a concrete finishing machine with power-actuated assemblies. For instance, Whiteman Industries, Inc., of Carson, Calif. has introduced a hydraulically steered riding trowel under its tradename “HTS-Series.” This machine is hydrostatically driven via hydrostatic pumps which are powered by the machine's engine and which supply pressurized hydraulic fluid both to hydraulic motors of the rotor assemblies, and to hydraulic steering cylinders which tilt the driven shafts of the rotor assemblies. The steering assemblies are controlled by joysticks mounted on the operator's platform adjacent the operator's seat. These joysticks are easier to operate than traditional mechanical levers. The operator therefore does not experience the fatigue experienced by operators of traditional, mechanically steered machines.
A hydrostatically steered concrete finishing trowel, though superior in some respects to a mechanically steered machine, exhibits its own drawbacks and disadvantages. For instance, the hydrostatic pump, hydraulic motor, steering cylinders, and associated hydraulic devices render the machine very heavy. Accordingly, even with the blades set at their minimum pitch so as to distribute the machine's weight over a maximum area, the operator must let the concrete set longer than otherwise would be necessary before he or she can perform the initial, so-called “floating” finishing operation. This delay hinders a finishing operation because it leaves the operator with less time to finish the concrete. In addition, the complex hydraulic system required by hydrostatically steered machines is prone to leaks. Oil spills on fresh concrete are, of course, undesirable. Finally, hydrostatically steered machines are considerably more expensive than manually-steered machines due to the relatively large and expensive hydraulic motors, valves, etc.
Accordingly, there is a need for a ride-on concrete finishing trowel steering system that does not unnecessarily increase the weight of the machine and yet requires less steering effort than previously-known manually steered machines. It is further desired to provide a ride-on trowel steering system that can be implemented into a number of machine configurations as well as one that is relatively simple to operate, inexpensive to produce, and simple to maintain.
The present invention provides a power concrete finishing trowel that overcomes one or more of the above-mentioned drawbacks. A steering system according to one aspect of the invention includes a steering system that is relatively simple, lightweight, and inexpensive.
Another aspect of the invention is to provide a power concrete finishing trowel that meets the first principal aspect and that substantially eliminates or at least significantly reduces operator fatigue.
Yet another aspect of the invention is to provide a power concrete finishing trowel that meets the first aspect and that does not require pressurized or otherwise contained fluids for its operation and, hence, exhibits reduced possibility of fluid spills when compared to systems requiring pressurized fluids for their operation.
One or more of these aspects are achieved by a steering system for a power trowel that includes a steering assist mechanism that imposes a preload on the steering linkage to reduce handle actuation forces required to move the handle to a particular position. The steering assist mechanism also reduces handle retention forces, required to maintain the handle in a particular position after moving the handle to that position, to less than about 20 lbs throughout the operating stroke of the handle. In fact, systems have been successfully demonstrated that reduce the maximum retention forces to less than 15 lbs and even to about 10 lbs. In one embodiment, a biasing link is engaged with the steering linkage and extends from a torsion bar between generally opposite ends of the torsion bar. A load link is connected to the torsion bar and imparts a preload upon the torsion bar such that the torsion bar carries a portion of the load associated with tilting the rotor assembly.
Another aspect of the invention relates to a concrete finishing trowel having first and second rotor assemblies attached to a frame. Each rotor assembly includes a shaft constructed to support a number of blades. An engine drives the shaft of the rotor assemblies such that each of the blades rotates across a concrete surface. A steering linkage is operatively connected to the rotor assemblies to tilt the rotor assembly relative to the frame. First and second handles, each of which is coupled to an associated rotor assembly, can be operated through an operating stroke ranging from a neutral position in which the shaft of the associated rotor extends vertically to a maximum stroke position in the which shaft of the associated rotor assembly is tilted a maximum possible amount. First and second steering assist mechanisms, each of which is coupled to an associated steering linkage, reduce the associated handle retention forces required to hold the associated handle to a particular position, after moving the handle to that position, to less than about 15 lbs throughout the stroke of the operating handle.
A further aspect of the invention discloses a ride-on trowel steering system having a torsion bar, a load lever, a steering rod, and a transfer lever. The steering rod is supported by a frame of a trowel and is rotatable relative thereto. The load lever is connected to the torsion bar and the transfer lever extends from the torsion bar and is constructed to engage the steering rod. The steering system includes an interlock assembly disposed between the transfer lever and the steering rod for selectively isolating a load of the torsion bar from rotating the steering rod.
Still another aspect of the invention resides in a method of manually steering a ride-on trowel with reduced operator effort than is required for previously known ride-on trowels.
These and other aspects, advantages, and features of the invention will become apparent to those skilled in the art from the detailed description and the accompanying drawings. It should be understood, however, that the detailed description and accompanying drawings, while indicating preferred embodiments of the present invention, are given by way of illustration and not of limitation. Many changes and modifications may be made within the scope of the present invention without departing from the spirit thereof. It is hereby disclosed that the invention include all such modifications.
Preferred exemplary embodiments of the invention are illustrated in the accompanying drawings in which like reference numerals represent like parts throughout, and in which:
Handles 28, 30 are operationally coupled to rotor assemblies 24, 26 such that manipulation of handles 28, 30 manipulates the position of rotor assembly 24, 26 relative to a frame 36 of trowel 20, respectively. In the typical case in which the machine is laterally steered by pivoting a gearbox of at least one rotor assembly about two axes, at least one of handles 28, 30 is constructed to be movable in the fore and aft directions as well as side-to-side directions. Although shown as what is commonly understood as a riding or ride-on trowel, it is appreciated that the present invention is applicable to any powered concrete finishing trowel that is steered by tilting one or more rotor assemblies with respect to a frame of the trowel. It is conceivable that walk-behind trowels could be steered in this or a similar manner.
Referring to
Referring to
The pitch of the blades 62 of each of the right and left rotor assemblies 24 and 26 can be individually adjusted by a dedicated blade pitch adjustment assembly 70. Each blade pitch adjustment assembly 70 includes a generally vertical post 72 and a crank 74 which is mounted on top of the post 72, and which can be rotated by an operator positioned in seat 34 to vary the pitch of the trowel blades 62. In the typical arrangement, a thrust collar (not shown) cooperates with a yoke 78 that is movable to force the thrust collar 76 into a position pivoting trowel blades 62 about an axis extending perpendicular to the axis of the driven shaft 60. A tension cable 80 extends from the crank 74, through the post 72, and to the yoke 78 to interconnect the yoke 78 with the crank 74. Rotation of the crank 74 adjusts the yoke's angle to move the thrust collar 76 up or down thereby providing a desired degree of trowel blade pitch adjustment. The pitch of blades 62 is often varied as the material being finished sets and becomes more resistant to being worked by the blades. A power concrete finishing trowel having this type of blade pitch adjustment assembly is disclosed, e.g., in U.S. Pat. No. 2,887,934 to Whiteman, the disclosure of which is hereby incorporated by reference.
Both rotor assemblies 24 and 26, as well as other powered components of the finishing trowel 20, are driven by a power source such as internal combustion engine 42 mounted under operator's seat 34. The size of engine 42 will vary with the size of the machine 20 and the number of rotor assemblies powered by the engine. The illustrated two-rotor 48″ machine typically will employ an engine of about 35 hp. Rotor assemblies 24 and 26 are connected to engine 42 and can be tilted for steering purposes via steering system 22 (
As is typical of riding concrete finishing trowels of this type, the machine 20 is steered by tilting a portion or all of each of the rotor assemblies 24 and 26 so that the rotation of the blades 62 generates horizontal forces that propel machine 20. The steering direction is generally perpendicular to the direction of rotor assembly tilt. Hence, side-to-side and fore-and-aft rotor assembly tilting cause machine 20 to move forward/reverse and left/right, respectively. The most expeditious way to effect the tilting required for steering control is by tilting the entire rotor assemblies 24 and 26, including the gearboxes 58. The discussion that follows therefore will describe a preferred embodiment in which the entire gearboxes 58 tilt, it being understood that the invention is equally applicable to systems in which other components of the rotor assemblies 24 and 26 are also tilted for steering control.
More specifically, the machine 20 is steered to move forward by tilting the gearboxes 58 laterally to increase the pressure on the inner blades of each rotor assembly 24, 26 and is steered to move backwards by tilting the gearboxes 58 laterally to increase the pressure on the outer blades of each rotor assembly 24, 26. Crab or side-to-side steering requires tilting of only one gearbox (the gearbox of the right rotor assembly 24 in the illustrated embodiment), with forward tilting of right rotor assembly 24 increasing the pressure on the front blades of the rotor assembly 24 to steer the machine 20 to the right. Similarly, rearward tilting of rotor assembly 24 increases the pressure on the back blades of the rotor assembly 24 thereby steering machine 20 to the left.
Steering system 22 tilts the gearboxes 58 of the right and left rotor assemblies 24, 26 in response to manipulation of handles 28, 30 by the operator. Referring to
A link 98 is connected to each steering arm 96 at a location behind the steering rod 86, 88. Link 98 includes a first end 100 having a pivot 102 for pivotably connecting first end 100 of link 98 to steering arm 96. Another pivot 104 pivotably connects a second end 106 of link 98 to a rocker arm 108. Preferably, link 98 includes an adjuster 110 for adjusting a length of link 98, thereby reducing play in steering system 22 and facilitating presets. As best shown in
The upper end of link 116 is pivotally connected to an outer end of a laterally extending rod 117. The opposite ends of the rod 117 are journalled in pillow block bearings 119 attached to the upper surface of the gearbox 58. A central portion of the rod 117 is welded or otherwise affixed to a longitudinally extending rod 121 having opposite ends journalled in pillow block bearings 123. The pillow block bearings 123 are bolted on the underside of the frame.
With this arrangement, translation of link 116 along the direction indicated by arrow 130 tilts gearbox 58 about a longitudinal axis 132 of pivot lever assembly 120. Accordingly, forward translation of handle 28 tilts gearbox 58 in the direction indicated by arrow 134 such that blades 62 contact the material being finished so as to move the machine in a forward direction. In a similar manner, rearward translation of handle 28 tilts gearbox 58 in the direction indicated by arrow 136 such that blades 62 to contact the material being finished so as to move the machine in a rearward direction. The shaft 121 rotates in pillow block bearings 123 to accommodate this motion.
Referring to
Although handle link 208 connects the operation of handles 28, 30 for lateral motion, handle link 208 pivots relative to both handle 28 and handle 30 such that each handle 28, 30 can be moved fore and aft independent of the other handle. Such a construction allows either of handles 28, 30 to control lateral motion of machine 20 and each handle 28, 30 to control the forward and rearward direction of travel tilting of the rotor assembly 24, 26. Depending on the size of the machine and the degree of tilt desired, the forces required to provide the desired gear box tilting can be considerable.
Referring to
A rigid lever 164 is rigidly attached to torsion bar 142 generally between ends 144, 160. The first end 166 of rigid lever 164 is secured to torsion bar 142 such that rigid lever 164 does not rotate independent of torsion bar 142. As best seen in
Adjuster 154 and anchor bar 148 are also constructed to provide variable loading of torsion bar 142. Such a construction allows steering system 22 to be quickly and efficiently adapted to any of a number of machines and a number of machine configurations. Adjuster 154 also allows assistance system 140 to be uniquely configured to an individual operator's preferences. That is, assistance system 140 can be configured to allow as much of the resistance to tilting of the rotor to be communicated to handles 28, 30 as an operator desires. Understandably, it is envisioned that steering assistance system 140 support most, if not all, of the load commonly communicated to handles 28, 30 through steering rods 86, 88 during a rotor tilting operation. Accordingly, it is envisioned that assistance system 140 be configured to support anywhere from 50 to 800 or more lbs. Understandably these values are only dependent on the amount of resistance an operator desires to overcome and the total amount of resistance generated by the tilting operation. It is envisioned that assistance system 140 and torsion bar 142 could be configured to provide any of a number of steering assistance values.
Each steering assistance system 140, 220, 260, and 280 provides a power trowel steering assistance system that assists in operator in overcoming the resistance associated with translating the steering handles to tilt to the rotator assemblies. The steering assistance systems assist the operator in performing both forward and rearward translation of each of the steering handles of the machine. Furthermore, referring to
The required operator effort of both inventive systems referenced above s much less than is required to operate a prior art trowel that is manufactured by Wacker Corporation and that has a steering system that is quite similar to those described herein but for the inventive steering assist mechanism. Compare curves 300 or 304 to curve 306.
The operator effort required for both inventive systems referenced above is also comparable or less than a prior art assisted steering system marketed by Whiteman and described in U.S. Pat. No. 5,899,631 through about the first 8″ of handle stroke, as represented by a comparison of coves 300 or 304 to curve 310. Thereafter, the required efforts increase only gradually for the systems constructed in accordance with the present invention. In contrast, the required actuation forces increase dramatically for the Whiteman system after about the first 8″″ of handle stroke due to the fact that Whiteman's steering assist mechanism dramatically reduces assistance beyond that stroke. (Note break point 312 in curve 310). In fact, the Whiteman system requires more effort than the Wacker unassisted system at strokes beyond about 9½. This break point 312 in the Whiteman actuation force curve 310 is also reflected in a break point 318 in the curve 316 of retired retention forces at a particular handle position as depicted in
Hence, the inventive system reduces operator effort to impose and maintain steering forces through the operating stroke of the steering levers.
It is appreciated that many changes and modifications could be made to the invention without departing from the spirit thereof. Some of these changes, such as its applicability to riding concrete finishing trowels having other than two rotors and even to other self-propelled powered finishing trowels, are discussed above. Other changes will become apparent from the appended claims. It is intended that all such changes and/or modifications be incorporated in the appending claims.
Number | Name | Date | Kind |
---|---|---|---|
4046484 | Holz, Sr. et al. | Sep 1977 | A |
5108220 | Allen et al. | Apr 1992 | A |
5480258 | Allen | Jan 1996 | A |
5899631 | Jaszkowiak | May 1999 | A |
6368016 | Smith et al. | Apr 2002 | B1 |
7172365 | Lutz et al. | Feb 2007 | B2 |
Number | Date | Country |
---|---|---|
1 069 259 | Jan 2001 | EP |
Number | Date | Country | |
---|---|---|---|
20090028642 A1 | Jan 2009 | US |