Concurrent infusion with common line auto flush

Information

  • Patent Grant
  • 11135360
  • Patent Number
    11,135,360
  • Date Filed
    Monday, December 7, 2020
    3 years ago
  • Date Issued
    Tuesday, October 5, 2021
    2 years ago
Abstract
An infusion pump system and method provide concurrent infusion with common line auto flush. The infusion pump system has a first reservoir, a second reservoir, a junction, a mixing chamber, a common line having one end in fluid connection with the mixing chamber and having a terminal fluid delivery end, and an infusion pump. The method includes infusing the first fluid at a first rate along a first flow path; determining a common line flush volume value for the common line; switching to a concurrent infusion mode to drive a combination of the first fluid and the second fluid at the first rate along a second flow path including the common line; monitoring a volume of the combination of the first and second fluids driven at the first rate; and driving the combination of the first and second fluids at a combined rate along the second flow path when the monitored volume is equal to or greater than the common line flush volume value.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is related to U.S. application Ser. No. 16/301,379, filed Nov. 13, 2018, which is the national stage of International Application No. PCT/US2017/032017, filed May 10, 2017, which claims the benefit of priority from U.S. Provisional No. 62/336,191, filed May 13, 2016, all of which are incorporated by reference in their entireties.


BACKGROUND
Field

The present invention relates to medical devices and infusion pump systems.


Infusion pumps are medical devices that deliver fluids, including nutrients and medications such as antibiotics, chemotherapy drugs, and pain relievers, in controlled amounts. Many types of pumps, including large volume, patient-controlled analgesia (PCA), elastomeric, syringe, enteral, and insulin pumps, are used worldwide in healthcare facilities, such as hospitals, and in the home. Clinicians and patients rely on pumps for safe and accurate administration of fluids and medications.


It is often desirable to provide more than one therapeutic fluid to the patient from the same infusion pump. Two fluid reservoirs with different therapeutic fluids are connected to the infusion pump and then delivered through a common line having a terminal fluid delivery end. The terminal fluid delivery end is attached to the patient. The first therapeutic fluid and second therapeutic fluid may be administered concurrently or one at a time by controlling the fluid flow path to draw fluid from both reservoirs or from only one reservoir.


When switching from single to concurrent fluid delivery, the therapeutic fluid remaining in the common line may lead to complexity in controlling delivery volumes or flow rates when switching between fluid sources. For example, the remaining therapeutic fluid must be cleared from the common line before the next therapeutic fluid begins administration (entering the patient's body), which delays the next therapeutic fluid from reaching the patient. In addition, when the therapeutic fluids are administered concurrently, the first therapeutic fluid remaining in the common line will be administered at the combined rate of the first therapeutic fluid infusion rate plus the second therapeutic fluid infusion rate, e.g., the remaining first therapeutic fluid will be administered at the combined rate determined from the rates specified for the first and second therapeutic fluids. This can result in the patient receiving more or less than the optimum therapy with respect to the first therapeutic fluid. Furthermore, the remaining therapeutic fluid may not be correctly accounted for, potentially creating delays in the values indicated at the infusion pump, versus therapeutic fluid received by the patient. Finally, a single medication delivered at a combined rate may actually result in the single medication being infused at a rate that can exceed an upper soft or hard limit specified for such medication until the medication in the common line is displaced by an intended second fluid (in the case of a piggyback infusion) or a mixture of first and second fluids (in the case of a concurrent delivery). While the pump data will be correct in terms of infusion rates over given times, the actual fluid delivery to the terminal fluid delivery end at the patient may not be correctly captured in pump and system data.


In addition, while some infusion therapies specify a particular volume of fluid to infuse to a patient, in some therapies it is preferred to deliver 100% of the volume of fluid contained within a particular fluid reservoir, such that the fluid is delivered until the reservoir is emptied. However, with many infusion pump systems, due to variable fluid volume contained in the reservoir and typical pump delivery accuracy tolerances and system dependencies, it is only possible to achieve 100% fluid delivery by over-programming the pump, or by entering pump programming parameters that do not accurately reflect the volume and duration of fluid actually administered to the patient.


It would be desirable to have infusion pump systems and methods with common line auto flush that would overcome the above disadvantages.


SUMMARY

In one embodiment, a control system is provided to control operation of an infusion pump of an infusion pump system. The infusion pump system includes a first reservoir configured to hold a first fluid, a second reservoir configured to hold a second fluid, a junction in fluid communication with the first reservoir and the second reservoir, a common line in fluid communication with the junction and having a terminal fluid delivery end, and the infusion pump, wherein the infusion pump is operable to drive fluid through the common line toward the terminal fluid delivery end. The control system includes: one or more hardware processors; and a memory storing executable instructions that when executed by the one or more hardware processors, configure the infusion pump to: receive instructions to deliver the first fluid at a first rate, subsequently concurrently deliver a mixture of the first fluid and the second fluid, and concurrently deliver the first fluid at the first rate and the second fluid at a second rate; infuse the first fluid at the first rate along a first flow path, the first flow path including the common line; determine a common line volume corresponding to a volume of the common line; draw the first fluid from the first reservoir the second fluid from the second reservoir to deliver the mixture of the first fluid and the second fluid; infuse the mixture of the first fluid and the second fluid at a flushing rate along a second flow path, the second flow path including the common line; determine that an infused volume of the mixture of the first fluid and the second fluid equals or exceeds the common line volume; and change the infusion rate of the mixture of the first fluid and the second fluid from the flushing rate to a combined rate, wherein the combined rate is the sum of the first rate and the second rate, and continue to infuse the mixture of the first fluid and the second fluid along the second flow path at the combined rate.


The control system may also include a mixing chamber in fluid communication with the first reservoir, the second reservoir, and the common line. The executable instructions may further configure the infusion pump to determine the flushing rate based upon whether the first fluid is a medicinal fluid, determine the flushing rate as the first rate when the first fluid is a medicinal fluid, or determine the flushing rate as the first rate increased by a flushing rate factor when the first fluid is not a medicinal fluid.


The instructions may further configure the infusion pump to receive the common line volume from a user input, retrieve the common line volume from the memory, or retrieve the common line volume over a network. The common line volume may be predetermined. The instructions may further configure the infusion pump to determine the common volume based on the first fluid. The first rate may be different than the second rate.


The instructions may further configure the infusion pump to receive the instructions for the delivery from an input via a user interface. The executable instructions further configure the infusion pump to: determine that an infusion of the second fluid has completed; draw the first fluid from the first reservoir without drawing the second fluid from the second reservoir; infuse the first fluid at the combined rate; determine that a volume of the first fluid infused at the combined rate equals or exceeds the common line volume; and change the infusion rate of the first fluid from the combined rate to the first rate.


The executable instructions may configure the infusion pump to determine that an infusion of the second fluid has completed by comparing a volume of fluid infused to a programmed volume to infuse, determine that an infusion of the second fluid has completed by receiving an instruction to stop infusing the second fluid, or determine that an infusion of the second fluid has completed by determining that the second reservoir has been depleted of second fluid.


The executable instructions may further configure the infusion pump to: determine that an infusion of the first fluid has completed; draw the second fluid from the second reservoir without drawing the first fluid from the first reservoir; infuse the second fluid at the combined rate; determine that a volume of the second fluid infused at the combined rate equals or exceeds the common line volume; and change the infusion rate of the second fluid from the combined rate to the second rate.


The executable instructions may configure the infusion pump to determine that an infusion of the first fluid has completed by comparing a volume of fluid infused to a programmed volume to infuse, determine that an infusion of the first fluid has completed by receiving an instruction to stop infusing the first fluid, or determine that an infusion of the first fluid has completed by determining that the first reservoir has been depleted of first fluid.


In another embodiment, a method for controlling operation of an infusion pump of an infusion pump system is provided. The infusion pump system includes a first reservoir configured to hold a first fluid, a second reservoir configured to hold a second fluid, a junction in fluid communication with the first reservoir and the second reservoir, a common line in fluid communication with the junction and having a terminal fluid delivery end, and the infusion pump, wherein the infusion pump is operable to drive fluid through the common line toward the terminal fluid delivery end. The method includes: drawing the first fluid from the first reservoir and the second fluid from the second reservoir to form a mixture of the first fluid and the second fluid; infusing the mixture of the first fluid and the second fluid at a combined rate, wherein the combined rate is a sum of a first infusion rate associated with the first fluid and a second infusion rate associated with the second fluid; determining a common line volume corresponding to a volume of the common line; determining that the second reservoir is depleted; drawing the first fluid from the first reservoir without drawing the second fluid from the second reservoir; driving the first fluid at the combined rate along a flow path including the common line; determining that a driven volume of the first fluid equals or exceeds the common line volume; and changing the infusion rate of the first fluid from the combined rate to the first rate, and continuing to infuse the first fluid along the flow path at the first rate.


The infusion pump may also include a mixing chamber in fluid communication with the first reservoir, the second reservoir, and the common line. Determining the common line volume may include receiving the common line volume from a user input, retrieving the common line volume from a memory, or retrieving the common line volume over a network. The common line volume may be predetermined.


Determining the common line volume may include determining the common line volume based on the first fluid. The first rate may be different than the second rate. Driving the first fluid at the combined rate may include driving the first fluid at a rate that exceeds a drug library rate limit associated with the first fluid. Determining that the second reservoir is depleted may include receiving a sensor signal that air is present in the junction or in a line coupling the junction to the second reservoir.


The method may further include pumping the first fluid from the first reservoir towards the second reservoir in response to receiving the sensor signal that air is present in the junction or in the line coupling the junction to the second reservoir.


In yet another embodiment, a control system for controlling operation of an infusion pump of an infusion pump system is provided. The infusion pump system includes a first reservoir configured to hold a first fluid, a second reservoir configured to hold a second fluid, a junction in fluid communication with the first reservoir and the second reservoir, a common line in fluid communication with the junction and having a terminal fluid delivery end, and the infusion pump, wherein the infusion pump is operable to drive fluid through the common line toward the terminal fluid delivery end. The control system includes: one or more hardware processors; and a memory storing executable instructions that when executed by the one or more hardware processors, configure the infusion pump to: draw the first fluid from the first reservoir and the second fluid from the second reservoir to form a mixture of the first fluid and the second fluid; infuse the mixture of the first fluid and the second fluid at a combined rate, wherein the combined rate is a sum of a first infusion rate associated with the first fluid and a second infusion rate associated with the second fluid; determine a common line volume corresponding to a volume of the common line; draw the first fluid from the first reservoir without drawing the second fluid from the second reservoir; drive the first fluid at the combined rate along a flow path including the common line; determine that a driven volume of the first fluid equals or exceeds the common line volume; and change the infusion rate of the first fluid from the combined rate to the first rate, and continue to infuse the first fluid along the flow path at the first rate.


The infusion pump may also include a mixing chamber in fluid communication with the first reservoir, the second reservoir, and the common line.


The executable instructions may also configure the infusion pump to determine the common line volume by receiving the common line volume from a user input, determine the common line volume by retrieving the common line volume from a memory, or determine the common line volume by retrieving the common line volume over a network. The common line volume may be predetermined.


The executable instructions may also configure the infusion pump to determine the common line volume by determining the common line volume based on the first fluid. The first rate may be different than the second rate.


The executable instructions may configure the infusion pump to drive the first fluid at the combined rate by driving the first fluid at a rate that exceeds a drug library rate limit associated with the first fluid. The executable instructions may configure the infusion pump to determine that the second reservoir is depleted by receiving a sensor signal that air is present in the junction or in a line coupling the junction to the second reservoir. The executable instructions may further configure the infusion pump to pump the first fluid from the first reservoir towards the second reservoir in response to receiving the sensor signal that air is present in the junction or in the line coupling the junction to the second reservoir.


In yet another embodiment, a method for controlling operation of an infusion pump of an infusion pump system is provided. The infusion pump system includes a first reservoir configured to hold a first fluid, a second reservoir configured to hold a second fluid, a junction in fluid communication with the first reservoir and the second reservoir, a common line in fluid communication with the junction and having a terminal fluid delivery end, and the infusion pump, wherein the infusion pump is operable to drive fluid through the common line toward the terminal fluid delivery end. The method includes: receiving instructions to deliver the first fluid at a first rate, subsequently concurrently deliver a mixture of the first fluid and the second fluid, and concurrently deliver the first fluid at the first rate and the second fluid at a second rate; infusing the first fluid at the first rate along a first flow path, the first flow path including the common line; determining a common line volume corresponding to a volume of the common line; drawing the first fluid from the first reservoir the second fluid from the second reservoir to deliver the mixture of the first fluid and the second fluid; infusing the mixture of the first fluid and the second fluid at a flushing rate along a second flow path, the second flow path including the common line; determining that an infused volume of the mixture of the first fluid and the second fluid equals or exceeds the common line volume; and changing the infusion rate of the mixture of the first fluid and the second fluid from the flushing rate to a combined rate, wherein the combined rate is the sum of the first rate and the second rate, and continue to infuse the mixture of the first fluid and the second fluid along the second flow path at the combined rate.


The infusion pump system may also include a mixing chamber in fluid communication with the first reservoir, the second reservoir, and the common line. The method may also include determining the flushing rate based upon whether the first fluid is a medicinal fluid, determining the flushing rate as the first rate when the first fluid is a medicinal fluid, or determining the flushing rate as the first rate increased by a flushing rate factor when the first fluid is not a medicinal fluid.


The method may also include receiving the common line volume from a user input, retrieving the common line volume from the memory, or retrieving the common line volume over a network. The common line volume may be predetermined.


The method may also include determining the common volume based on the first fluid. The first rate may be different than the second rate. Infusing the mixture of the first fluid and the second fluid at the flushing rate may include one or more of delivering the first fluid at a first fluid flush rate that exceeds a drug library rate limit associated with the first fluid or delivering the second fluid at a second fluid flush rate that exceeds a drug library rate limit associated with the second fluid.


The method may also include: determining that an infusion of the second fluid has completed; drawing the first fluid from the first reservoir without drawing the second fluid from the second reservoir; infusing the first fluid at the combined rate; determining that a volume of the first fluid infused at the combined rate equals or exceeds the common line volume; and changing the infusion rate of the first fluid from the combined rate to the first rate.


The method may also include determining that an infusion of the second fluid has completed by comparing a volume of fluid infused to a programmed volume to infuse, determining that an infusion of the second fluid has completed by receiving an instruction to stop infusing the second fluid, or determining that an infusion of the second fluid has completed by determining that the second reservoir has been depleted of second fluid. Infusing the first fluid at the combined rate may include infusing the first fluid at a rate that exceeds a drug library rate limit associated with the first fluid.


The method may also include: determining that an infusion of the first fluid has completed; drawing the second fluid from the second reservoir without drawing the first fluid from the first reservoir; infusing the second fluid at the combined rate; determining that a volume of the second fluid infused at the combined rate equals or exceeds the common line volume; and changing the infusion rate of the second fluid from the combined rate to the second rate.


The method may also include determining that an infusion of the first fluid has completed by comparing a volume of fluid infused to a programmed volume to infuse, determining that an infusion of the first fluid has completed by receiving an instruction to stop infusing the first fluid, or determining that an infusion of the first fluid has completed by determining that the first reservoir has been depleted of first fluid. Infusing the second fluid at the combined rate may include infusing the second fluid at a rate that exceeds a drug library rate limit associated with the second fluid.


The foregoing and other features and advantages of the invention will become further apparent from the following detailed description of the presently preferred embodiments, read in conjunction with the accompanying drawings. The detailed description and drawings are merely illustrative of the invention rather than limiting. The scope of the invention is defined by the appended claims and equivalents thereof.


In certain embodiments, a control system can control operation of an infusion pump system. The infusion pump system can include a first reservoir that can hold a first fluid, a second reservoir configured to hold a second fluid, a junction in fluid communication with the first reservoir and the second reservoir, a common line in fluid communication with the junction and having a terminal fluid delivery end, and an infusion pump operable to drive fluid through the common line toward the terminal fluid delivery end. The control system can control whether fluids from the reservoirs are drawn individually or concurrently (e.g., simultaneously or in an alternating manner). For example, the control system can include a flow control mechanism to manipulate a flow path at the junction to draw fluid from the first reservoir alone, the second reservoir alone, or both first and second reservoirs in an alternating manner.


The first reservoir may be referred to as the primary source and the second reservoir may be referred to as the secondary source. During a primary infusion, fluid is infused from the first, or primary reservoir, into the junction, and through the common line to the terminal end (and into the patient) at a first infusion rate. During a secondary infusion, fluid is infused from the second, or secondary reservoir, into the junction, and through the common line to the terminal end (and into the patient) at a second infusion rate. During a concurrent infusion (sometimes referred to as concurrent delivery), first and second fluids are infused simultaneously to a patient at respective first and second infusion rates. A first volume of the first fluid is drawn from the first reservoir, and a second volume of the second fluid is drawn from the second reservoir. The first and second volumes are proportionate to the first and second infusion rates. Once the first and second fluids have been drawn, the pump drives (e.g., pumps or pushes out) the fluid combination through the common line to the terminal and (and into the patient) at a combined rate.


The combined rate can be equal to one of the first or second infusion rates, or it can be determined from the first and second infusion rates. For example, the combined rate can be determined as the sum as the first and second infusion rates. In some cases, a maximum rate may be established, and if the sum of the programmed first and second rates exceeds the maximum rate, then the combined rate may be set to the maximum rate. Other methods of determining a combined rate using the first and second rates are possible, as well. In addition, if the combined rate equals or exceeds a predetermined maximum combined rate, the first and second rates may be reduced proportionally such that their sum is less than or equals the maximum combined rate. In other embodiments, if the combined rate equals or exceeds a predetermined maximum combined rate, only the first rate is reduced until the sum of the first and second rates is less than or equals the maximum combined rate. For example, only the first rate may be reduced based upon a determination of fluid types of the first and second fluids. If the first fluid is a non-medication and the second fluid is a medication, then in some embodiments, the only the first rate is reduced (or the first rate is reduced by an amount or proportion that is greater than an amount or proportion that the second rate is reduced), such that the sum of the first and second rates is less than or equal to the maximum combined rate. In such embodiments, the user would be presented with a suggested first and second rate for approval or confirmation via a user interface before changing and/or initiating an infusion according to such adjusted first and/or second rates.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A and 1B are block diagrams of infusion pump systems with concurrent fluid delivery and common line auto flush in accordance with the present invention.



FIG. 2 is a block diagram of an infusion pump with concurrent fluid delivery and common line auto flush in accordance with the present invention.



FIG. 3 is a schematic diagram of an infusion pump with concurrent fluid delivery and common line auto flush in accordance with the present invention.



FIGS. 4A and 4B are graphs of fluid volume delivered at the terminal fluid delivery end of the common line versus time for a method of use for an infusion pump with concurrent fluid delivery and common line auto flush in accordance with the present invention.



FIG. 5A is a flowchart of a method of concurrent fluid delivery and common line auto flush in accordance with the present invention that may be performed by the infusion pumps of FIGS. 1-3.



FIG. 5B is a flowchart of a method of providing a secondary infusion until the secondary reservoir is depleted in accordance with the present invention that may be performed by the infusion pumps of FIGS. 1-3.



FIG. 5C is a flowchart of a method of providing sequential infusions, where a primary infusion is provided until the primary reservoir is depleted in accordance with the present invention that may be performed by the infusion pumps of FIGS. 1-3.



FIG. 6 is a flowchart of a method of determining fluid drive start times to cause infusions to reach a patient at desired infusion start times in accordance with the present invention that may be performed by the infusion pumps of FIGS. 1-3.



FIGS. 7A-7E are schematic diagrams of use for an infusion pump system with concurrent fluid delivery and common line auto flush in accordance with the present invention.





Like elements share like reference numbers throughout the various figures.


DETAILED DESCRIPTION

Systems and methods that improve an infusion pump system with concurrent delivery and common line auto flush are described herein. An infusion pump can operate in a primary delivery mode and deliver a first fluid from a first reservoir at a first rate, and then switch to a concurrent delivery mode, such as by delivering a combination of the first fluid from the first reservoir and a second fluid from a second reservoir at a combined delivery rate. The pump may switch from a concurrent delivery mode to a primary delivery mode (or to a secondary delivery mode where a second fluid is delivered from a second reservoir at a second rate), as well.


As discussed above, first fluid will remain in the common line at the time the delivery mode is switched from primary delivery mode to concurrent delivery mode. Therefore, if the first and second fluids are delivered at the combined delivery rate as soon as the concurrent delivery mode begins, the first fluid remaining in the common line will be delivered into the patient at the incorrect (i.e., the combined) rate. Furthermore, delivering fluids at rates other than the desired rates may result in inaccurate therapy, which can be dangerous to the patient. The systems and methods described herein improve delivery and accurately account for the fluid remaining in the volume of the common line. Fluid as used herein can be any fluid suitable to be administered to a patient by infusion, including saline fluid, fluid including a drug or other therapeutic agent, or the like.



FIGS. 1A & 1B are block diagrams for embodiments of infusion pump systems with concurrent delivery and a common line. The infusion pump system illustrated in FIG. 1A includes a junction in fluid communication with the first reservoir and the second reservoir. An optional mixing chamber is located at the junction, or between the junction and the common line. The junction and/or mixing chamber is located internal to the infusion pump. In the embodiment of the infusion pump system illustrated in FIG. 1B a junction in fluid communication with the first reservoir and the second reservoir is located external to the infusion pump. An optional mixing chamber is located at the junction, or between the junction and the common line. The location of the junction, in part, determines the length and internal volume of the common line between the junction and the terminal fluid delivery end. The internal cross-sectional shape, which is usually substantially circular, and the diameter and length of the common line determine its internal volume. Other shapes can be used without detracting from the scope of the disclosure.


The infusion pump system 100 of FIG. 1A includes a junction 180 internal to the infusion pump 130 and an optional mixing chamber (not shown) at the junction or between the junction 180 and a common line 140. The infusion pump system 100 includes a first reservoir 110 that contains a first fluid 112; a second reservoir 120 that contains a second fluid 122; a junction 180 in fluid communication with the first reservoir 110 and the second reservoir 120; an optional mixing chamber (not shown); a common line 140 in fluid communication with the mixing chamber and/or the junction 180 at one end 140A and having a terminal fluid delivery end 140B for connection to the patient 102, and an infusion pump 130 operable to drive fluid through the common line 140.


Primary Infusion Mode


The infusion pump 130 is operable to operate in a primary infusion mode during which the infusion pump infuses the first fluid 112 at a first rate along a first flow path 150 that includes the first reservoir 110, the junction 180, the optional mixing chamber, and the common line 140. The infusion pump 130 is further operable to determine a common line flush volume value corresponding to the internal volume of the common line 140. The infusion pump 130 may determine the common line flush volume by receiving the value from an operator, receiving it over a network (e.g., from a drug library or other database), retrieving it from a memory of the infusion pump, or any other method described herein.


Primary to Concurrent Infusion Mode with Auto Flush


The infusion pump 130 is further configured to change to a concurrent infusion mode by drawing a second fluid 122 from a second reservoir 120 along a second flow path 160 into the junction 180 and/or mixing chamber and mixing it with the first fluid 112, drawn from the first reservoir 110 via the first flow path 150. The second flow path 160 includes the second reservoir 120, the junction 180, and the optional mixing chamber. The infusion pump is configured to initially infuse the mixture at the first rate until the volume of the first fluid is flushed out of the common line 140. The infusion pump 130 is configured to monitor volume of the mixture of first and second fluids 112, 122 driven at the first rate and subsequently pump the mixture of first and second fluids 112, 122 at the programmed combined rate when the monitored volume of the mixture is equal to or greater than the common line flush volume value. In this case, the delivery rates of fluid 1 and fluid 2 would be reduced (scaled down) from programmed rates during displacement of the common line volume, and the pump system may allow an override of one or both lower rate limits, or other associated limits, defined respectively for each of fluid 1 and fluid 2, during this phase of delivery.


Alternatively, for example in a scenario where the first fluid is a not a medication (e.g., saline) and it is desired to initiate delivery of the second fluid (that is a medication) rapidly, the infusion pump could be configured to initially infuse the mixture at a more rapid rate to quickly displace the relatively inert common line volume. In this case, the initial combined rate could be increased (scaled up) to the programmed first rate plus the programmed second rate until the monitored volume of the mixture is equal to the common line flush volume. In this case, the delivery rates of fluid 1 and/or fluid 2 may be increased above upper rate limits defined for those respective fluids and the pump system may allow override of those limits during this phase of delivery. Further, the resulting scaled combined rate will be applied to the common line fluid 1, whose upper rate limit may limit or define allowable increased combined rates during the common line displacement phase. In this case, drug library defined limits would be considered and applied by the pump system at the point of infusion to the patient as well as per pump programming activity.


Concurrent to Primary Infusion Mode with Auto Flush


The infusion pump 130 is further configured to change from concurrent delivery to a primary infusion mode by refraining from drawing the second fluid 122 from the second reservoir 120, and by infusing only the first fluid 112 from the first reservoir 110 along the first flow path 150. When the infusion pump switches to primary infusion mode, the infusion pump is configured to initially drive the first fluid 112 at the combined rate until the volume of the mixture of first and second fluids 112, 122 is flushed out of the common line 140. The infusion pump 130 is configured to monitor volume of the first fluid 112 driven at the combined rate and subsequently pump the first fluid 112 at the first rate when the monitored first fluid volume is equal to or greater than the common line flush volume value. In one example, the infusion pump 130 can be a fluid displacement pump employing a cassette, such as the Plum 360™ infusion pump available from ICU Medical, Inc. of San Clemente, Calif. Those skilled in the art will appreciate that the infusion pump 130 can be any type of pump operable to drive fluid from two reservoirs through a common line 140. In this case, driving of the first fluid at the combined rate during common line displacement may require that the pump system allows override of drug library-defined upper rate limits for the first fluid.


Concurrent to Secondary Infusion Mode with Auto Flush


In another embodiment, the infusion pump 130 is further configured to change from a concurrent delivery to a secondary infusion mode by refraining from drawing the first fluid 112 from the first reservoir 110, and by infusing only the second fluid 122 from the second reservoir 120 along the second flow path 160. For example, if the first fluid 112 infusion is completed or is stopped, the infusion pump 130 may automatically switch to a secondary infusion mode. In such case, the infusion pump 130 will stop drawing first fluid 112 from the first reservoir 110, and it will continue to pump at the combined rate until the common line is cleared of the fluid mixture. In this case, the pump system may need to allow an override of upper rate limits for the second fluid while it is pumped at the combined rate during common line displacement. The infusion pump 130 is configured to monitor volume of the second fluid 122 driven at the combined rate and subsequently pump the second fluid 122 at the second rate when the monitored second fluid volume is equal to or greater than the common line flush volume value.


In one embodiment, the infusion pump 130 can be operably connected to a medication management unit (MMU) 170 or a server over a hospital network and/or the Internet, to receive a drug library (or other database), which may specify an appropriate common line flush volume value. For example, the drug library (or other database) may include information regarding the volume of various tubing assemblies, each tubing assembly including a common line. The infusion pump (or server) may be configured to determine a tubing assembly identifier associated with a tubing assembly that is attached to the infusion pump and the patient 102. The infusion pump may determine the tubing assembly identifier by receiving it from a server over the hospital network and/or the Internet, by receiving it via manual data entry by an operator, and/or by reading the tubing assembly identifier from the tubing assembly (or by other methods). For example, a tag, such as an RFID tag, an NFC tag or other wireless tag, may include the tubing assembly identifier. A tag reader incorporated into or in communication (directly or indirectly) with the infusion pump, may read the tag to determine the tubing assembly identifier. The common line flush volume value may be determined using the tubing assembly identifier and the drug library (or database).


In one embodiment, the infusion pump 130 can be further operable to increment a displayed value of first fluid volume by the monitored volume when the mixture of first and second fluids 112, 122 are driven at the first rate. The infusion pump 130 can be further operable to increment a displayed value of first and second fluid volumes when the first fluid 112 is driven at the combined rate. In one embodiment, the infusion pump 130 is operable to monitor the volume of infused first fluid 112 and switch to a concurrent infusion mode when the volume of the infused first fluid is equal to a Volume To Be Infused (VTBI) for the first fluid or when the volume of the infused first fluid is equal to the VTBI for the first fluid minus the volume of the common line. In one embodiment, the infusion pump 130 is operable to monitor the volume of infused second fluid 112 during a concurrent infusion mode and switch to a primary infusion mode when the volume of the infused second fluid is equal to a Volume To Be Infused (VTBI) for the second fluid or when the volume of the infused second fluid is equal to the VTBI for the second fluid minus the volume of the common line.


The infusion pump 130 can be operable to receive the common line flush volume value for the common line 140 automatically from the drug library stored in a memory locally in the infusion pump system 100 or remotely on a server. In one example, the drug library associates the common flush volume value with a particular therapeutic agent. In some cases, the drug library may include an indication (e.g., a flag, value, etc.) that a particular fluid is a rate dependent medicinal fluid whose action is rate dependent. The infusion pump 130 may be configured to infuse such fluids (whether alone or concurrently with a second fluid) at the infusion rate specified for such fluids. In another example, the drug library associates the common flush volume value with a particular clinical care area (CCA), such as general care, an intensive care unit (ICU), a neonatal ICU, or the like. In yet another example, the drug library associates the common flush volume value with a particular consumable infusion set, which provides the common line volume. The drug library can include upper and lower dosing limits with hard and soft limits for a number of therapeutic agents. In another embodiment, the infusion pump 130 can be operable to receive the common line flush volume value for the common line 140 from a caregiver via an input on a user interface of the infusion pump.


The common line 140 as illustrated includes the line between the junction 180 and the terminal fluid delivery end 140B that is generally connectable to the patient 102 and includes any fluid path common to the first flow path 150 and the second flow path 160. Thus, the common line 140 can include flow paths within the infusion pump 130 (including the associated consumable infusion set, when applicable) common to the first flow path 150 and the second flow path 160, and is not limited to tubing external to the infusion pump 130. The common line 140 is any portion of the infusion pump system 100 through which the first fluid 112 or a combination of the first fluid 112 and the second fluid 122 can alternately flow when switched. In one embodiment, the common line flush volume value is an internal volume of the common line 140. The common line flush volume value can include an associated consumable infusion set volume, extension sets, filters, stopcocks, manifolds, patient access devices, catheters, and the like. In another embodiment, the common line flush volume value is an internal volume of the common line 140 plus an adjustment volume. The adjustment volume can be any volume desired as a safety factor to assure that the common line 140 is free of the first fluid 112 before the second fluid 122 is infused at the second rate.


The infusion pump system 100′ of FIG. 1B has a junction 180′ external to the infusion pump 130′ and an optional mixing chamber (not shown) at the junction 180′ or between the junction 180′ and a common line 140′. The infusion pump system 100′ includes a first reservoir 110′ containing a first fluid 112′; a second reservoir 120′ containing a second fluid 122′; a junction 180′ in fluid communication with the first reservoir 110′ and the second reservoir 120′; an optional mixing chamber (not shown); a common line 140′ in fluid communication with the mixing chamber and/or the junction 180′ at one end 140A′ of the common line 140′ and a terminal fluid delivery end 140B′ that is generally connectable to the patient 102′, and an infusion pump 130′ operable to drive fluid through the common line 140′. The infusion pump 130′ is operable to: infuse the first fluid 112′ at a first rate along a first flow path 150′ including the first reservoir 110′, the junction 180′, the optional mixing chamber, and the common line 140′; determine a common line flush volume value for the common line 140′. The infusion pump 130′ may determine the common line flush volume by receiving the value from an operator, receiving it over a network (e.g., from a drug library or other database), retrieving it from a memory of the infusion pump, or any other method described herein.


The infusion pump 130′ is further configured to change to a concurrent infusion mode by drawing a second fluid from a second reservoir 120′ along a second flow path 160′ into the optional mixing chamber and mixing it with the first fluid, drawn from the first reservoir 110′ via the first flow path 150′. The second flow path 160′ includes the second reservoir 120′, the junction 180′, and the optional mixing chamber. The infusion pump is configured to initially infuse the mixture at the first rate until the volume of the first fluid is flushed out of the common line 140′. The infusion pump 130′ is configured to monitor volume of the mixture of first and second fluids 112′, 122′ driven at the first rate and subsequently pump the mixture of first and second fluids 112′, 122′ at a combined rate when the monitored volume is equal to or greater than the common line flush volume value.


The infusion pump 130′ is further configured to change to a primary infusion mode by refraining from drawing the second fluid 122′ from the second reservoir 120′, and by infusing only the first fluid 112′ from the first reservoir 110′ along the first flow path 150′. When the infusion pump 130′ switches to primary infusion mode, the infusion pump 130′ is configured to initially infuse the first fluid 112′ at the combined rate until the volume of the mixture of first and second fluids 112′, 122′ is flushed out of the common line 140′. The infusion pump 130′ is configured to monitor volume of the first fluid 112′ driven at the combined rate and subsequently pump the first fluid 112′ at the first rate when the monitored volume is equal to or greater than a common line flush volume value. The infusion pump 130′ is further configured to determine the common line flush volume value according to any of the methods described herein.


In one embodiment, the junction 180′ can include a two-way valve to manually or automatically switch the infusion pump system 100′ between the first flow path 150′ and the second flow path 160′. In one example, the infusion pump 130′ can be a peristaltic pump. Those skilled in the art will appreciate that the infusion pump 130′ can be any type of pump operable to drive fluid through the common line 140′.



FIG. 2 is a block diagram of an embodiment of an infusion pump with concurrent fluid delivery and common line auto flush. The infusion pump 230 is operably connected to a common line 240 in fluid communication with a junction 280 and/or mixing chamber at one end 240A and having a terminal fluid delivery end 240B (not shown), the junction 280 being in fluid communication with a first reservoir (not shown) containing a first fluid and a second reservoir (not shown) containing a second fluid. In this example, a first reservoir line 211 provides fluid communication between the first reservoir and the junction 280 and a second reservoir line 221 provides fluid communication between the second reservoir and the junction 280.


The infusion pump 230 includes a memory 233 operable to store programming code; a flow controller 235 operably connected to the memory 233; and a fluid driver 232 operably connected to receive a control signal 231 from the flow controller 235, the fluid driver 232 being operable to drive fluid through the common line 240. The flow controller 235 is operable to execute the programming code and provide the control signal 231 to the fluid driver 232 in response to the programming code. The fluid driver 232 is responsive to the control signal 231 to infuse the first fluid at a first rate along a first flow path 211 including the first reservoir, the junction 280, and the common line 240; receive a common line flush volume value associated with the common line 240; switch from infusing only the first fluid via the first flow path 250 to infusing a combination of the first fluid from the first reservoir and a second fluid from the second reservoir; drive the fluid combination at the first rate; monitor volume of the fluid combination driven at the first rate; and drive the fluid combination at a combined rate when the monitored volume is equal to or greater than the common line flush volume value. The fluid driver 232 is also responsive to the control signal 231 to infuse the fluid combination at the combined rate; switch to infusing only the first fluid via the first flow path 250; drive the first fluid at the combined rate; monitor the volume of the first fluid driven at the combined rate; and drive the first fluid at the first rate when the monitored volume is equal to or greater than the common line flush volume value. The combined rate may be retrieved from the memory 233 or determined from a first infusion rate associated with the first fluid and a second infusion rate associated with the second fluid. For example, the combined rate may be determined as the sum of the first and second infusion rates.


In an embodiment, the flow controller 235 monitors the volume based on a time elapsed and a rate of delivery. The flow controller 235 can also monitor volume based on measurements, such as number of turns of a motor or signals from a sensor.


The flow controller 235 can include a hardware processor, microprocessor, or the like responsive to the programming code to generate the control signal 231. The fluid driver 232 can include a metered pump, such as a cartridge pump, peristaltic pump, or the like, operable to drive fluid at a desired rate in response to the control signal 231. In one embodiment, the fluid driver 232 can be further responsive to the control signal 231 to increment a displayed first fluid volume by the monitored volume when the fluid combination is driven at the first rate or when the monitored volume is equal to or greater than an internal volume of the common line 240. The fluid driver 232 can be further responsive to the control signal 231 to increment displayed first and second fluid volumes as the first fluid is driven at the combination rate or when the monitored volume is equal to or greater than the internal volume of the common line 240. The first fluid displayed volume and/or the second fluid displayed volume can be displayed on a user interface 236.


The memory 233 can also be operable to store data and other information, such as a drug library 234 (or other database) including the common flush volume value, which can optionally be associated with a particular therapeutic agent, a particular clinical care area, and/or a particular consumable infusion set. Different therapeutic agents may have different fluid properties and thus it may be advantageous in some embodiments to associate particular common flush volume value with particular therapeutic agents. In one embodiment, the infusion pump 230 can receive the common line flush volume value for the common line 240 automatically from the drug library 234. In another embodiment, the infusion pump 230 can receive the common line flush volume value manually via direct entry of the value on a user interface 236. The manual entry can be accomplished using a manufacturer provided volume value based upon the length and internal diameter of the common line 240 or a list number or other identifier that is used to access an associated volume value from a lookup table in the pump memory 233, drug library, stored in a network location, at a server, or MMU. The possibility for manual typographical errors can be reduced by use of a barcode, radio frequency (RFID), optical, touch memory reader, near field communicator, or the like to input or scan a machine readable identifier on the infusion set, common line, or its package to obtain the volume value, the list number or other identifier associated with the volume value.


The infusion pump 230 can include human and/or machine interfaces as desired for a particular application. A user interface 236 operably connected to the flow controller 235 can provide input from and/or output to a caregiver or other user to the infusion pump 230. Exemplary user interfaces can include display screens, soft keys or fixed keys, touchscreen displays, and the like. An I/O interface 237 operably connected to the flow controller 235 can provide input from and/or output to hardware associated with the infusion pump 230. Exemplary I/O interfaces can include a wired and/or wireless interface to an electronic network, medication management unit (MMU), medication management system (MMS), or the like.


The common line flush volume value can be selected as desired for a particular application. The common line 240 includes the line between the junction 280 and the terminal fluid delivery end 240B, and includes any fluid path common to the first flow path 250 and the second flow path 260 and so can include any portion of the infusion pump 230 (including the associated consumable infusion set) through which the first fluid or the second fluid can alternately flow or flow in a combined manner. In one embodiment, the common line flush volume value is equal to the internal volume of the common line 240, so that the second fluid is infused at the second rate along the second flow path as soon as the first fluid has been cleared from the common line 240. In another embodiment, the common line flush volume value is equal to the internal volume of the common line 240 plus an adjustment volume (to take into account the added/subtracted volume of other connectors or components), so that the second fluid is infused at the second rate along the second flow path after the first fluid has been cleared from the common line 240 plus the adjustment volume of the second fluid has been delivered at the first rate. In another embodiment, the common line flush volume value is equal to the internal volume of the common line modified by a percentage, which could provide a desired overage or underage. The adjustment volume can be used as a safety factor to assure that the common line 240 is free of the first fluid before the second fluid is infused at the second rate.



FIG. 3 is a schematic diagram of an infusion pump with common line auto flush in accordance with the present invention. In this example, the infusion pump 330 includes a display 340, soft keys 350, and fixed keys 360 as a user interface. The display 340 provides operational and/or programming information to the user. The soft keys 350 perform different functions depending on the command displayed on an adjacent command portion 342 of the display 340. The fixed keys 360 are labeled with an input or function which functions the same, regardless of whatever is displayed on the display 340. In this example, the infusion pump 330 also includes a pump mechanism 370 operable to communicate with the first reservoir line and the second reservoir line and to move the first fluid or the second fluid to the terminal fluid delivery end of the common line.



FIGS. 4A & 4B are graphs of fluid volume delivered at the terminal end of the common line or patient versus time for a method of use for an infusion pump with common line auto flush in accordance with the present invention.


Referring to FIG. 4A, graph 510 is the fluid volume delivered at the terminal fluid delivery end of the common line for a first fluid versus time and graph 520 is the fluid volume delivered at the terminal fluid delivery end of the common line for a mixture of the first fluid and a second fluid versus time. From T1 to T2, the first fluid is infused at a first rate along a first flow path including the first reservoir and the second fluid is not infused. From T2 to T3, the first fluid is infused at a flushing rate greater than the first rate as a mixture of first and second fluids are drawn from first and second reservoirs, respectively, into the junction and/or mixing chamber and driven out at the flushing rate. For example, if the first fluid is a non-medicinal fluid (e.g., a saline solution, etc.), it may be desirable to flush the first fluid from the common line at an increased rate in order to infuse the second fluid into the patient as soon as possible. The flushing rate can be equal to the combined first rate plus second rate (as shown) or it can be determined by increasing the combined rate (e.g., the first rate plus the second rate by a flushing factor (e.g., 10%, 20%, 50%, 100%, etc.). The second fluid cannot be infused (e.g., it will not enter the patient) until the internal volume of the common line is cleared of the first fluid. From T3 to T4, the internal volume of the common line has been cleared of the first fluid and beginning at T3 the mixture of the first and second fluids are infused into the patient at a combined rate. From T4 to T5, auto flush is performed: the mixture of the first fluid and the second fluid is infused into the patient at the combined rate as only the first fluid is drawn into the junction and/or mixing chamber and driven out at the combined rate until the internal volume of the common line is cleared of the first and second fluid mixture. The first fluid cannot be infused by itself (e.g., it cannot enter the patient without the second fluid) until the internal volume is cleared of the first and second fluid mixture. After T5, the first fluid is infused at the first rate along the first flow path including the first reservoir after the internal volume of the common line has been cleared of the first and second fluid mixture. In this example, no additional second fluid is infused after T5, although in other embodiments, additional concurrent infusions (of first and second fluid mixtures) and/or secondary infusions (of just the second fluid) may be programmed to occur, as well.


Those skilled in the art will appreciate that the transition between the two infusion modes can be selected as desired for a particular application. In the example of FIG. 4A, a common line auto flush is performed from T4 to T5, but not from T2 to T3. As long as the common line flush volume value is known, the common line auto flush maintaining the first rate between T2 and T3 can be performed as desired.


Referring to FIG. 4B, graph 530 is the fluid volume delivered at the terminal fluid delivery end of the common line for a first fluid versus time and graph 540 is the fluid volume delivered at the terminal fluid delivery end of the common line for a mixture of the first fluid and a second fluid versus time. From T1 to T2, the first fluid is infused at the first rate along a first flow path including the first reservoir and the second fluid is not infused. From T2 to T3, auto flush occurs and the first fluid is infused at the first rate as a mixture of first and second fluids are drawn from first and second reservoirs, respectively, into a junction and/or mixing chamber, and driven out at a combined rate (as discussed above). The first fluid is infused, driven or displaced until the internal volume of the common line has been cleared of the first fluid. After T3, the mixture of the first and second fluids is infused, driven or displaced at the combined rate (as discussed above) after the internal volume of the common line has been cleared of the first fluid. In one embodiment, the common line is cleared of the first fluid when the monitored volume of the mixture of the first and second fluids driven at the first rate between T2 and T3 is equal to or greater than the common line flush volume value. In this example, no additional second fluid is infused after T3, although in other embodiments, additional concurrent infusions (of first and second fluid mixtures) and/or secondary infusions (of just the second fluid) may be programmed to occur, as well.


Concurrent Delivery with Common Line Auto Flush



FIG. 5A is a flowchart of an embodiment of a method for concurrent infusion with common line auto flush. The method 550 can be performed with any infusion pump system described herein. In one embodiment, the infusion pump system includes a first reservoir containing a first fluid, a second reservoir containing a second fluid, a junction in fluid communication with the first reservoir and the second reservoir, an optional mixing chamber at or in fluid communication with the junction, and a common line in fluid communication with the junction and/or mixing chamber at one end and having a terminal fluid delivery end, and an infusion pump operable to drive fluid through the common line. The method 550 can be performed by any of the systems discussed herein. In an embodiment, some or all aspects of the method 550 are stored as programmed instructions to be executed by an infusion pump flow controller (e.g., flow controller 235). The method 550 can be used with an infusion pump system and infusion pump as described in FIGS. 1A, 1B, & 2 above. A drug library may include an indication (e.g., flag, value, etc.) to enable or disable concurrent infusion with auto flush, as described with respect to FIG. 5A. In this example, the infusion pump infuses a first fluid on a first flow path at a first rate and switches to a concurrent infusion mode during which it infuses a mixture of the first fluid and a second fluid, maintaining the first rate long enough to clear the remaining first fluid from the common line before changing to a combined rate for infusing the mixture of the first and second fluids.


Referring to FIG. 5A, at block 552, the flow controller 235 determines a common line flush volume value. As discussed above, the common line flush value can be received based on a user input via any of the user interfaces discussed above. In an embodiment, the flow controller 235 can automatically retrieve the common line flush volume value from the memory 233 or over a network (e.g., from a drug library or other database), or by wirelessly reading information from a tag associated with the common line and using the information to retrieve the common line flush volume from the memory or over the network. The common line flush volume may be predetermined for particular fluids. The common line flush volume may also depend on the VTBI or rate of the infusion.


At block 554, a first infusion mode to infuse the first fluid at a first infusion rate begins. The first fluid is infused or driven at a first infusion rate along a first flow path that includes the first reservoir, the junction, the optional mixing chamber, and the common line. The infusion of the first fluid can be controlled by the flow controller 235 based on a control signal to activate the pump or other mechanical system. In some embodiments, the infusion of the first fluid can also be based on a user input or user control of the pump or the mechanical system. During the first infusion mode, the infusion pump drives the first fluid from the first reservoir at the first infusion rate. At block 556, the flow controller 235 can determine to switch from the first infusion mode to a concurrent infusion mode. During an auto flush period, at block 556, the infusion pump drives a mixture or combination of the first fluid and the second fluid toward the common line at the first rate. By driving the combination of the first and second fluids at the first rate, the first fluid remaining in the common line is flushed and delivered to the patient at the same rate as therapeutically required. In some embodiments, during the auto flush period, the infusion pump drives the combination of the first fluid and the second fluid at a combined rate, instead of the first rate. For example, it may be advantageous to use a combined rate to more quickly flush the common line, particularly when the fluid being flushed from the common line is a non-medicinal fluid, such as saline, or other non-medicinal fluid. The combined rate can be determined using any of the methods described herein. For example, the combined rate may be determined as the sum as the first and second rates. The flow controller 235 can use control signals to control the driving of the mixture of the first fluid and the second fluid and to control the rate of delivery. It also may be desirable to flush the common line of a non-medicinal first fluid such as saline, at a rate even higher than the combined rate to expedite delivery of the second medication. In scenarios where drug library-defined limits are assigned for one or both of the two fluid delivery rates, the pump system may allow overrides of the upper rate limit for one or both of the fluids during the common line flush. For example, the pump system could effectively apply these delivery limits upon delivery to the patient, versus upon delivery from the pump. In another embodiment, the method 550 of FIG. 5A may be modified at block 556 such that the infusion pump drives a fluid combination at a rate that is a ratio of a first programmed first fluid rate and a programmed second fluid rate.


At block 558, the flow controller 235 can monitor volume of the mixture of first and second fluids driven at the first rate. The flow controller 235 can determine when the monitored volume is equal to the common line flush volume value. When it is determined that the monitored volume equals or exceeds the common line flush volume, the method 550 proceeds to block 560, where the flow controller 235 continues driving the mixture of the first and second fluids, but at the combined rate. In some embodiments, the flow controller 235 can measure an amount of time before changing the rate of the mixture fluid delivery to the combined rate. In one embodiment, the flow controller 235 can further include incrementing a first fluid displayed volume and a second fluid displayed volume by a proportion of the monitored volume when the monitored volume is equal to or greater than an internal volume of the common line. The proportion of monitored volume to be incremented for each of the first and second fluids can be equal to the proportion of first and second flow rates associated with the first and second fluids, respectively. For example, if the first flow rate is 10 ml/hr and the second flow rate is 5 ml/hr, the proportions of the monitored value incremented on the first and second volume displays will have a 2:1 ratio. If the monitored volume is 3 ml, then the display of the first fluid value will be increased by 2 ml and the display of the second fluid value will be increased by 1 ml. The flow controller 235 can thus accurately track the rate, time, and an amount of each fluid delivered to the patient. In some embodiments, the flow controller 235 executes only some of the steps described above with respect to FIG. 5A. Furthermore, the flow controller 235 can change the order of the steps, include additional steps, or modify some of the steps discussed above.


The common line flush volume value can be selected as desired for a particular application. In one embodiment, the common line flush volume value is an internal volume of the common line. In another embodiment, the common line flush volume value is an internal volume of the common line plus or minus an adjustment volume. The adjustment volume can be any volume desired as a safety factor to assure that the common line is free of the first fluid before the second fluid is infused at the second rate.


In one embodiment, the method 550 further includes incrementing a first fluid displayed volume by the monitored volume when driving a mixture of the first and second fluids at the first rate. The first fluid displayed volume is incremented by the monitored volume when the monitored volume is equal to or greater than an internal volume of the common line.


In some embodiments, the method 550 ends after the concurrent infusion at the combined rate ends. However, in other embodiments, the method 550 continues concurrent delivery of the first and second fluids until one of the fluids is depleted or until the desired volume of one of the fluids has been delivered. In such case, for example, when the second fluid reservoir is depleted, the infusion continues according to the method 580 discussed below with respect to FIG. 5B. If instead, the concurrent infusion continues until the desired volume of one of the fluids has been delivered, then the infusion may continue according to a slightly modified method 580, as discussed below with respect to FIG. 5B.


Concurrent Delivery to Infusion Completion with Common Line Auto Flush



FIG. 5B illustrates a method 580 of safely performing a concurrent infusion of first and second fluids until the volume of the second fluid reservoir is depleted (e.g., totally depleted or emptied of the second fluid), such that no second fluid or substantially no second fluid remains in the second reservoir. The method 580 can be performed by a flow controller (e.g., flow controller 235) alone and/or in conjunction with the method 550 of FIG. 5A. For example, method 580 may be performed beginning at block 586 and following block 560 of method 550 of FIG. 5A. A drug library may include an indication (e.g., flag, value, etc.) to enable or disable infusion until depletion functionality, as described with respect to FIG. 5B.


At block 582, the method 580 determines a common line flush volume of a common line. Any of the methods described herein may be used to determine the common line flush volume. At block 584, a concurrent infusion occurs, where a fluid combination is driven by an infusion pump at a combined rate. The fluid combination includes a mixture of a first fluid drawn into a junction and/or mixing chamber from a first reservoir and a second fluid drawn into the junction and/or mixing chamber from a second reservoir. As discussed herein, a first infusion rate may be associated with the infusion of the first fluid and a second infusion rate may be associated with the infusion of the second fluid. The ratio of the volumes of first and second fluids drawn into the mixing chamber is equal to the ratio of the ratio of first and second infusion rates. The fluid combination is driven from the junction and/or mixing chamber to the common line at a combined rate, which may be determined according to any of the methods described herein. For example, the combined rate may be determined as the sum of the first and second infusion rates.


At block 586, the method 580 determines whether the second reservoir has been depleted. For example, a sensor can detect whether there is air or air bubbles in the line between the junction and the second reservoir. If the method 580 does not determine that the second reservoir is depleted, the method 580 returns to block 584. If the method 580 determines that the second reservoir has been depleted, the method 580 proceeds to block 588. The method 580 may also optionally cause the infusion pump to at least partially back-prime the line between the junction and the second reservoir. For example, the infusion pump may pump some fluid from the first reservoir to force fluid into the line between the junction and the second reservoir in order to remove air from the line (or at least the portion of the line near the junction).


In a modified version of method 580, at block 586 the method 580 instead determines whether a desired or programmed volume of the second fluid has been delivered. For example, if the infusion pump was programmed to delivery only 100 ml of the second fluid during concurrent delivery mode, the method 580 would determine whether 100 ml of the second fluid had been delivered. In another embodiment, the method 580, determines whether a desired volume of second fluid has been delivered by receiving a command to stop an infusion of the second fluid. When a user provides an input to stop the infusion, the method 580 determines that the desired volume of second fluid has been delivered. If so, the method 580 continues to block 588. If not, the method 580 returns to block 584.


At block 588, the method 580 stops drawing fluid from the second reservoir, and instead only draws fluid from the first reservoir. The method 580 drives the first fluid to the common line at the combined rate in order to auto flush or clear the volume of the common line of the fluid combination remaining in the common line. In the case when there is a drug-library defined limit on the first fluid, the pump system may need to allow an override of this limit in order to support pumping of the first fluid at the combined rate. In other words, drug library-defined delivery limits for the first fluid would apply at the patient, versus at the pump.


At block 590, the method 580 monitors the volume of first fluid driven at the combined rate and determine when the monitored volume equals or exceeds the common line flush volume. If the monitored volume is not equal to the common line flush volume, the method 580 returns to block 588. If the monitored volume is equal to or exceeds the common line flush volume, the method 580 proceeds to block 592.


At block 592, the method 580 continues to draw the first fluid from the first reservoir, but at the first rate. In some embodiments, the method 580 can measure an amount of time before changing the rate of the first fluid delivery to the first rate. In one embodiment, the method 580 can further include incrementing a first fluid displayed volume and a second fluid displayed volume by a proportion of the monitored volume when the monitored volume is equal to or greater than an internal volume of the common line. The proportion of monitored volume to be incremented for each of the first and second fluids can be equal to the proportion of first and second flow rates associated with the first and second fluids, respectively. For example, if the first flow rate is 10 ml/hr and the second flow rate is 5 ml/hr, the proportions of the monitored value incremented on the first and second volume displays will have a 2:1 ratio. If the monitored volume is 3 ml, then the display of the first fluid value will be increased by 2 ml and the display of the second fluid value will be increased by 1 ml. The method 580 can thus accurately track the rate, time, and an amount of each fluid delivered to the patient. In some embodiments, the method 580 executes only some of the steps described above with respect to FIG. 5B. Furthermore, the method 580 can change the order of the steps, include additional steps, or modify some of the steps discussed above


Sequential Delivery to Reservoir Depletion with Common Line Auto Flush



FIG. 5C illustrates a method 581 of safely performing a sequential infusion (sometimes referred to as a piggyback infusion) of a first fluid at a first infusion rate until the infusion of the first fluid at the first rate is stopped and the infusion switches to an infusion of a second fluid at a second infusion rate. The method 581 can be performed by a flow controller (e.g., flow controller 235) alone and/or in conjunction with the method 550 of FIG. 5A or the method 580 of FIG. 5B. A drug library may include an indication (e.g., flag, value, etc.) to enable or disable infusion until reservoir depletion functionality, as described with respect to FIG. 5B.


At block 583, the method 581 determines a common line flush volume of a common line. Any of the methods described herein may be used to determine the common line flush volume. At block 585, a primary infusion occurs, where a first fluid is driven by an infusion pump at a first infusion rate. The first fluid is drawn into a junction and/or mixing chamber from a first reservoir. The first infusion rate may be associated with the infusion of the first fluid and a second infusion rate may be associated with an infusion of the second fluid. The first fluid is driven from the junction and/or mixing chamber to the common line at the first infusion rate.


At block 587, the method 581 determines whether to pause the first infusion and initiate a “piggyback” infusion, or infusion of a second fluid at a second rate. If the method 581 determines that the second fluid program should be initiated, the method 581 proceeds to block 589. If not, the method 581 returns to block 585.


At block 589, the method 581 stops drawing fluid from the first reservoir (pauses the primary infusion), and instead only draws fluid from the second reservoir. The method 581 drives the second fluid to the common line at the first infusion rate in order to auto flush or clear the volume of the common line of the first fluid remaining in the common line. If the drug library includes limits on the delivery of fluid 2, these limits may need to be allowed to be overridden during the common line flush period defined by block 589. For example, if fluid 1 was programmed at a rate below the lower limit allowed for fluid 2, or if fluid 1 was programmed at a rate above the upper limit allowed for fluid 2, an override of such a limit would be allowed during the common line flush.


At block 591, the method 581 monitors the volume of second fluid driven at the first infusion rate and determines when the monitored volume equals or exceeds the common line flush volume. If the monitored volume is not equal to the common line flush volume, the method 581 returns to block 589. If the monitored volume is equal to or exceeds the common line flush volume, the method 581 proceeds to block 593.


At block 593, the method 581 continues to draw the second fluid from the second reservoir, but at the second infusion rate. In some embodiments, the method 581 can measure an amount of time before changing the rate of the first fluid delivery to the second infusion rate. In one embodiment, the method 581 can further include incrementing a first fluid displayed volume by the monitored volume when the monitored volume is equal to or greater than an internal volume of the common line. The method 581 can thus accurately track the rate, time, and an amount of each fluid delivered to the patient. In some embodiments, the method 581 executes only some of the steps described above with respect to FIG. 5B. Furthermore, the method 581 can change the order of the steps, include additional steps, or modify some of the steps discussed above. In some embodiments, it may be preferable to infuse the second fluid at a rate that exceeds the first infusion rate until the common line (filled with non-medicinal fluid) is cleared, in order to more quickly introduce the second (medicinal) fluid to the patient. If a drug library defined limit for fluid 2 is present, the pump system may permit an override of this limit to allow pumping of fluid 2 at this increased rate. Similarly, there may be limits on fluid 1 delivery rates that should be considered by the pump system, imposing a limit on fluid 2 pumping rates intended to displace common line volume. At block 595, the method 581 determines whether the piggyback infusion is complete. For example, the method 581 may determine that the second reservoir is depleted of fluid, that a desired volume of fluid has been infused, that a desired infusion duration period has been reached, etc. In one embodiment, a sensor determines that air is detected within the fluid line. If the piggyback infusion is not complete, the method 581 returns to block 593. If the piggyback infusion is complete, the method 581 proceeds to block 597. At block 591, the primary infusion, e.g., the infusion of the first fluid, is resumed, though at the second infusion rate until the driven first fluid volume is equal to or greater than the common line volume. In the case where the first fluid has a drug library defined limit(s), the pump system may need to support an override of such a lower or upper limit to support pumping at the rate programmed for the second fluid. Method 581 then continues to drive the first fluid, but now at the first infusion rate.


The method 581 may also optionally cause the infusion pump to at least partially back-prime the line between the junction and the second reservoir after air is recognized at the depletion of the second fluid reservoir. For example, the infusion pump may pump some fluid from the first reservoir to force fluid into the line between the junction and the second reservoir in order to remove air from the line (or at least the portion of the line near the junction).


Intermittent Concurrent Delivery



FIG. 6 illustrates a method 600 of scheduling intermittent concurrent deliveries. Method 600 can be performed by an infusion pump, a flow controller (e.g., flow controller 235), and/or alone or in conjunction with the method 550 of FIG. 5A and/or method 580 of FIG. 5B. Method 600 may be performed when it is desired to deliver a secondary infusion (e.g., deliver a second fluid via a concurrent infusion with a first fluid) multiple times per day at specific start times. Method 600 enables an infusion pump to determine a time to start an auto flush procedure to assure that the second fluid is infused into the patient (e.g., enters the patient) at the desired, specific start times.


For example, if a common line volume will take 10 minutes to flush at the primary (first) infusion rate, then the concurrent infusion will initiate an auto flush process (infusing a mixture of first and second fluids at the first infusion rate to flush the first fluid out of the common line tubing) 10 minutes before the desired secondary infusion start time (e.g., 10 minutes before the second fluid is to enter the patient).


At block 602, the method 600 determines a common line flush volume. However, the method may skip block 602 if the common line flush volume has already been determined. At block 604, the method 600 determines one or more second fluid infusion start times. For example, the method 600 may receive or download schedule information corresponding to desired start times to infuse a second fluid into a patient. The schedule information may define specific times during the day (e.g., 8 am, noon, 4 pm, 8 pm, etc.), it may define a number of infusions per day (e.g., 2, 3, 4, 6 infusions per day, etc.), or it may define an interval between second fluid infusions (e.g., one bag of second fluid every 4 hours, etc.). The schedule information may be used to determine one or more second fluid infusion start times.


At block 606, the method 600 determines a flush time period based on the first fluid infusion rate (or first fluid flush rate if a faster flush rate is desired for the particular, e.g., non-medicinal, first fluid) and the common line flush volume. For example, the flush time period may be determined by dividing the common line flush volume by the first fluid infusion rate (or first fluid flush rate). The flush time period represents the amount of time it will take to flush remaining fluid from the common line between the junction (or mixing chamber) and the common line distal end when fluid is driven at the first (or first fluid flush) rate.


At block 608, the method 600 determines second fluid drive start times, which correspond to the actual times that the infusion pump will begin to draw first fluid from a first reservoir and second fluid from a second reservoir, and drive the mixture of first and second fluids to the common line at the first (or first fluid flush) rate. In one embodiment, the method 600 may determine the second fluid drive start times by subtracting the flush time period from each of the second fluid infusion start times. For example, if the flush time period is determined to be 20 minutes and the second fluid infusion start times are 8:00 am, 2:00 pm, and 8:00 pm, then the second fluid drive start times may be determined as 7:40 am, 1:40 pm, and 7:40 pm. By initiating an auto flush concurrent infusion at the second fluid drive start times, a mixture of the second fluid and the first fluid will reach the patient and will be infused into the patient (e.g., enter the patient's body) at the second fluid infusion start times. At block 610, the method causes the infusion pump to initiate such auto flush concurrent infusions at the second fluid drive start times.



FIGS. 7A-7E are schematic diagrams of use for an infusion pump system with concurrent infusion and common line auto flush in accordance with the present invention. FIGS. 7A-7E illustrate switching from infusing a first fluid to infusing a mixture or combination of first and second fluids, then switching back to infusing the first fluid, while accounting for the previously infused fluid in the common line. In this example, the infusion pump is infusing a first fluid on a first flow path at a first rate and switches to infusing a mixture or combination of first and second fluids on a second flow path, maintaining the first rate long enough to clear the remaining first fluid from the common line before changing to a combined rate for infusing the mixture or combination of first and second fluids. The infusion pump then switches to infusing a first fluid on the first flow path, maintaining the combined rate long enough to clear the remaining mixture or combination of first and second fluids from the common line before changing to a first rate for infusing the first fluid.


Referring to FIG. 7A, the first fluid 712 is delivered to the terminal end 740B of a common line 740 at a first rate along a first flow path 750 including the first reservoir 710, the junction 780, an optional mixing chamber (not shown), and the common line 740. The first fluid 712 is indicated by upward from left to right diagonal lines. Referring to FIG. 7B, the infusion has changed to a concurrent mode. During the concurrent mode, first fluid 712 is drawn from the first reservoir 710 and second fluid 722 is drawn from the second reservoir 720 via second fluid line 760. The second fluid 722 is indicated by downward from left to right diagonal lines. The mixture of first and second fluids 712, 722 is driven by the infusion pump into the common line 740. During this auto flush mode of concurrent delivery, the common line 740 contains first common line fluid 741 remaining from the initial infusion of the first fluid 712 and indicated by the upward diagonal lines, and second common line fluid 742 (the mixture of the first and second fluids 712, 722) indicated by the hashed lines. The flow rate remains at the first rate because the remaining first common line fluid 741 is being delivered to the terminal fluid delivery end 740B or to the patient when connected. Referring to FIG. 7C, none of the first fluid remains in the common line 740, so the second common line fluid 743 (the mixture of the first and second fluids 712, 722) is driven at the combined rate.


The infusion pump system can subsequently switch back to infusing only the first fluid (for example, after a predetermined time period, after a predetermined volume of combined first and second fluids are infused, after a predetermined volume of the second fluid is infused, or after the infusion pump determines that the second reservoir has been depleted of the second fluid, etc.). Referring to FIG. 7D, the infusion mode has changed from concurrent delivery to primary delivery (infusing only first fluid 712 from the first reservoir 710). Initially, the common line 740 still contains a mixture of the first and second fluids 712, 722 (represented by the hashed lines) as second common line fluid 744 remaining from the previous infusion, and first common line fluid 745 (the first fluid 712 alone) indicated by the upward diagonal lines. The flow rate remains at the combined rate because the remaining second common line fluid 744 is being delivered. Referring to FIG. 7E, none of the mixture of first and second fluids remains in the common line 740, so the first common line fluid 746 is driven at the first rate along the first flow path 750.


While the embodiments of the invention disclosed herein are presently considered to be preferred, various changes, rearrangement of steps, and modifications can be made without departing from the scope of the invention. The scope of the invention is indicated in the appended claims, and all changes that come within the meaning and range of equivalents are intended to be embraced therein.

Claims
  • 1. A control system for controlling operation of an infusion pump of an infusion pump system, the infusion pump system comprising a first reservoir configured to hold a first fluid, a second reservoir configured to hold a second fluid, a junction in fluid communication with the first reservoir and the second reservoir, a common line in fluid communication with the junction and having a first end and a terminal fluid delivery end, and the infusion pump, wherein the infusion pump is operable to drive fluid through the common line toward the terminal fluid delivery end, the control system comprising: one or more hardware processors; anda memory storing executable instructions that when executed by the one or more hardware processors, configure the infusion pump to: receive instructions to deliver the first fluid at a first rate, subsequently concurrently deliver a mixture of the first fluid and the second fluid, and concurrently deliver the first fluid at the first rate and the second fluid at a second rate;infuse the first fluid at the first rate along a first flow path, the first flow path including the common line; determine a common line volume corresponding to a volume of the common line;draw the first fluid from the first reservoir and the second fluid from the second reservoir to deliver the mixture of the first fluid and the second fluid into the first end of the common line;infuse the mixture of the first fluid and the second fluid at a predetermined flushing rate into the first end of the common line, wherein infusing the mixture of the first fluid and the second fluid at the predetermined flushing rate into the first end of the common line causes displacement of a volume of the first fluid remaining in the common line and infusion of the first fluid out of the common line terminal end at the predetermined flushing rate;determine that an infused volume of the mixture of the first fluid and the second fluid equals or exceeds the common line volume; andchange the infusion rate of the mixture of the first fluid and the second fluid from the predetermined flushing rate to a predetermined combined rate once the infused volume of the mixture of the first fluid and the second fluid equaling or exceeding the common line volume has been determined, wherein the predetermined combined rate is the sum of the first rate and the second rate, and continue to infuse the mixture of the first fluid and the second fluid at the predetermined combined rate.
  • 2. The control system of claim 1, wherein the infusion pump system further comprises a mixing chamber in fluid communication with the first reservoir, the second reservoir, and the common line.
  • 3. The control system of claim 1, wherein the executable instructions further configure the infusion pump to determine the predetermined flushing rate based upon whether the first fluid is a medicinal fluid.
  • 4. The control system of claim 3, wherein the executable instructions further configure the infusion pump to determine the predetermined flushing rate as the first rate when the first fluid is a medicinal fluid.
  • 5. The control system of claim 3, wherein the executable instructions further configure the infusion pump to determine the predetermined flushing rate as the first rate increased by a flushing rate factor when the first fluid is not a medicinal fluid.
  • 6. The control system of claim 1, wherein the instructions further configure the infusion pump to receive the common line volume from a user input.
  • 7. The control system of claim 1, wherein the instructions further configure the infusion pump to retrieve the common line volume from the memory.
  • 8. The control system of claim 1, wherein the instructions further configure the infusion pump to retrieve the common line volume over a network.
  • 9. The control system of claim 1, wherein the common line volume is predetermined.
  • 10. The control system of claim 1, wherein the instructions further configure the infusion pump to determine the common line volume based on the first fluid.
  • 11. The control system of claim 1, wherein the first rate is different than the second rate.
  • 12. The control system of claim 1, wherein the instructions further configure the infusion pump to receive the instructions for the delivery from an input via a user interface.
  • 13. The control system of claim 1, wherein infusing the mixture of the first fluid and the second fluid at the predetermined flushing rate comprises one or more of delivering the first fluid at a first fluid flush rate outside of drug library defined rate limits associated with the first fluid or delivering the second fluid at a second fluid flush rate outside of drug library defined rate limits associated with the second fluid.
  • 14. The control system of claim 1, wherein the executable instructions further configure the infusion pump to: determine that an infusion of the second fluid has completed; draw the first fluid from the first reservoir without drawing the second fluid from the second reservoir; infuse the first fluid at the predetermined combined rate; determine that a volume of the first fluid infused at the predetermined combined rate equals or exceeds the common line volume; and change the infusion rate of the first fluid from the predetermined combined rate to the first rate.
  • 15. The control system of claim 14, wherein the executable instructions configure the infusion pump to determine that an infusion of the second fluid has completed by comparing a volume of fluid infused to a programmed volume to infuse.
  • 16. The control system of claim 14, wherein the executable instructions configure the infusion pump to determine that an infusion of the second fluid has completed by receiving an instruction to stop infusing the second fluid.
  • 17. The control system of claim 14, wherein the executable instructions configure the infusion pump to determine that an infusion of the second fluid has completed by determining that the second reservoir has been depleted of second fluid.
  • 18. The control system of claim 14, wherein the executable instructions configure the infusion pump to infuse the first fluid at the predetermined combined rate, wherein the redetermined combined rate exceeds a drug library rate limit associated with the first fluid.
  • 19. The control system of claim 1, wherein the executable instructions further configure the infusion pump to: determine that an infusion of the first fluid has completed; draw the second fluid from the second reservoir without drawing the first fluid from the first reservoir; infuse the second fluid at the predetermined combined rate; determine that a volume of the second fluid infused at the predetermined combined rate equals or exceeds the common line volume; and change the infusion rate of the second fluid from the predetermined combined rate to the second rate.
  • 20. The control system of claim 19, wherein the executable instructions configure the infusion pump to determine that an infusion of the first fluid has completed by comparing a volume of fluid infused to a programmed volume to infuse.
  • 21. The control system of claim 19, wherein the executable instructions configure the infusion pump to determine that an infusion of the first fluid has completed by receiving an instruction to stop infusing the first fluid.
  • 22. The control system of claim 19, wherein the executable instructions configure the infusion pump to determine that an infusion of the first fluid has completed by determining that the first reservoir has been depleted of first fluid.
  • 23. The control system of claim 19, wherein the executable instructions configure the infusion pump to infuse the second fluid at the predetermined combined rate, wherein the predetermined combined rate exceeds a drug library rate limit associated with the second fluid.
US Referenced Citations (1549)
Number Name Date Kind
3401337 Beusman et al. Sep 1968 A
3484681 Grady, Jr. et al. Dec 1969 A
3699320 Zimmerman et al. Oct 1972 A
3727074 Keller et al. Apr 1973 A
3731679 Wilhelmson et al. May 1973 A
3768084 Haynes Oct 1973 A
3770354 Tsuruta et al. Nov 1973 A
3778702 Finger Dec 1973 A
3806821 Niemeyer et al. Apr 1974 A
3838565 Carlyle Oct 1974 A
3854038 McKinley Dec 1974 A
3886459 Hufford et al. May 1975 A
3890554 Yoshitake et al. Jun 1975 A
3894431 Muston et al. Jul 1975 A
3898637 Wolstenholme Aug 1975 A
3901231 Olson Aug 1975 A
3909693 Yoshitake et al. Sep 1975 A
3910701 Henderson Oct 1975 A
3911343 Oster Oct 1975 A
3919608 Usami et al. Nov 1975 A
3921622 Cole Nov 1975 A
3930404 Ryden, Jr. Jan 1976 A
3933431 Trujillo et al. Jan 1976 A
3935876 Massie et al. Feb 1976 A
3944963 Hively Mar 1976 A
3966358 Heimes et al. Jun 1976 A
3971980 Jungfer et al. Jul 1976 A
3974681 Namery Aug 1976 A
3974683 Martin Aug 1976 A
3985467 Lefferson Oct 1976 A
3990444 Vial Nov 1976 A
3997888 Kremer Dec 1976 A
4005724 Courtot Feb 1977 A
4014206 Taylor Mar 1977 A
4038982 Burke Aug 1977 A
4039269 Pickering Aug 1977 A
4048474 Olesen Sep 1977 A
4049954 Da Costa Vieira et al. Sep 1977 A
4055175 Clemens et al. Oct 1977 A
4068521 Cosentino et al. Jan 1978 A
4078562 Friedman Mar 1978 A
4089227 Falgari et al. May 1978 A
4094318 Burke Jun 1978 A
4105028 Sadlier et al. Aug 1978 A
4114144 Hyman Sep 1978 A
4151845 Clemens May 1979 A
4155362 Jess May 1979 A
4173224 Marx Nov 1979 A
4181610 Shintani et al. Jan 1980 A
4183244 Kohno et al. Jan 1980 A
4195515 Smoll Apr 1980 A
4210138 Jess et al. Jul 1980 A
4213454 Shim Jul 1980 A
4217993 Jess et al. Aug 1980 A
4240294 Grande Dec 1980 A
4240438 Updike et al. Dec 1980 A
4244365 McGill Jan 1981 A
4256437 Brown Mar 1981 A
4261356 Turner et al. Apr 1981 A
4264861 Radu et al. Apr 1981 A
4265240 Jenkins May 1981 A
4270532 Franetzki et al. Jun 1981 A
4277226 Archibald et al. Jul 1981 A
4278085 Shim Jul 1981 A
4280495 Lampert Jul 1981 A
4282872 Franetzki et al. Aug 1981 A
4286202 Clancy et al. Aug 1981 A
4290346 Bujan Sep 1981 A
4291692 Bowman et al. Sep 1981 A
4292405 Mascoli Sep 1981 A
4298357 Permic Nov 1981 A
4308866 Jeliffe Jan 1982 A
4312341 Zissimopoulos Jan 1982 A
4319568 Tregoning Mar 1982 A
4322201 Archibald Mar 1982 A
4323849 Smith Apr 1982 A
4324662 Schnell Apr 1982 A
4328800 Marx May 1982 A
4328801 Marx May 1982 A
4333045 Oltendorf Jun 1982 A
4343316 Jespersen Aug 1982 A
4344429 Gupton et al. Aug 1982 A
4346707 Whitney et al. Aug 1982 A
4360019 Portner et al. Nov 1982 A
4366384 Jensen Dec 1982 A
4367736 Gupton Jan 1983 A
4370983 Lichtenstein et al. Feb 1983 A
4373527 Fischell Feb 1983 A
4379452 DeVries Apr 1983 A
4381005 Bujan Apr 1983 A
4384578 Winkler May 1983 A
4385247 Satomi May 1983 A
4391598 Thompson Jul 1983 A
4392849 Petre et al. Jul 1983 A
4394862 Shim Jul 1983 A
4395259 Prestele et al. Jul 1983 A
4397194 Soltz Aug 1983 A
4399362 Cormier et al. Aug 1983 A
4407659 Adam Oct 1983 A
4411651 Schulman Oct 1983 A
4418565 St John Dec 1983 A
4432699 Beckman et al. Feb 1984 A
4432761 Dawe Feb 1984 A
4432762 Dawe Feb 1984 A
4443218 Decant, Jr. et al. Apr 1984 A
4444546 Pazemenas Apr 1984 A
4447191 Bilstad et al. May 1984 A
4447224 Decant, Jr. et al. May 1984 A
4453931 Pastrone Jun 1984 A
4457751 Rodler Jul 1984 A
4463301 Moriguchi et al. Jul 1984 A
4464170 Clemens Aug 1984 A
4467654 Murakami et al. Aug 1984 A
4468222 Lundquist Aug 1984 A
4468601 Chamran et al. Aug 1984 A
4469481 Kobayashi Sep 1984 A
4475666 Bilbrey et al. Oct 1984 A
4475901 Kraegen et al. Oct 1984 A
4477756 Moriguchi Oct 1984 A
4479760 Bilstad et al. Oct 1984 A
4480218 Hair Oct 1984 A
4480483 McShane Nov 1984 A
4483202 Ogua et al. Nov 1984 A
4487601 Lindemann Dec 1984 A
4492909 Hartwig Jan 1985 A
4496346 Mosteller Jan 1985 A
4498843 Schneider et al. Feb 1985 A
4501531 Bilstad et al. Feb 1985 A
4504263 Steuer Mar 1985 A
4507112 Hillel Mar 1985 A
4510266 Eertink Apr 1985 A
4515584 Abe et al. May 1985 A
4519792 Dawe May 1985 A
4521212 Ruschke Jun 1985 A
4525163 Slavik et al. Jun 1985 A
4526568 Clemens et al. Jul 1985 A
4526574 Pekkarinen Jul 1985 A
4529401 Leslie et al. Jul 1985 A
4533350 Danby et al. Aug 1985 A
4543955 Schroeppel Oct 1985 A
4551134 Slavik et al. Nov 1985 A
4553958 LeCocq Nov 1985 A
4559036 Wunsch Dec 1985 A
4559037 Franetzki et al. Dec 1985 A
4559044 Robinson Dec 1985 A
4559454 Kramer Dec 1985 A
4565500 Jeensalute et al. Jan 1986 A
4583981 Urquhart et al. Apr 1986 A
4587473 Turvey May 1986 A
4607520 Dam Aug 1986 A
4617014 Cannon et al. Oct 1986 A
4624661 Arimond Nov 1986 A
4627835 Fenton, Jr. Dec 1986 A
4633878 Bombardieri Jan 1987 A
4634426 Kamen Jan 1987 A
4634427 Hannula et al. Jan 1987 A
4636144 Abe et al. Jan 1987 A
4637813 DeVries Jan 1987 A
4645489 Krumme Feb 1987 A
4648869 Bobo, Jr. Mar 1987 A
4652260 Fenton, Jr. et al. Mar 1987 A
4658244 Meijer Apr 1987 A
4668216 Martin May 1987 A
4668945 Aldrovandi et al. May 1987 A
4673334 Allington et al. Jun 1987 A
4673389 Archibald et al. Jun 1987 A
4676776 Howson et al. Jun 1987 A
4677359 Enami et al. Jun 1987 A
4678979 Hori Jul 1987 A
4678998 Muramatsu Jul 1987 A
4679562 Luksha Jul 1987 A
4683428 Gete Jul 1987 A
4685903 Cable et al. Aug 1987 A
4690673 Blomquist Sep 1987 A
4691153 Nishimura Sep 1987 A
4692145 Weyant Sep 1987 A
4696671 Epstein et al. Sep 1987 A
4697129 Enami et al. Sep 1987 A
4702675 Aldrovandi et al. Oct 1987 A
4705506 Archibald et al. Nov 1987 A
4710106 Iwata et al. Dec 1987 A
4714462 DiDomenico Dec 1987 A
4714463 Archibald et al. Dec 1987 A
4718576 Tamura et al. Jan 1988 A
4720636 Benner Jan 1988 A
4722224 Scheller et al. Feb 1988 A
4722734 Kolin Feb 1988 A
4731051 Fischell Mar 1988 A
4731057 Tanaka et al. Mar 1988 A
4737711 O'Hare Apr 1988 A
4739346 Buckley Apr 1988 A
4741732 Crankshaw et al. May 1988 A
4741736 Brown May 1988 A
4748857 Nakagawa Jun 1988 A
4751445 Sakai Jun 1988 A
4756706 Kerns et al. Jul 1988 A
4758228 Williams Jul 1988 A
4763525 Cobb Aug 1988 A
4764166 Spani et al. Aug 1988 A
4764697 Christiaens Aug 1988 A
4769001 Prince Sep 1988 A
4776842 Franetzki et al. Oct 1988 A
4781687 Wall Nov 1988 A
4784576 Bloom et al. Nov 1988 A
4785184 Bien et al. Nov 1988 A
4785799 Schoon et al. Nov 1988 A
4785969 McLaughlin Nov 1988 A
4786800 Kamen Nov 1988 A
4789014 DiGianfilippo Dec 1988 A
4797655 Orndal et al. Jan 1989 A
4803389 Ogawa et al. Feb 1989 A
4803625 Fu et al. Feb 1989 A
4818186 Pastrone et al. Apr 1989 A
4820281 Lawler Apr 1989 A
4821558 Pastrone et al. Apr 1989 A
4828545 Epstein et al. May 1989 A
4828693 Lindsay May 1989 A
4829448 Balding et al. May 1989 A
4838856 Mulreany et al. Jun 1989 A
4838857 Strowe et al. Jun 1989 A
4840542 Abbott Jun 1989 A
4842584 Pastrone et al. Jun 1989 A
4845487 Frantz et al. Jul 1989 A
4846792 Bobo et al. Jul 1989 A
4850805 Madsen et al. Jul 1989 A
4851755 Fincher Jul 1989 A
4854324 Hirschman et al. Aug 1989 A
4856339 Williams Aug 1989 A
4857048 Simons et al. Aug 1989 A
4857050 Lentz et al. Aug 1989 A
4858154 Anderson et al. Aug 1989 A
4863425 Slate et al. Sep 1989 A
4865584 Epstein et al. Sep 1989 A
4869722 Heyman Sep 1989 A
4874359 White et al. Oct 1989 A
4881413 Georgi et al. Nov 1989 A
4882575 Kawahara Nov 1989 A
4884013 Jackson et al. Nov 1989 A
4884065 Crouse et al. Nov 1989 A
4886422 Takeuchi et al. Dec 1989 A
4898576 Philip Feb 1990 A
4898578 Rubalcaba, Jr. Feb 1990 A
4906103 Kao Mar 1990 A
4908017 Howson et al. Mar 1990 A
4908019 Urquhart Mar 1990 A
4910475 Lin Mar 1990 A
4919595 Likuski et al. Apr 1990 A
4919596 Slate et al. Apr 1990 A
4925444 Orkin, I May 1990 A
4927411 Pastrone et al. May 1990 A
4930358 Motegi et al. Jun 1990 A
4936820 Dennehey Jun 1990 A
4936828 Chiang Jun 1990 A
4938079 Goldberg Jul 1990 A
4943279 Samiotes et al. Jul 1990 A
4946439 Eggers Aug 1990 A
4947856 Beard Aug 1990 A
4950235 Slate et al. Aug 1990 A
4950244 Fellingham Aug 1990 A
4959050 Bobo, Jr. Sep 1990 A
4966579 Polaschegg Oct 1990 A
4968941 Rogers Nov 1990 A
4972842 Korten et al. Nov 1990 A
4976687 Martin Dec 1990 A
4978335 Arthur, III Dec 1990 A
4979940 Lapp et al. Dec 1990 A
4981467 Bobo et al. Jan 1991 A
5000663 Gorton Mar 1991 A
5000739 Kulisz et al. Mar 1991 A
5006050 Cooke et al. Apr 1991 A
5010473 Jacobs Apr 1991 A
5014714 Millay et al. May 1991 A
5014798 Glynn May 1991 A
5018945 D'Silva May 1991 A
5026348 Venegas Jun 1991 A
5028857 Taghezout Jul 1991 A
5032112 Fairchild et al. Jul 1991 A
5034004 Crankshaw Jul 1991 A
5035143 Latimer et al. Jul 1991 A
5041086 Koenig et al. Aug 1991 A
5043706 Oliver Aug 1991 A
5045069 Imparato Sep 1991 A
5049047 Polaschegg et al. Sep 1991 A
5052230 Lang Oct 1991 A
5053747 Slate et al. Oct 1991 A
5055761 Mills Oct 1991 A
5056992 Simons Oct 1991 A
5058161 Weiss Oct 1991 A
5059171 Bridge Oct 1991 A
5063603 Burt Nov 1991 A
5064412 Henke et al. Nov 1991 A
5078683 Sancoff et al. Jan 1992 A
5084663 Olsson Jan 1992 A
5084828 Kaufman et al. Jan 1992 A
5088981 Howson et al. Feb 1992 A
5096385 Georgi et al. Mar 1992 A
5097505 Weiss Mar 1992 A
5100380 Epstein et al. Mar 1992 A
5102392 Sakai et al. Apr 1992 A
5103211 Daoud et al. Apr 1992 A
5104374 Bishko et al. Apr 1992 A
5108367 Epstein et al. Apr 1992 A
5109850 Blanco et al. May 1992 A
5116203 Nartwick et al. May 1992 A
5116312 Blakenship et al. May 1992 A
5116316 Sertic May 1992 A
5123275 Daoud et al. Jun 1992 A
5124627 Okada Jun 1992 A
5125499 Saathoff et al. Jun 1992 A
5131816 Brown Jul 1992 A
5132603 Yoshimoto Jul 1992 A
5153827 Coutre et al. Oct 1992 A
5158441 Aid Oct 1992 A
5161222 Montejo et al. Nov 1992 A
5174472 Raque et al. Dec 1992 A
5176631 Koenig Jan 1993 A
5176646 Kuroda Jan 1993 A
5179340 Rogers Jan 1993 A
5180287 Natwick et al. Jan 1993 A
5181910 Scanlon Jan 1993 A
5186057 Everhart Feb 1993 A
5188603 Vaillancourt Feb 1993 A
5190522 Wocicki et al. Mar 1993 A
5191795 Fellingham et al. Mar 1993 A
5192340 Grant et al. Mar 1993 A
5194796 Domeki et al. Mar 1993 A
5198776 Carr Mar 1993 A
5200090 Ford Apr 1993 A
5205819 Ross et al. Apr 1993 A
5206522 Danby et al. Apr 1993 A
5207642 Orkin et al. May 1993 A
5211626 Frank et al. May 1993 A
5213573 Sorich et al. May 1993 A
5215450 Tamari Jun 1993 A
5216597 Beckers Jun 1993 A
5219099 Spence et al. Jun 1993 A
5219327 Okada Jun 1993 A
5221268 Barton et al. Jun 1993 A
5229713 Bullock et al. Jul 1993 A
5232476 Grant Aug 1993 A
5233571 Wirtschafter Aug 1993 A
5237309 Frantz et al. Aug 1993 A
5242406 Gross et al. Sep 1993 A
5242408 Jhuboo et al. Sep 1993 A
5243982 Möstl et al. Sep 1993 A
5244463 Cordner, Jr. et al. Sep 1993 A
5244568 Lindsay et al. Sep 1993 A
5254096 Rondelet et al. Oct 1993 A
5256155 Yerlikaya et al. Oct 1993 A
5256156 Kern et al. Oct 1993 A
5256157 Samiotes et al. Oct 1993 A
5260665 Goldberg Nov 1993 A
5257206 Hanson Dec 1993 A
5267980 Dirr et al. Dec 1993 A
5274316 Evans et al. Dec 1993 A
5276610 Maeda et al. Jan 1994 A
5280728 Sato et al. Jan 1994 A
5283510 Tamaki et al. Feb 1994 A
5287851 Beran et al. Feb 1994 A
5292306 Wynkoop et al. Mar 1994 A
5295967 Rondelet et al. Mar 1994 A
5298021 Sherer Mar 1994 A
5303585 Lichte Apr 1994 A
5304126 Epstein Apr 1994 A
5304216 Wallace Apr 1994 A
5308333 Skakoon May 1994 A
5317506 Coutre et al. May 1994 A
5319363 Welch et al. Jun 1994 A
5319979 Abrahamson Jun 1994 A
5321392 Skakoon et al. Jun 1994 A
5325170 Bornhop Jun 1994 A
5325728 Zimmerman et al. Jul 1994 A
5328460 Lord et al. Jul 1994 A
5330634 Wong et al. Jul 1994 A
5333497 Braend et al. Aug 1994 A
5336051 Tamari Aug 1994 A
5338157 Blomquist Aug 1994 A
5342298 Michaels Aug 1994 A
5343734 Maeda et al. Sep 1994 A
5343885 Grant Sep 1994 A
5346466 Yerlikaya et al. Sep 1994 A
5356378 Doan et al. Oct 1994 A
5359271 Husher Oct 1994 A
D352778 Irvin et al. Nov 1994 S
5364346 Schrezenmeir Nov 1994 A
5366346 Danby Nov 1994 A
5368562 Blomquist et al. Nov 1994 A
5374865 Yoshimura et al. Dec 1994 A
5376070 Purvis et al. Dec 1994 A
5378231 Johnson et al. Jan 1995 A
5382232 Hague et al. Jan 1995 A
5383369 Khuri-Yakub et al. Jan 1995 A
5389071 Kawahara et al. Feb 1995 A
5389078 Zalesky et al. Feb 1995 A
5392638 Kawahara Feb 1995 A
5394732 Johnson et al. Mar 1995 A
5395320 Padda et al. Mar 1995 A
5399171 Bowman et al. Mar 1995 A
5406954 Tomita Apr 1995 A
5408326 Priestley Apr 1995 A
5415528 Ogden et al. May 1995 A
5417119 Smoll May 1995 A
5417222 Dempsey et al. May 1995 A
5417395 Fowler et al. May 1995 A
5418443 Kikuchi May 1995 A
5421208 Packard et al. Jun 1995 A
5423748 Uhala Jun 1995 A
5423749 Merte Jun 1995 A
5423759 Campbell Jun 1995 A
5428284 Kaneda et al. Jun 1995 A
5429485 Dodge Jul 1995 A
5429601 Conley Jul 1995 A
5429602 Hauser Jul 1995 A
5431627 Pastrone et al. Jul 1995 A
5434508 Ishida Jul 1995 A
5437624 Langley et al. Aug 1995 A
5444316 Ohya et al. Aug 1995 A
5444378 Rogers Aug 1995 A
5445621 Poli et al. Aug 1995 A
5450758 Smoll Sep 1995 A
5451881 Finger Sep 1995 A
5455423 Mount et al. Oct 1995 A
5455851 Chaco et al. Oct 1995 A
5463906 Spani et al. Nov 1995 A
5464392 Epstein et al. Nov 1995 A
5465082 Chaco Nov 1995 A
5469851 Lipschutz Nov 1995 A
5473948 Moss et al. Dec 1995 A
5480294 Di Perna et al. Jan 1996 A
5482438 Anderson et al. Jan 1996 A
5485408 Blomquist Jan 1996 A
5486286 Peterson et al. Jan 1996 A
5489265 Montalvo et al. Feb 1996 A
5495566 Kwatinetz Feb 1996 A
5496273 Pastrone et al. Mar 1996 A
5505696 Miki Apr 1996 A
5505828 Wong et al. Apr 1996 A
5507288 Bocker et al. Apr 1996 A
5507412 Ebert et al. Apr 1996 A
5520637 Pager et al. May 1996 A
5522798 Johnson et al. Jun 1996 A
5522799 Furukawa Jun 1996 A
5527630 Nagata Jun 1996 A
5533389 Kamen et al. Jul 1996 A
5537853 Finburgh et al. Jul 1996 A
5542040 Chang et al. Jul 1996 A
5545140 Conero et al. Aug 1996 A
5547470 Johnson et al. Aug 1996 A
5551850 Williamson et al. Sep 1996 A
5554013 Owens et al. Sep 1996 A
5554115 Thomas et al. Sep 1996 A
5558638 Evers et al. Sep 1996 A
5562615 Nassif Oct 1996 A
5563486 Yamamoto et al. Oct 1996 A
5572105 Nojima et al. Nov 1996 A
5573502 LeCocq et al. Nov 1996 A
5583280 Mo et al. Dec 1996 A
5584667 Davis Dec 1996 A
5584806 Amano Dec 1996 A
5586868 Lawless et al. Dec 1996 A
5590653 Aida et al. Jan 1997 A
5594786 Chaco et al. Jan 1997 A
5600073 Hill Feb 1997 A
5601420 Warner et al. Feb 1997 A
5609575 Larson et al. Mar 1997 A
5609576 Voss Mar 1997 A
5611784 Barresi et al. Mar 1997 A
5616124 Hague et al. Apr 1997 A
5620312 Hyman et al. Apr 1997 A
5620608 Rosa et al. Apr 1997 A
5626140 Feldman et al. May 1997 A
5626151 Linden May 1997 A
5626563 Dodge et al. May 1997 A
5627443 Kimura et al. May 1997 A
5628309 Brown May 1997 A
5628731 Dodge et al. May 1997 A
5630710 Tune et al. May 1997 A
5634896 Bryant et al. Jun 1997 A
5637095 Nason et al. Jun 1997 A
5640075 Brasseur et al. Jun 1997 A
5640150 Atwater Jun 1997 A
5643212 Coutre et al. Jul 1997 A
5648710 Ikeda Jul 1997 A
5649536 Ogura et al. Jul 1997 A
5651775 Walker et al. Jul 1997 A
5657000 Ellingboe Aug 1997 A
5658133 Anderson et al. Aug 1997 A
5658250 Blomquist et al. Aug 1997 A
5659234 Cresens Aug 1997 A
5661245 Svoboda et al. Aug 1997 A
5662612 Niehoff Sep 1997 A
5665065 Colman et al. Sep 1997 A
5669877 Blomquist Sep 1997 A
5672154 Sillén et al. Sep 1997 A
5672832 Cucci et al. Sep 1997 A
5681285 Ford et al. Oct 1997 A
5681286 Niehoff Oct 1997 A
5685844 Marttila Nov 1997 A
5687717 Halpern et al. Nov 1997 A
5689229 Chaco et al. Nov 1997 A
5691613 Gutwillinger Nov 1997 A
5695464 Viallet Dec 1997 A
5695473 Olsen Dec 1997 A
5697899 Hillman et al. Dec 1997 A
5697916 Schraga Dec 1997 A
5712795 Layman et al. Jan 1998 A
5713856 Eggers et al. Feb 1998 A
5714691 Hill Feb 1998 A
5718562 Lawless et al. Feb 1998 A
5718569 Holst Feb 1998 A
5720721 Dumas et al. Feb 1998 A
5722417 Rudolph Mar 1998 A
5728074 Castellano et al. Mar 1998 A
5728948 Bignell et al. Mar 1998 A
5733257 Stemby Mar 1998 A
5733259 Valcke et al. Mar 1998 A
5738659 Neer et al. Apr 1998 A
5743856 Oka et al. Apr 1998 A
5744027 Connell et al. Apr 1998 A
5744929 Miyazaki Apr 1998 A
5745378 Barker et al. Apr 1998 A
5752813 Tyner et al. May 1998 A
5752918 Fowler et al. May 1998 A
5752919 Schrimpf May 1998 A
5755691 Hilborne May 1998 A
5758643 Wong et al. Jun 1998 A
5761072 Bardsley, Jr. et al. Jun 1998 A
5764034 Bowman et al. Jun 1998 A
5766155 Hyman et al. Jun 1998 A
5772635 Dastur et al. Jun 1998 A
5778256 Darbee Jul 1998 A
5781442 Engleson et al. Jul 1998 A
5782805 Meinzer et al. Jul 1998 A
5788669 Peterson Aug 1998 A
5788674 McWilliams Aug 1998 A
5789923 Shimoyama et al. Aug 1998 A
5792069 Greenwald et al. Aug 1998 A
5793211 Shimoyama et al. Aug 1998 A
5795327 Wilson et al. Aug 1998 A
5798934 Saigo et al. Aug 1998 A
5800387 Duffy et al. Sep 1998 A
5803712 Davis et al. Sep 1998 A
5803917 Butterfield Sep 1998 A
5805455 Lipps Sep 1998 A
5807322 Lindsey et al. Sep 1998 A
5810770 Chin et al. Sep 1998 A
5813972 Nazarian et al. Sep 1998 A
5814004 Tamari Sep 1998 A
5814015 Gargano et al. Sep 1998 A
5816779 Lawless et al. Oct 1998 A
5822715 Worthington et al. Oct 1998 A
5827179 Lichter et al. Oct 1998 A
5827223 Butterfield Oct 1998 A
5832448 Brown Nov 1998 A
5836910 Duffy et al. Nov 1998 A
5841261 Nojima et al. Nov 1998 A
5841284 Takahashi Nov 1998 A
5843035 Bowman Dec 1998 A
5848971 Fowler et al. Dec 1998 A
5850344 Conkright Dec 1998 A
5857843 Leason et al. Jan 1999 A
5864330 Haynes Jan 1999 A
5865805 Ziemba Feb 1999 A
5867821 Ballantyne et al. Feb 1999 A
5871465 Vasko Feb 1999 A
5872453 Shimoyama et al. Feb 1999 A
5875195 Dixon Feb 1999 A
5882300 Malinouskas et al. Mar 1999 A
5882339 Beiser et al. Mar 1999 A
5885245 Lynch et al. Mar 1999 A
5889379 Yanagi et al. Mar 1999 A
5891051 Han et al. Apr 1999 A
5894209 Takagi et al. Apr 1999 A
5897493 Brown Apr 1999 A
5897498 Canfield, II et al. Apr 1999 A
5898292 Takemoto et al. Apr 1999 A
5899665 Makino et al. May 1999 A
5901150 Jhuboo et al. May 1999 A
5904666 DeDecker et al. May 1999 A
5904668 Hyman et al. May 1999 A
5905207 Schalk May 1999 A
5906598 Giesier May 1999 A
5910252 Truitt et al. Jun 1999 A
5915240 Karpf Jun 1999 A
5920263 Huttenhoff et al. Jul 1999 A
5923159 Ezell Jul 1999 A
5924074 Evans Jul 1999 A
5927349 Martucci Jul 1999 A
5932119 Kaplan et al. Aug 1999 A
5932987 McLoughlin Aug 1999 A
5935099 Peterson et al. Aug 1999 A
5935106 Olsen Aug 1999 A
5938634 Packard Aug 1999 A
5938636 Kramer et al. Aug 1999 A
5941846 Duffy et al. Aug 1999 A
5944660 Kimball et al. Aug 1999 A
5947911 Wong et al. Sep 1999 A
5954527 Jhuboo et al. Sep 1999 A
5954696 Ryan et al. Sep 1999 A
5956023 Lyle et al. Sep 1999 A
5956501 Brown Sep 1999 A
5957885 Bollish et al. Sep 1999 A
5957890 Mann et al. Sep 1999 A
5971594 Sahai et al. Oct 1999 A
5973497 Bergk et al. Oct 1999 A
5975081 Hood et al. Nov 1999 A
5989222 Cole et al. Nov 1999 A
5990838 Burns et al. Nov 1999 A
5991525 Shah et al. Nov 1999 A
5993393 Ryan et al. Nov 1999 A
5994876 Canny et al. Nov 1999 A
5997476 Brown Dec 1999 A
6000828 Leet Dec 1999 A
6003006 Colella et al. Dec 1999 A
6003388 Oeftering Dec 1999 A
6012034 Hamparian et al. Jan 2000 A
6017318 Gauthier et al. Jan 2000 A
6017493 Cambron Jan 2000 A
6021392 Lester et al. Feb 2000 A
6023977 Langdon et al. Feb 2000 A
6024539 Blomquist Feb 2000 A
6027441 Cantu Feb 2000 A
6028412 Shine Feb 2000 A
6032676 Moore Mar 2000 A
6033561 Schoendorfer Mar 2000 A
6036017 Bayliss, IV Mar 2000 A
6068612 Bowman May 2000 A
6068615 Brown et al. May 2000 A
6073106 Rozen et al. Jun 2000 A
6077246 Kullas et al. Jun 2000 A
6083206 Molko Jul 2000 A
6089104 Chang Jul 2000 A
6104295 Gaisser et al. Aug 2000 A
6110152 Kovelman Aug 2000 A
6110153 Davis Aug 2000 A
RE36871 Epstein et al. Sep 2000 E
6120459 Nitzan et al. Sep 2000 A
6122536 Sun et al. Sep 2000 A
6142008 Cole et al. Nov 2000 A
6150942 O'Brien Nov 2000 A
6157914 Seto et al. Dec 2000 A
6158288 Smith Dec 2000 A
6158965 Butterfield et al. Dec 2000 A
6159147 Lichter et al. Dec 2000 A
6159186 Wickham et al. Dec 2000 A
6164921 Moubayed et al. Dec 2000 A
6168561 Cantu Jan 2001 B1
6178827 Feller Jan 2001 B1
6182667 Hanks et al. Feb 2001 B1
6186141 Pike et al. Feb 2001 B1
6189105 Lopes Feb 2001 B1
6192752 Blaine Feb 2001 B1
6195589 Ketcham Feb 2001 B1
6202711 Martucci Mar 2001 B1
6203528 Deckert Mar 2001 B1
6208107 Maske et al. Mar 2001 B1
6212936 Meisberger Apr 2001 B1
6213972 Butterfield Apr 2001 B1
6231320 Lawless et al. May 2001 B1
6234176 Domae et al. May 2001 B1
6236326 Murphy et al. May 2001 B1
6237398 Porat et al. May 2001 B1
6241704 Peterson et al. Jun 2001 B1
6248067 Causey, III et al. Jun 2001 B1
6250132 Drzewiecki Jun 2001 B1
6259355 Chaco et al. Jul 2001 B1
6259587 Sheldon et al. Jul 2001 B1
6261065 Nayak Jul 2001 B1
6262946 Khuri-Yakub et al. Jul 2001 B1
6267559 Mossman et al. Jul 2001 B1
6267725 Dubberstein et al. Jul 2001 B1
6269340 Ford et al. Jul 2001 B1
6270455 Brown Aug 2001 B1
6271813 Palalau Aug 2001 B1
6277072 Bardy Aug 2001 B1
6277099 Strowe et al. Aug 2001 B1
6280380 Bardy Aug 2001 B1
6280391 Olson et al. Aug 2001 B1
6280408 Sipin Aug 2001 B1
6283761 Joao Sep 2001 B1
6285155 Maske et al. Sep 2001 B1
6312378 Bardy Nov 2001 B1
6322516 Masuda et al. Nov 2001 B1
6330351 Yasunaga Dec 2001 B1
6337675 Toffolo et al. Jan 2002 B1
6345539 Rawes et al. Feb 2002 B1
6347553 Morris et al. Feb 2002 B1
6349740 Cho et al. Feb 2002 B1
6358225 Butterfield Mar 2002 B1
6358387 Kopf-Sill et al. Mar 2002 B1
6362591 Moberg Mar 2002 B1
6385505 Lipps May 2002 B1
6386050 Yin et al. May 2002 B1
6394958 Bratteli et al. May 2002 B1
6396583 Clare May 2002 B1
6398760 Danby Jun 2002 B1
6405076 Taylor et al. Jun 2002 B1
6408679 Kline-Schoder et al. Jun 2002 B1
6413238 Maget Jul 2002 B1
6416291 Butterfield et al. Jul 2002 B1
6418334 Unger et al. Jul 2002 B1
6418535 Kulakowski et al. Jul 2002 B1
6445053 Cho Sep 2002 B1
6456245 Crawford Sep 2002 B1
6457346 Kline-Schoder et al. Oct 2002 B1
6463785 Kline-Schoder et al. Oct 2002 B1
6467331 Kline-Schoder et al. Oct 2002 B1
6468242 Wilson et al. Oct 2002 B1
6475178 Krajewski Nov 2002 B1
6481980 Vandlik Nov 2002 B1
6482158 Mault Nov 2002 B2
6482185 Hartmann Nov 2002 B1
6485263 Bryant et al. Nov 2002 B1
6485418 Yasushi et al. Nov 2002 B2
6485465 Moberg et al. Nov 2002 B2
6487916 Gomm et al. Dec 2002 B1
6489896 Platt Dec 2002 B1
6494694 Lawless et al. Dec 2002 B2
6494831 Koritzinsky Dec 2002 B1
6497680 Holst et al. Dec 2002 B1
6503221 Briggs Jan 2003 B1
6512944 Kovtun et al. Jan 2003 B1
6516667 Broad et al. Feb 2003 B1
6517482 Eiden et al. Feb 2003 B1
6519569 White et al. Feb 2003 B1
6529751 Van Driel et al. Mar 2003 B1
6531708 Malmstrom Mar 2003 B1
6539315 Adams et al. Mar 2003 B1
6540672 Simonsen et al. Apr 2003 B1
6544212 Galley et al. Apr 2003 B2
6544228 Heitmeier Apr 2003 B1
6558125 Futterknecht May 2003 B1
6558351 Steil et al. May 2003 B1
6562012 Brown et al. May 2003 B1
6564825 Lowery et al. May 2003 B2
6565509 Say et al. May 2003 B1
6568416 Tucker et al. May 2003 B2
6572542 Houben et al. Jun 2003 B1
6572545 Knobbe et al. Jun 2003 B2
6572576 Brugger et al. Jun 2003 B2
6578422 Lam et al. Jun 2003 B2
6578435 Gould et al. Jun 2003 B2
6581117 Klein et al. Jun 2003 B1
RE38189 Walker et al. Jul 2003 E
6585675 O'Mahony et al. Jul 2003 B1
6589229 Connelly et al. Jul 2003 B1
6589792 Malachowski Jul 2003 B1
6599281 Struys et al. Jul 2003 B1
6599282 Burko Jul 2003 B2
6602191 Quy Aug 2003 B2
6605072 Struys et al. Aug 2003 B2
6606047 Börjesson et al. Aug 2003 B1
6609047 Lipps Aug 2003 B1
6615674 Ohnishi Sep 2003 B2
6616633 Butterfield et al. Sep 2003 B1
6617564 Ockerse et al. Sep 2003 B2
6618916 Eberle et al. Sep 2003 B1
6622542 Derek Sep 2003 B2
6622561 Lam et al. Sep 2003 B2
D481121 Evans Oct 2003 S
6629449 Kline-Schoder et al. Oct 2003 B1
6634233 He Oct 2003 B2
6640246 Gardy, Jr. et al. Oct 2003 B1
6641533 Causey, III et al. Nov 2003 B2
6641541 Lovett et al. Nov 2003 B1
6648861 Platt et al. Nov 2003 B2
6652455 Kocher Nov 2003 B1
6653937 Nelson et al. Nov 2003 B2
6659980 Moberg et al. Dec 2003 B2
D485356 Evans Jan 2004 S
6685668 Cho et al. Feb 2004 B1
6685678 Evans et al. Feb 2004 B2
6689069 Bratteli et al. Feb 2004 B2
6689091 Bui et al. Feb 2004 B2
6692241 Watanabe et al. Feb 2004 B2
6716004 Vandlik Apr 2004 B2
6719535 Rakestraw et al. Apr 2004 B2
6721582 Trepagnier et al. Apr 2004 B2
6722211 Ciobanu et al. Apr 2004 B1
6725200 Rost Apr 2004 B1
6725721 Venczel Apr 2004 B2
6731989 Engleson et al. May 2004 B2
6732595 Lynnworth May 2004 B2
6738052 Manke et al. May 2004 B1
6740072 Starkweather et al. May 2004 B2
6741212 Kralovec et al. May 2004 B2
6748808 Lam et al. Jun 2004 B2
6749403 Bryant et al. Jun 2004 B2
6752787 Causey, III et al. Jun 2004 B1
6753842 Williams et al. Jun 2004 B1
6759007 Westberg Jul 2004 B1
6760643 Lipps Jul 2004 B2
6768920 Lange Jul 2004 B2
6773412 O'Mahony Aug 2004 B2
6780156 Haueter et al. Aug 2004 B2
6783328 Lucke et al. Aug 2004 B2
6785573 Kovtun et al. Aug 2004 B2
6786885 Hochman et al. Sep 2004 B2
6789426 Yaralioglu et al. Sep 2004 B2
6790198 White et al. Sep 2004 B1
6793625 Cavallaro et al. Sep 2004 B2
6801227 Bocionek et al. Oct 2004 B2
6805671 Stergiopoulos et al. Oct 2004 B2
6807965 Hickle Oct 2004 B1
6809653 Mann et al. Oct 2004 B1
6813964 Clark et al. Nov 2004 B1
6814547 Childers Nov 2004 B2
6824528 Faries Nov 2004 B1
6830558 Flaherty et al. Dec 2004 B2
6840113 Fukumura et al. Jan 2005 B2
6846161 Kline Jan 2005 B2
6852094 Beck Feb 2005 B2
6852104 Blomquist Feb 2005 B2
6854338 Khuri-Yakub et al. Feb 2005 B2
6857318 Silber et al. Feb 2005 B1
6869425 Briggs et al. Mar 2005 B2
6873268 Lebel et al. Mar 2005 B2
6883376 He Apr 2005 B2
6885881 Leonhardt Apr 2005 B2
6887216 Hochman et al. May 2005 B2
6898301 Iwanaga May 2005 B2
6907361 Molenaar Jun 2005 B2
6907792 Ohnishi Jun 2005 B2
6915170 Engleson et al. Jul 2005 B2
6920795 Bischoff et al. Jul 2005 B2
6923763 Kovatchev et al. Aug 2005 B1
6928338 Buchser et al. Aug 2005 B1
6929619 Fago et al. Aug 2005 B2
6929751 Bowman Aug 2005 B2
6932114 Sparks Aug 2005 B2
6932796 Sage et al. Aug 2005 B2
6935192 Sobek et al. Aug 2005 B2
6936029 Mann et al. Aug 2005 B2
6941005 Lary et al. Sep 2005 B2
6942636 Holst et al. Sep 2005 B2
6945954 Hochman et al. Sep 2005 B2
6958705 Lebel et al. Oct 2005 B2
6964204 Clark et al. Nov 2005 B2
6973374 Ader Dec 2005 B2
6974437 Lebel Dec 2005 B2
6975922 Duncan et al. Dec 2005 B2
6978779 Haveri et al. Dec 2005 B2
6979326 Mann et al. Dec 2005 B2
6981960 Cho et al. Jan 2006 B2
6984218 Nayak et al. Jan 2006 B2
6985768 Hemming et al. Jan 2006 B2
6985870 Martucci et al. Jan 2006 B2
6986347 Hickle Jan 2006 B2
6986753 Bui Jan 2006 B2
6997905 Gillespie, Jr. et al. Feb 2006 B2
6997920 Mann et al. Feb 2006 B2
7006005 Nazarian et al. Feb 2006 B2
7017623 Tribble et al. Mar 2006 B2
7021148 Kuhn Apr 2006 B2
7025743 Mann et al. Apr 2006 B2
7029455 Flaherty Apr 2006 B2
7029456 Ware et al. Apr 2006 B2
7059184 Kanouda et al. Jun 2006 B2
7060059 Keith et al. Jun 2006 B2
7069793 Ishikawa et al. Jul 2006 B2
7072725 Bristol et al. Jul 2006 B2
7074209 Evans et al. Jul 2006 B2
7080557 Adnan Jul 2006 B2
7082843 Clark et al. Aug 2006 B2
7087444 Wong et al. Aug 2006 B2
7092796 Vanderveen Aug 2006 B2
7092797 Gaines et al. Aug 2006 B2
7093502 Kupnik et al. Aug 2006 B2
7096729 Repko et al. Aug 2006 B2
7103419 Engleson et al. Sep 2006 B2
7104763 Bouton et al. Sep 2006 B2
7104769 Davis Sep 2006 B2
7108680 Rohr et al. Sep 2006 B2
7109878 Mann et al. Sep 2006 B2
7115113 Evans et al. Oct 2006 B2
7117041 Engleson et al. Oct 2006 B2
7137964 Flaherty Nov 2006 B2
7141037 Butterfield et al. Nov 2006 B2
7152490 Freund, Jr. et al. Dec 2006 B1
7154397 Zerhusen et al. Dec 2006 B2
7161488 Frasch Jan 2007 B2
7162290 Levin Jan 2007 B1
7162927 Selvan et al. Jan 2007 B1
7171277 Engleson et al. Jan 2007 B2
7174789 Orr et al. Feb 2007 B2
7185288 McKeever Feb 2007 B2
7197943 Lee et al. Apr 2007 B2
7201734 Hickle Apr 2007 B2
7204823 Estes et al. Apr 2007 B2
7206715 Vanderveen Apr 2007 B2
7213009 Pestotnik May 2007 B2
7220240 Struys et al. May 2007 B2
7229430 Hickle et al. Jun 2007 B2
7230529 Ketcherside Jun 2007 B2
7232430 Carlisle Jun 2007 B2
7238164 Childers et al. Jul 2007 B2
7247154 Hickle Jul 2007 B2
7253779 Greer et al. Aug 2007 B2
7254425 Lowery et al. Aug 2007 B2
7258534 Fathallah et al. Aug 2007 B2
7267664 Rizzo Sep 2007 B2
7267665 Steil et al. Sep 2007 B2
7272529 Hogan et al. Sep 2007 B2
7278983 Ireland et al. Oct 2007 B2
7291123 Baraldi et al. Nov 2007 B2
7293461 Gimdt Nov 2007 B1
7294109 Lovett et al. Nov 2007 B2
7296482 Schaffer et al. Nov 2007 B2
7300418 Zaleski Nov 2007 B2
7305883 Khuri-Yakub et al. Dec 2007 B2
7327273 Hung et al. Feb 2008 B2
7338470 Katz Mar 2008 B2
7347836 Peterson et al. Mar 2008 B2
7347854 Shelton et al. Mar 2008 B2
7354420 Steil et al. Apr 2008 B2
7356382 Vanderveen Apr 2008 B2
7360999 Nelson et al. Apr 2008 B2
7364562 Braig et al. Apr 2008 B2
7367942 Grage et al. May 2008 B2
7369948 Ferenczi et al. May 2008 B1
7384410 Eggers et al. Jun 2008 B2
7397166 Morgan et al. Jul 2008 B1
7398183 Holland et al. Jul 2008 B2
7399277 Saidara et al. Jul 2008 B2
7402153 Steil et al. Jul 2008 B2
7402154 Mendez Jul 2008 B2
7407489 Mendez Aug 2008 B2
7414534 Kroll et al. Aug 2008 B1
7415895 Kurisaki et al. Aug 2008 B2
7426443 Simon Sep 2008 B2
7430675 Lee et al. Sep 2008 B2
7447566 Knauper et al. Nov 2008 B2
7447643 Olson Nov 2008 B1
7452190 Bouton et al. Nov 2008 B2
7454314 Holland et al. Nov 2008 B2
7471994 Ford et al. Dec 2008 B2
7482818 Greenwald et al. Jan 2009 B2
7483756 Engleson et al. Jan 2009 B2
7490021 Holland et al. Feb 2009 B2
7491187 Van Den Berghe et al. Feb 2009 B2
7503903 Carlisle et al. Mar 2009 B2
7517332 Tonelli et al. Apr 2009 B2
7523401 Aldridge Apr 2009 B1
7545075 Huang et al. Jun 2009 B2
7556616 Fathallah et al. Jul 2009 B2
7561986 Vanderveen et al. Jul 2009 B2
7571024 Duncan et al. Aug 2009 B2
7605730 Tomioka et al. Oct 2009 B2
7645258 White et al. Jan 2010 B2
7654127 Krulevitch et al. Feb 2010 B2
7657443 Crass Feb 2010 B2
7668731 Martucci et al. Feb 2010 B2
7678048 Urbano et al. Mar 2010 B1
7693697 Westenskow et al. Apr 2010 B2
7699806 Ware et al. Apr 2010 B2
7705727 Pestotnik Apr 2010 B2
7766873 Moberg et al. Aug 2010 B2
7775126 Eckhardt Aug 2010 B2
7775127 Wade Aug 2010 B2
7785284 Baralsi et al. Aug 2010 B2
7785313 Mastrototaro Aug 2010 B2
7786909 Udupa et al. Aug 2010 B2
7806886 Kanderian, Jr. et al. Oct 2010 B2
7826981 Goode, Jr. et al. Nov 2010 B2
7847276 Carlisle Dec 2010 B2
7860583 Condurso et al. Dec 2010 B2
7871394 Halbert et al. Jan 2011 B2
7876443 Bernacki Jan 2011 B2
7895053 Holland et al. Feb 2011 B2
7895882 Carlisle Mar 2011 B2
7896834 Smisson, III Mar 2011 B2
7896842 Palmroos et al. Mar 2011 B2
7905710 Wang et al. Mar 2011 B2
7933780 de la Huerga Apr 2011 B2
7945452 Fathallah et al. May 2011 B2
7976508 Hoag Jul 2011 B2
7981073 Mollstam Jul 2011 B2
7981082 Wang et al. Jul 2011 B2
8002736 Patrick et al. Aug 2011 B2
8034020 Dewey Oct 2011 B2
8038593 Friedman et al. Oct 2011 B2
8065161 Howard et al. Nov 2011 B2
8067760 Carlisle Nov 2011 B2
8075514 Butterfield et al. Dec 2011 B2
8075546 Carlisle et al. Dec 2011 B2
8078983 Davis et al. Dec 2011 B2
8121857 Galasso et al. Feb 2012 B2
8149131 Blomquist Apr 2012 B2
8175668 Nabutovsky et al. May 2012 B1
8177739 Cartledge et al. May 2012 B2
8180440 McCombie et al. May 2012 B2
8185322 Schroeder et al. May 2012 B2
8219413 Martinez et al. Jul 2012 B2
8221395 Shelton et al. Jul 2012 B2
8226597 Jacobson et al. Jul 2012 B2
8231578 Fathallah et al. Jul 2012 B2
8234128 Martucci et al. Jul 2012 B2
8271106 Wehba et al. Sep 2012 B2
8287514 Miller et al. Oct 2012 B2
8291337 Gannin et al. Oct 2012 B2
8313308 Lawless et al. Nov 2012 B2
8317698 Lowery Nov 2012 B2
8317750 Ware et al. Nov 2012 B2
8317752 Cozmi et al. Nov 2012 B2
8318094 Bayandorian et al. Nov 2012 B1
8340792 Condurso et al. Dec 2012 B2
8347731 Genosar Jan 2013 B2
8359338 Butterfield et al. Jan 2013 B2
8361021 Wang et al. Jan 2013 B2
8378837 Wang et al. Feb 2013 B2
8388598 Steinkogler Mar 2013 B2
8398616 Budiman Mar 2013 B2
8403908 Jacobson et al. Mar 2013 B2
8449524 Braig et al. May 2013 B2
8477307 Yufa et al. Jul 2013 B1
8494879 Davis et al. Jul 2013 B2
8504179 Blomquist Aug 2013 B2
8517990 Teel et al. Aug 2013 B2
8518021 Stewart et al. Aug 2013 B2
8523797 Lowery et al. Sep 2013 B2
8539812 Stringham et al. Sep 2013 B2
8543416 Palmroos et al. Sep 2013 B2
8577692 Silkaitis et al. Nov 2013 B2
8622990 Estes et al. Jan 2014 B2
8630722 Condurso et al. Jan 2014 B2
8665214 Forutanpour et al. Mar 2014 B2
8666769 Butler et al. Mar 2014 B2
8700421 Feng et al. Apr 2014 B2
8706233 Su et al. Apr 2014 B2
8721584 Braithwaite et al. May 2014 B2
8761906 Condurso et al. Jun 2014 B2
8768719 Wehba et al. Jul 2014 B2
8771251 Ruchti et al. Jul 2014 B2
8792981 Yudovsky et al. Jul 2014 B2
8821432 Unverdorben Sep 2014 B2
8823382 Rondoni et al. Sep 2014 B2
8857269 Johnson et al. Oct 2014 B2
8858185 Johnson et al. Oct 2014 B2
8905965 Mandro et al. Dec 2014 B2
8964185 Luo et al. Feb 2015 B1
9005150 Ware et al. Apr 2015 B2
9026370 Rubalcaba et al. May 2015 B2
9084855 Ware et al. Jul 2015 B2
9114217 Sur et al. Aug 2015 B2
9134735 Lowery et al. Sep 2015 B2
9134736 Lowery et al. Sep 2015 B2
9138526 Ware et al. Sep 2015 B2
9190010 Vik et al. Nov 2015 B2
9240002 Hume et al. Jan 2016 B2
9272089 Jacobson et al. Mar 2016 B2
9333291 Jacobson et al. May 2016 B2
9381296 Arrizza et al. Jul 2016 B2
9393362 Cozmi et al. Jul 2016 B2
9468718 Hung et al. Oct 2016 B2
9498583 Sur et al. Nov 2016 B2
9545475 Borges et al. Jan 2017 B2
9707341 Dumas, III et al. Jul 2017 B2
9764087 Peterfreund et al. Sep 2017 B2
9852265 Treacy et al. Dec 2017 B1
9883987 Lopez Feb 2018 B2
9943269 Muhsin et al. Apr 2018 B2
9995611 Ruchti et al. Jun 2018 B2
10022498 Ruchti et al. Jul 2018 B2
10046112 Oruklu et al. Aug 2018 B2
10089055 Fryman Oct 2018 B1
10099009 Anderson Oct 2018 B1
10166328 Oruklu et al. Jan 2019 B2
10342917 Shubinsky et al. Jul 2019 B2
10430761 Hume et al. Oct 2019 B2
10463788 Day Nov 2019 B2
10549248 Brown Feb 2020 B2
10578474 Ruchti et al. Mar 2020 B2
10596316 Dumas, III et al. Mar 2020 B2
10635784 Rubalcaba, Jr. et al. Apr 2020 B2
10656894 Fryman May 2020 B2
10682102 Declerck Jun 2020 B2
10850024 Day et al. Dec 2020 B2
10874793 Oruklu et al. Dec 2020 B2
20010007636 Butterfield Jul 2001 A1
20010014769 Bufe et al. Aug 2001 A1
20010015099 Blaine Aug 2001 A1
20010016056 Westphal et al. Aug 2001 A1
20010032099 Joao Oct 2001 A1
20010037060 Thompson et al. Nov 2001 A1
20010041869 Causey et al. Nov 2001 A1
20010044731 Coffman et al. Nov 2001 A1
20020003892 Iwanaga Jan 2002 A1
20020007116 Zatezalo et al. Jan 2002 A1
20020013545 Soltanpour et al. Jan 2002 A1
20020013551 Zaitsu et al. Jan 2002 A1
20020015018 Shimazu et al. Feb 2002 A1
20020018720 Carlisle et al. Feb 2002 A1
20020029776 Blomquist Mar 2002 A1
20020031838 Meinhart et al. Mar 2002 A1
20020032583 Joao Mar 2002 A1
20020040208 Flaherty et al. Apr 2002 A1
20020044059 Reeder et al. Apr 2002 A1
20020045806 Baker, Jr. et al. Apr 2002 A1
20020082728 Mueller et al. Jun 2002 A1
20020083771 Khuri-Yakub et al. Jul 2002 A1
20020085952 Ellingboe et al. Jul 2002 A1
20020087115 Hartlaub Jul 2002 A1
20020095486 Bahl Jul 2002 A1
20020099282 Knobbe et al. Jul 2002 A1
20020099334 Hanson et al. Jul 2002 A1
20020143580 Bristol et al. Oct 2002 A1
20020147389 Cavallaro et al. Oct 2002 A1
20020152239 Bautista-Lloyd et al. Oct 2002 A1
20020168278 Jeon et al. Nov 2002 A1
20020173703 Lebel et al. Nov 2002 A1
20020183693 Peterson et al. Dec 2002 A1
20030009244 Engleson Jan 2003 A1
20030013959 Grunwald et al. Jan 2003 A1
20030018289 Ng et al. Jan 2003 A1
20030018308 Tsai Jan 2003 A1
20030025602 Medema et al. Feb 2003 A1
20030028082 Thompson Feb 2003 A1
20030030001 Cooper et al. Feb 2003 A1
20030045840 Burko Mar 2003 A1
20030050621 Lebel et al. Mar 2003 A1
20030060688 Ciarniello et al. Mar 2003 A1
20030060765 Campbell et al. Mar 2003 A1
20030065537 Evans Apr 2003 A1
20030065589 Giacchetti Apr 2003 A1
20030073954 Moberg et al. Apr 2003 A1
20030079746 Hickle May 2003 A1
20030083583 Kovtun et al. May 2003 A1
20030091442 Bush et al. May 2003 A1
20030104982 Wittmann et al. Jun 2003 A1
20030106553 Vanderveen Jun 2003 A1
20030125662 Bui Jul 2003 A1
20030130616 Steil Jul 2003 A1
20030135087 Hickle et al. Jul 2003 A1
20030136193 Fujimoto Jul 2003 A1
20030139701 White et al. Jul 2003 A1
20030140928 Bui et al. Jul 2003 A1
20030141981 Bui et al. Jul 2003 A1
20030143746 Sage, Jr. Jul 2003 A1
20030144878 Wilkes et al. Jul 2003 A1
20030158508 DiGianfilippo Aug 2003 A1
20030160683 Blomquist Aug 2003 A1
20030163789 Blomquist Aug 2003 A1
20030173408 Mosher, Jr. et al. Sep 2003 A1
20030186833 Huff et al. Oct 2003 A1
20030187338 Say et al. Oct 2003 A1
20030200116 Forrester Oct 2003 A1
20030204274 Ullestad et al. Oct 2003 A1
20030204416 Acharya Oct 2003 A1
20030212364 Mann et al. Nov 2003 A1
20030212379 Bylund et al. Nov 2003 A1
20030216682 Junker Nov 2003 A1
20030217962 Childers et al. Nov 2003 A1
20030233071 Gillespie, Jr. et al. Dec 2003 A1
20040030277 O'Mahony et al. Feb 2004 A1
20040047736 Nose et al. Mar 2004 A1
20040057226 Berthou et al. Mar 2004 A1
20040064342 Browne et al. Apr 2004 A1
20040073125 Lovett et al. Apr 2004 A1
20040073161 Tachibana Apr 2004 A1
20040077996 Jasperson et al. Apr 2004 A1
20040082908 Whitehurst Apr 2004 A1
20040082918 Evans et al. Apr 2004 A1
20040104271 Martucci et al. Jun 2004 A1
20040119753 Zencke Jun 2004 A1
20040120825 Bouton et al. Jun 2004 A1
20040128162 Schlotterbeck et al. Jul 2004 A1
20040128163 Goodman et al. Jul 2004 A1
20040133166 Moberg et al. Jul 2004 A1
20040145114 Ippolito et al. Jul 2004 A1
20040147034 Gore et al. Jul 2004 A1
20040149823 Aptekar Aug 2004 A1
20040152970 Hunter et al. Aug 2004 A1
20040158193 Bui et al. Aug 2004 A1
20040167464 Ireland et al. Aug 2004 A1
20040167465 Kohler Aug 2004 A1
20040167804 Simpson Aug 2004 A1
20040172222 Simpson et al. Sep 2004 A1
20040172283 Vanderveen Sep 2004 A1
20040172289 Kozic et al. Sep 2004 A1
20040172302 Martucci et al. Sep 2004 A1
20040176984 White et al. Sep 2004 A1
20040181314 Zaleski Sep 2004 A1
20040193025 Steil et al. Sep 2004 A1
20040193325 Bonderud Sep 2004 A1
20040193328 Butterfield et al. Sep 2004 A1
20040204638 Diab et al. Oct 2004 A1
20040204673 Flaherty et al. Oct 2004 A1
20040220517 Starkweather et al. Nov 2004 A1
20040225252 Gillespie et al. Nov 2004 A1
20040225409 Duncan et al. Nov 2004 A1
20040232219 Fowler Nov 2004 A1
20040253123 Xie et al. Dec 2004 A1
20040254434 Goodnow et al. Dec 2004 A1
20040254513 Shang et al. Dec 2004 A1
20050021006 Tonnies Jan 2005 A1
20050021297 Hartlaub Jan 2005 A1
20050022274 Campbell et al. Jan 2005 A1
20050038680 McMahon Feb 2005 A1
20050055242 Bello et al. Mar 2005 A1
20050055244 Mullan et al. Mar 2005 A1
20050065465 Lebel et al. Mar 2005 A1
20050075544 Shapiro et al. Apr 2005 A1
20050096593 Pope et al. May 2005 A1
20050099624 Staehr May 2005 A1
20050107923 Vanderveen May 2005 A1
20050108057 Cohen et al. May 2005 A1
20050119597 O'Mahony et al. Jun 2005 A1
20050119914 Batch Jun 2005 A1
20050131739 Rabinowitz et al. Jun 2005 A1
20050137522 Aoki Jun 2005 A1
20050143864 Blomquist Jun 2005 A1
20050145010 Vanderveen et al. Jul 2005 A1
20050171503 Van Den Berghe et al. Aug 2005 A1
20050171815 Vanderveen Aug 2005 A1
20050177045 Degertekin et al. Aug 2005 A1
20050177096 Bollish et al. Aug 2005 A1
20050182306 Sloan Aug 2005 A1
20050182355 Bui Aug 2005 A1
20050182366 Vogt et al. Aug 2005 A1
20050187515 Varrichio et al. Aug 2005 A1
20050192529 Butterfield et al. Sep 2005 A1
20050192557 Brauker et al. Sep 2005 A1
20050197554 Polcha Sep 2005 A1
20050197621 Poulsen et al. Sep 2005 A1
20050197649 Shelton Sep 2005 A1
20050209563 Hopping et al. Sep 2005 A1
20050209793 Yamada Sep 2005 A1
20050224083 Crass Oct 2005 A1
20050235732 Rush Oct 2005 A1
20050238506 Mescher et al. Oct 2005 A1
20050240305 Bogash et al. Oct 2005 A1
20050273059 Mernoe et al. Dec 2005 A1
20050277890 Stewart et al. Dec 2005 A1
20050279419 Tribble et al. Dec 2005 A1
20060002799 Schann et al. Jan 2006 A1
20060009727 O'Mahony et al. Jan 2006 A1
20060009734 Martin Jan 2006 A1
20060042633 Bishop et al. Mar 2006 A1
20060047270 Shelton Mar 2006 A1
20060053036 Coffman et al. Mar 2006 A1
20060064020 Burnes et al. Mar 2006 A1
20060064053 Bollish et al. Mar 2006 A1
20060079768 Small et al. Apr 2006 A1
20060079831 Gilbert Apr 2006 A1
20060100746 Leibner-Druska May 2006 A1
20060100907 Holland et al. May 2006 A1
20060106649 Eggers et al. May 2006 A1
20060116639 Russell Jun 2006 A1
20060117856 Orr et al. Jun 2006 A1
20060117867 Froehlich et al. Jun 2006 A1
20060122867 Eggers et al. Jun 2006 A1
20060135939 Brown Jun 2006 A1
20060135940 Joshi Jun 2006 A1
20060136095 Rob et al. Jun 2006 A1
20060136271 Eggers et al. Jun 2006 A1
20060140798 Kutsuzawa Jun 2006 A1
20060143051 Eggers et al. Jun 2006 A1
20060173260 Gaoni et al. Aug 2006 A1
20060173406 Hayes et al. Aug 2006 A1
20060180916 Wyland Aug 2006 A1
20060181695 Sage, Jr. Aug 2006 A1
20060187069 Duan Aug 2006 A1
20060190302 Eggers et al. Aug 2006 A1
20060195022 Trepagnier et al. Aug 2006 A1
20060200007 Brockway et al. Sep 2006 A1
20060200369 Batch et al. Sep 2006 A1
20060211404 Cromp et al. Sep 2006 A1
20060224140 Junker Oct 2006 A1
20060224141 Rush et al. Oct 2006 A1
20060224181 McEwen et al. Oct 2006 A1
20060226088 Robinson et al. Oct 2006 A1
20060226089 Robinson et al. Oct 2006 A1
20060226090 Robinson et al. Oct 2006 A1
20060229918 Fotsch et al. Oct 2006 A1
20060235353 Gelfand et al. Oct 2006 A1
20060255149 Retter et al. Nov 2006 A1
20060258985 Russell Nov 2006 A1
20060260416 Sage et al. Nov 2006 A1
20060264895 Flanders Nov 2006 A1
20060266128 Clark et al. Nov 2006 A1
20060270971 Gelfand et al. Nov 2006 A1
20060271286 Rosenberg Nov 2006 A1
20060272421 Frinak et al. Dec 2006 A1
20060275142 Bouton et al. Dec 2006 A1
20070015972 Wang et al. Jan 2007 A1
20070036511 Lundquist et al. Feb 2007 A1
20070060796 Kim Mar 2007 A1
20070060871 Istoc Mar 2007 A1
20070060872 Hall et al. Mar 2007 A1
20070060874 Nesbitt et al. Mar 2007 A1
20070062250 Krulevitch et al. Mar 2007 A1
20070065363 Dalal et al. Mar 2007 A1
20070078314 Grounsell Apr 2007 A1
20070083152 Williams, Jr. et al. Apr 2007 A1
20070084288 Thomas et al. Apr 2007 A1
20070088271 Richards Apr 2007 A1
20070088333 Levin et al. Apr 2007 A1
20070093753 Krulevitcvh et al. Apr 2007 A1
20070094045 Cobbs et al. Apr 2007 A1
20070100222 Mastrototaro et al. May 2007 A1
20070100665 Brown May 2007 A1
20070112298 Mueller et al. May 2007 A1
20070118405 Campbell et al. May 2007 A1
20070129618 Goldberger et al. Jun 2007 A1
20070142822 Remde Jun 2007 A1
20070156452 Batch Jul 2007 A1
20070179436 Braig et al. Aug 2007 A1
20070191817 Martin Aug 2007 A1
20070214003 Holland et al. Sep 2007 A1
20070215545 Bissler et al. Sep 2007 A1
20070233035 Wehba et al. Oct 2007 A1
20070233049 Wehba et al. Oct 2007 A1
20070240497 Robinson et al. Oct 2007 A1
20070250339 Mallett et al. Oct 2007 A1
20070255250 Moberg et al. Nov 2007 A1
20070257788 Carlson Nov 2007 A1
20070267945 Sudol Nov 2007 A1
20070270747 Remde Nov 2007 A1
20070274843 Vanderveen et al. Nov 2007 A1
20070289384 Sakai et al. Dec 2007 A1
20080009684 Corsetti et al. Jan 2008 A1
20080028868 Konzelmann et al. Feb 2008 A1
20080033361 Evans et al. Feb 2008 A1
20080039777 Katz et al. Feb 2008 A1
20080048211 Khuri-Yakub et al. Feb 2008 A1
20080058773 John Mar 2008 A1
20080060448 Wiest et al. Mar 2008 A1
20080065420 Tirinato et al. Mar 2008 A1
20080071210 Moubayed et al. Mar 2008 A1
20080071496 Glascock Mar 2008 A1
20080071580 Marcus et al. Mar 2008 A1
20080077116 Dailey Mar 2008 A1
20080091466 Butler et al. Apr 2008 A1
20080097288 Levin et al. Apr 2008 A1
20080097289 Steil et al. Apr 2008 A1
20080097317 Alholm et al. Apr 2008 A1
20080098798 Riley et al. May 2008 A1
20080119822 Knauper May 2008 A1
20080125701 Moberg et al. May 2008 A1
20080139907 Rao et al. Jun 2008 A1
20080145249 Smisson Jun 2008 A1
20080172030 Blomquist et al. Jul 2008 A1
20080177254 Shelton et al. Jul 2008 A1
20080184784 Dam Aug 2008 A1
20080188789 Galavotti et al. Aug 2008 A1
20080188796 Steil et al. Aug 2008 A1
20080208484 Butterfield et al. Aug 2008 A1
20080214919 Harmon et al. Sep 2008 A1
20080221521 Getz et al. Sep 2008 A1
20080221522 Moberg et al. Sep 2008 A1
20080262469 Bristol et al. Oct 2008 A1
20080269663 Arnold et al. Oct 2008 A1
20080269714 Mastrototaro et al. Oct 2008 A1
20080269723 Mastrototaro et al. Oct 2008 A1
20080275384 Mastrototaro et al. Nov 2008 A1
20080300572 Rankers et al. Dec 2008 A1
20090001908 Shubinsky et al. Jan 2009 A1
20090005703 Fasciano Jan 2009 A1
20090006061 Thukral et al. Jan 2009 A1
20090006129 Thukral Jan 2009 A1
20090006133 Weinert Jan 2009 A1
20090015824 Shubinsky et al. Jan 2009 A1
20090043171 Rule Feb 2009 A1
20090054743 Stewart Feb 2009 A1
20090054754 McMahon et al. Feb 2009 A1
20090069743 Krishnamoorthy et al. Mar 2009 A1
20090077248 Castellucci et al. Mar 2009 A1
20090082676 Bennison Mar 2009 A1
20090088731 Campbell et al. Apr 2009 A1
20090097029 Tokhtuev et al. Apr 2009 A1
20090105636 Hayter et al. Apr 2009 A1
20090112155 Zhao Apr 2009 A1
20090114037 Smith May 2009 A1
20090119330 Sampath et al. May 2009 A1
20090124963 Hogard et al. May 2009 A1
20090124964 Leach et al. May 2009 A1
20090126825 Eliuk May 2009 A1
20090131861 Braig et al. May 2009 A1
20090135196 Holland et al. May 2009 A1
20090143726 Bouton et al. Jun 2009 A1
20090144025 Bouton et al. Jun 2009 A1
20090144026 Bouton et al. Jun 2009 A1
20090149743 Barron et al. Jun 2009 A1
20090156922 Goldberger et al. Jun 2009 A1
20090156975 Robinson et al. Jun 2009 A1
20090177146 Nesbitt et al. Jul 2009 A1
20090177188 Steinkogler Jul 2009 A1
20090177248 Roberts Jul 2009 A1
20090177769 Roberts Jul 2009 A1
20090178485 Thomas et al. Jul 2009 A1
20090183147 Davis et al. Jul 2009 A1
20090192367 Braig et al. Jul 2009 A1
20090205426 Balschat et al. Aug 2009 A1
20090209938 Aalto-Setala Aug 2009 A1
20090209945 Lobl et al. Aug 2009 A1
20090212966 Panduro Aug 2009 A1
20090221890 Saffer et al. Sep 2009 A1
20090223294 Thomas et al. Sep 2009 A1
20090227939 Memoe et al. Sep 2009 A1
20090264720 Torjman et al. Oct 2009 A1
20090270810 DeBelser Oct 2009 A1
20090270833 DeBelser Oct 2009 A1
20100022988 Wochner Jan 2010 A1
20100280430 Caleffi et al. Jan 2010 A1
20100036310 Hillman Feb 2010 A1
20100056992 Hayter Mar 2010 A1
20100057042 Hayter Mar 2010 A1
20100069892 Steinbach et al. Mar 2010 A1
20100077866 Graboi et al. Apr 2010 A1
20100079760 Bernacki Apr 2010 A1
20100094251 Estes et al. Apr 2010 A1
20100106082 Zhou Apr 2010 A1
20100114027 Jacobson et al. May 2010 A1
20100121170 Rule May 2010 A1
20100121415 Skelton et al. May 2010 A1
20100130933 Holland et al. May 2010 A1
20100131434 Magent et al. May 2010 A1
20100141460 Tokhtuev et al. Jun 2010 A1
20100147081 Thomas et al. Jun 2010 A1
20100152554 Steine et al. Jun 2010 A1
20100160854 Gauthier Jun 2010 A1
20100168535 Robinson et al. Jul 2010 A1
20100177375 Seyfried Jul 2010 A1
20100185142 Kamen et al. Jul 2010 A1
20100185182 Alme et al. Jul 2010 A1
20100198034 Thomas et al. Aug 2010 A1
20100198182 Lanigan et al. Aug 2010 A1
20100198183 Lanigan et al. Aug 2010 A1
20100211002 Davis Aug 2010 A1
20100212407 Stringham et al. Aug 2010 A1
20100212675 Walling et al. Aug 2010 A1
20100217154 Deshmukh et al. Aug 2010 A1
20100217621 Schoenberg Aug 2010 A1
20100271218 Hoag et al. Oct 2010 A1
20100271479 Heydlauf Oct 2010 A1
20100273738 Valcke et al. Oct 2010 A1
20100292634 Kircher Nov 2010 A1
20100295686 Sloan et al. Nov 2010 A1
20100298765 Budiman et al. Nov 2010 A1
20100312039 Quirico Dec 2010 A1
20100317093 Turewicz et al. Dec 2010 A1
20100317952 Budiman et al. Dec 2010 A1
20100318025 John Dec 2010 A1
20110000560 Miller et al. Jan 2011 A1
20110001605 Kiani et al. Jan 2011 A1
20110004186 Butterfield Jan 2011 A1
20110009797 Kelly et al. Jan 2011 A1
20110028885 Eggers et al. Feb 2011 A1
20110046558 Gravesen et al. Feb 2011 A1
20110062703 Lopez et al. Mar 2011 A1
20110064612 Franzoni et al. Mar 2011 A1
20110071464 Palerm Mar 2011 A1
20110071844 Cannon et al. Mar 2011 A1
20110072379 Gannon Mar 2011 A1
20110077480 Bloom et al. Mar 2011 A1
20110078608 Gannon et al. Mar 2011 A1
20110099313 Bolanowski Apr 2011 A1
20110105983 Kelly et al. May 2011 A1
20110106561 Eaton, Jr. et al. May 2011 A1
20110107251 Guaitoli et al. May 2011 A1
20110137241 Delcastilio et al. Jun 2011 A1
20110144595 Cheng Jun 2011 A1
20110152770 Diperna et al. Jun 2011 A1
20110160649 Pan Jun 2011 A1
20110162647 Huby et al. Jul 2011 A1
20110172918 Tome Jul 2011 A1
20110175728 Baker, Jr. Jul 2011 A1
20110190598 Shusterman Aug 2011 A1
20110190694 Lanier et al. Aug 2011 A1
20110218514 Rebours Sep 2011 A1
20110264006 Ali et al. Oct 2011 A1
20110264043 Kotnick et al. Oct 2011 A1
20110282321 Steil et al. Nov 2011 A1
20110313390 Roy et al. Dec 2011 A1
20110319728 Petisce Dec 2011 A1
20110320049 Chossat et al. Dec 2011 A1
20120025995 Moberg et al. Feb 2012 A1
20120059234 Barrett et al. Mar 2012 A1
20120068001 Pushkarsky et al. Mar 2012 A1
20120083760 Ledford Apr 2012 A1
20120095433 Hungerford et al. Apr 2012 A1
20120123322 Scarpaci et al. May 2012 A1
20120143116 Ware et al. Jun 2012 A1
20120180790 Montgomery Jul 2012 A1
20120185267 Kamen et al. Jul 2012 A1
20120191059 Cummings et al. Jul 2012 A1
20120194341 Peichel et al. Aug 2012 A1
20120203177 Lanier Aug 2012 A1
20120226350 Rudser et al. Sep 2012 A1
20120245525 Pope et al. Sep 2012 A1
20120259278 Hayes et al. Oct 2012 A1
20120310204 Krogh Dec 2012 A1
20120323212 Murphy Dec 2012 A1
20130006666 Schneider Jan 2013 A1
20130009551 Knapp Jan 2013 A1
20130012880 Blomquist Jan 2013 A1
20130012917 Miller et al. Jan 2013 A1
20130041342 Bernini et al. Feb 2013 A1
20130044111 VanGilder et al. Feb 2013 A1
20130110538 Butterfield et al. May 2013 A1
20130150766 Olde et al. Jun 2013 A1
20130150821 Bollish et al. Jun 2013 A1
20130197930 Garibaldi et al. Aug 2013 A1
20130201482 Munro Aug 2013 A1
20130116649 Kouyoumjian et al. Sep 2013 A1
20130253430 Kouyoumjian et al. Sep 2013 A1
20130274576 Amirouche et al. Oct 2013 A1
20130281965 Kamen et al. Oct 2013 A1
20130291116 Homer Oct 2013 A1
20130296823 Melker et al. Nov 2013 A1
20130296984 Burnett et al. Nov 2013 A1
20130318158 Teng et al. Nov 2013 A1
20130345658 Browne et al. Dec 2013 A1
20130345666 Panduro et al. Dec 2013 A1
20140067425 Dudar et al. Mar 2014 A1
20140180711 Kamen Jun 2014 A1
20140224829 Capone et al. Aug 2014 A1
20140267563 Baca et al. Sep 2014 A1
20140303591 Peterfreund et al. Oct 2014 A1
20150025453 Ledford et al. Jan 2015 A1
20150033073 Yang et al. Jan 2015 A1
20150065988 Holderle Mar 2015 A1
20150168958 Downie et al. Jun 2015 A1
20150265765 Yavorsky Sep 2015 A1
20150338340 Jiang et al. Nov 2015 A1
20150343141 Lindo et al. Dec 2015 A1
20160042264 Borges et al. Feb 2016 A1
20160110088 Vik et al. Apr 2016 A1
20160144101 Pananen May 2016 A1
20160151560 Toro et al. Jun 2016 A1
20160151562 Magers et al. Jun 2016 A1
20160151601 Cardelius et al. Jun 2016 A1
20160175517 Sileika et al. Jun 2016 A1
20160193604 McFarland et al. Jul 2016 A1
20160339167 Ledford et al. Nov 2016 A1
20170043089 Handler Feb 2017 A1
20170354941 Brown Dec 2017 A1
20180018440 Sugawara Jan 2018 A1
20190091401 Ruchti et al. Mar 2019 A1
20190262535 Shubinsky et al. Aug 2019 A1
20190282757 Gylland Sep 2019 A1
20200069864 Shubinsky et al. Mar 2020 A1
20200090122 Hume Mar 2020 A1
20200238007 Day Jul 2020 A1
20200271499 Ruchti et al. Aug 2020 A1
20200282137 Dumas, III et al. Sep 2020 A1
20200319837 Fryman Oct 2020 A1
20200324044 Gylland et al. Oct 2020 A1
20200357500 Rubalcaba, Jr. et al. Nov 2020 A1
Foreign Referenced Citations (177)
Number Date Country
2013216679 Sep 2013 AU
PI0704229-9 Nov 2009 BR
2 113 473 Mar 1993 CA
2 551 817 Jul 2005 CA
31 12 762 Jan 1983 DE
34 35 647 Jul 1985 DE
35 30 747 Mar 1987 DE
37 20 664 Jan 1989 DE
38 27 444 Feb 1990 DE
197 34 002 Sep 1998 DE
199 01 078 Feb 2000 DE
198 40 965 Mar 2000 DE
198 44 252 Mar 2000 DE
199 32 147 Jan 2001 DE
102 49 238 May 2004 DE
103 52 456 Jul 2005 DE
0 282 323 Sep 1988 EP
0 291 727 Nov 1988 EP
0 319 272 Jun 1989 EP
0 319 275 Jun 1989 EP
0 335 385 Oct 1989 EP
0 337 092 Oct 1989 EP
0 341 582 Nov 1989 EP
0 370 162 May 1990 EP
0 387 724 Sep 1990 EP
0 429 866 Jun 1991 EP
0 441 323 Aug 1991 EP
0 453 211 Oct 1991 EP
0 462 405 Dec 1991 EP
0 501 234 Sep 1992 EP
0 516 130 Dec 1992 EP
0 519 765 Dec 1992 EP
0 643 301 Mar 1995 EP
0 683 465 Nov 1995 EP
0 431 310 Jan 1996 EP
0 589 439 Aug 1998 EP
0 880 936 Dec 1998 EP
0 954 090 Nov 1999 EP
0 960 627 Dec 1999 EP
1 174 817 Jan 2002 EP
1 177 802 Feb 2002 EP
1 197 178 Apr 2002 EP
1 500 025 Apr 2003 EP
1 813 188 Aug 2007 EP
1 490 131 Dec 2007 EP
2 062 527 May 2009 EP
2 228 004 Sep 2010 EP
2 243 506 Oct 2010 EP
2 381 260 Oct 2011 EP
254513 Oct 1981 ES
2 717 919 Sep 1995 FR
2 121 971 Jan 1984 GB
2 303 706 Feb 1997 GB
2 312 022 Oct 1997 GB
2 312 046 Oct 1997 GB
01-301118 Dec 1989 JP
01-308568 Dec 1989 JP
04-231966 Aug 1992 JP
07-502678 Mar 1995 JP
07-289638 Nov 1995 JP
11-128344 May 1999 JP
2000-111374 Apr 2000 JP
2000-510575 Aug 2000 JP
2000-515716 Nov 2000 JP
2001-356034 Dec 2001 JP
2002-506514 Feb 2002 JP
2002-131105 May 2002 JP
2003-038642 Feb 2003 JP
2003-050144 Feb 2003 JP
2005-021463 Jan 2005 JP
2005-524081 Mar 2005 JP
2006-517423 Jul 2006 JP
2007-071695 Mar 2007 JP
2007-518471 Jul 2007 JP
2007-520270 Jul 2007 JP
2007-275106 Oct 2007 JP
2008-249400 Oct 2008 JP
4322661 Jun 2009 JP
2010-063767 Mar 2010 JP
WO 84000690 Mar 1984 WO
WO 84000894 Mar 1984 WO
WO 90007942 Jul 1990 WO
WO 91000113 Jan 1991 WO
WO 91016087 Oct 1991 WO
WO 91016416 Oct 1991 WO
WO 93004284 Mar 1993 WO
WO 95016200 Jun 1995 WO
WO 95031233 Nov 1995 WO
WO 96008755 Mar 1996 WO
WO 96025186 Aug 1996 WO
WO 96028209 Sep 1996 WO
WO 96041156 Dec 1996 WO
WO 97010013 Mar 1997 WO
WO 97030333 Aug 1997 WO
WO 98004304 Feb 1998 WO
WO 98012670 Mar 1998 WO
WO 98014234 Apr 1998 WO
WO 98019263 May 1998 WO
WO 98044320 Oct 1998 WO
WO 98056441 Dec 1998 WO
WO 99015216 Apr 1999 WO
WO 99051003 Oct 1999 WO
WO 99052575 Oct 1999 WO
WO 00013580 Mar 2000 WO
WO 00013726 Mar 2000 WO
WO 00041621 Jul 2000 WO
WO 01014974 Mar 2001 WO
WO 01033484 May 2001 WO
WO 02005702 Jan 2002 WO
WO 02009795 Feb 2002 WO
WO 02027276 Apr 2002 WO
WO 02066101 Aug 2002 WO
WO 02087664 Nov 2002 WO
WO 03006091 Jan 2003 WO
WO 03053498 Jul 2003 WO
WO 03093780 Nov 2003 WO
WO 2004035115 Apr 2004 WO
WO 2004060455 Jul 2004 WO
WO 2004070556 Aug 2004 WO
WO 2004070994 Aug 2004 WO
WO 2004112579 Dec 2004 WO
WO 2005018716 Mar 2005 WO
WO 2005030489 Apr 2005 WO
WO 2005036447 Apr 2005 WO
WO 2005050526 Jun 2005 WO
WO 2005057175 Jun 2005 WO
WO 2005065146 Jul 2005 WO
WO 2005065749 Jul 2005 WO
WO 2005082450 Sep 2005 WO
WO 2005118015 Dec 2005 WO
WO 2006016122 Feb 2006 WO
WO 2006022906 Mar 2006 WO
WO 2007000426 Jan 2007 WO
WO 2007033025 Mar 2007 WO
WO 2007035567 Mar 2007 WO
WO 2007087443 Aug 2007 WO
WO 2008004560 Jan 2008 WO
WO 2008019016 Feb 2008 WO
WO 2008053193 May 2008 WO
WO 2008059492 May 2008 WO
WO 2008063429 May 2008 WO
WO 2008067245 Jun 2008 WO
WO 2008088490 Jul 2008 WO
WO 2008134146 Nov 2008 WO
WO 2009016504 Feb 2009 WO
WO 2009023406 Feb 2009 WO
WO 2009023407 Feb 2009 WO
WO 2009023634 Feb 2009 WO
WO 2009039203 Mar 2009 WO
WO 2009039214 Mar 2009 WO
WO 2009049252 Apr 2009 WO
WO 2009127683 Oct 2009 WO
WO 2009141504 Nov 2009 WO
WO 2010017279 Feb 2010 WO
WO 2010075371 Jul 2010 WO
WO 2010099313 Sep 2010 WO
WO 2010114929 Oct 2010 WO
WO 2010119409 Oct 2010 WO
WO 2010124127 Oct 2010 WO
WO 2010135646 Nov 2010 WO
WO 2010135654 Nov 2010 WO
WO 2010135670 Nov 2010 WO
WO 2010135686 Nov 2010 WO
WO 2010148205 Dec 2010 WO
WO 2011017778 Feb 2011 WO
WO 2011080188 Jul 2011 WO
WO 2011109774 Sep 2011 WO
WO 2012042763 Apr 2012 WO
WO 2012082599 Jun 2012 WO
WO 2012108910 Aug 2012 WO
WO 2012167090 Dec 2012 WO
WO 2013096769 Jun 2013 WO
WO 2015134478 Sep 2015 WO
WO 2017051271 Mar 2017 WO
WO 2017144366 Aug 2017 WO
WO-2017197024 Nov 2017 WO
WO 2020214717 Oct 2020 WO
Non-Patent Literature Citations (57)
Entry
Alaedeen et al., “Total Parenteral Nutrition-Associated Hyperglycemia Correlates with Prolonged Mechanical Ventilation and Hospital Stay in Septic Infants”, Journal of Pediatric Surgery, Jan. 2006, vol. 41, No. 1, pp. 239-244.
Alaris® Medical Systems, “Signature Edition® Gold—Single & Dual Channel Infusion System”, San Diego, CA, USA, date unknown, but believed to be at least as early as Nov. 29, 2008, pp. 2-88 & 2-91.
Allegro, “3955—Full-Bridge PWM Microstepping Motor Drive”, Datasheet, 1997, pp. 16.
Aragon, Daleen RN, Ph.D., CCRN, “Evaluation of Nursing Work Effort and Perceptions About Blood Glucose Testing in Tight Glycemic Control”, American Journal of Critical Care, Jul. 2006, vol. 15, No. 4, pp. 370-377.
Baxter, “Baxter Receives 510(k) Clearance for Next-Generation SIGMA Spectrum Infusion Pump with Master Drug Library” Press Release, May 8, 2014, pp. 2. <http://web.archive.org/web/20160403140025/http://www.baxter.com/news-media/newsroom/press-releases/2014/05_08_14_sigma.p.>.
Bequette, Ph.D., “A Critical Assessment of Algorithms and Challenges in the Development of a Closed-Loop Artificial Pancreas”, Diabetes Technology & Therapeutics, Feb. 28, 2005, vol. 7, No. 1, pp. 28-47.
Bequette, B. Wayne, Ph.D., “Analysis of Algorithms for Intensive Care Unit Blood Glucose Control”, Journal of Diabetes Science and Technology, Nov. 2007, vol. 1, No. 6, pp. 813-824.
Binder et al., “Insulin Infusion with Parenteral Nutrition in Extremely Low Birth Weight Infants with Hyperglycemia”, Journal of Pediatrics, Feb. 1989, vol. 114, No. 2, pp. 273-280.
Bode et al., “Intravenous Insulin Infusion Therapy: Indications, Methods, and Transition to Subcutaneous Insulin Therapy”, Endocrine Practice, Mar./Apr. 2004, vol. 10, Supplement 2, pp. 71-80.
Buhrdorf et al., “Capacitive Micromachined Ultrasonic Transducers and their Application”, Proceedings of the IEEE Ultrasonics Symposium, Feb. 2001, vol. 2, pp. 933-940.
Cannon, MD et al., “Automated Heparin-Delivery System to Control Activated Partial Thromboplastin Time”, Circulation, Feb. 16, 1999, vol. 99, pp. 751-756.
“CareAware® Infusion Management”, Cerner Store, as printed May 12, 2011, pp. 3, <https://store.cerner.com/items/7>.
Chen et al., “Enabling Location-Based Services on Wireless LANs”, The 11th IEEE International Conference on Networks, ICON 2003, Sep. 28-Oct. 1, 2003, pp. 567-572.
Cheung et al., “Hyperglycemia is Associated with Adverse Outcomes in Patients Receiving Total Parenteral Nutrition”, Diabetes Care, Oct. 2005, vol. 28, No. 10, pp. 2367-2371.
Coley et al., “Performance of Three Portable Infusion-Pump Devices Set to Deliver 2 mL/hr”, American Journal of Health-System Pharmacy, Jun. 1, 1997, vol. 54, No. 11, pp. 1277-1280.
“Continually vs Continuously”, <https://web.archive.org/web/20090813092423/http://www.diffen.com/difference/Continually_vs_Continuously>, as accessed Aug. 13, 2009 in 4 pages.
“CritiCore® Monitor: Critical Fluid Output and Core Bladder Temperature Monitor”, BARD Urological Catheter Systems, Advertisement, 2005, pp. 2.
Daimiwal et al., “Wireless Transfusion Supervision and Analysis Using Embedded System”, IEEE, 2010 International Conference ICBBT, China, Apr. 2010, pp. 56-60.
Davidson et al., “A Computer-Directed Intravenous Insulin System Shown to be Safe, Simple, and Effective in 120,618 h of Operation”, Diabetes Care, Oct. 2005, vol. 28, No. 10, pp. 2418-2423.
“Decision of the Administrative Council of Oct. 16, 2013 Amending Rule 135 and 164 of the Implementing Regulations to the European Patent Convention (CA/D 17/13)”, Official Journal EPO Nov. 2013, Nov. 2013, pp. 503-506. <http://archive.epo.org/epo/pubs/oj013/11_13/11_5033.pdf>.
“Decision of the Administrative Council of Oct. 27, 2009 Amending the Implementing Regulations to the European Patent Convention (CA/D 20/09)”, Official Journal EPO Dec. 2009, Dec. 2009, pp. 582-584. <http://archive.epo.org/epo/pubs/oj009/12_09/12_5829.pdf>.
Diabetes Close Up, Close Concerns AACE Inpatient Management Conference Report, Consensus Development Conference on Inpatient Diabetes and Metabolic Control, Washington, D.C., Dec. 14-16, 2003, pp. 1-32.
“Differential Pressure Transmitter, Series PD-39 X”, SensorsOne Ltd., Advertisement, Dec. 2005, pp. 2.
Dunster et al., “Flow Continuity of Infusion Systems at Low Flow Rates”, Anaesthesia and Intensive Care, Oct. 1995, vol. 23, No. 5, pp. 5.
Fogt et al., Development and Evaluation of a Glucose Analyzer for a Glucose-Controlled Insulin Infusion System (Biostator®), Clinical Chemistry, 1978, vol. 24, No. 8, pp. 1366-1372.
“Froth”, <http://www.merriam-webster.com/dictionary/froth>, as accessed May 13, 2015 in 1 page.
Goldberg et al., “Clinical Results of an Updated Insulin Infusion Protocol in Critically Ill Patients”, Diabetes Spectrum, 2005, vol. 18, No. 3, pp. 188-191.
Halpern et al., “Changes in Critical Care Beds and Occupancy in the United States 1985-2000: Differences Attributable to Hospital Size”, Critical Care Medical, Aug. 2006, vol. 34, No. 8, pp. 2105-2112.
Hospira, “Plum A+™ Infusion System” as archived Dec. 1, 2012, pp. 2. <www.hopira.com/products_and_services/infusion_pumps/plum/index>.
Hospira, “Plum XL™ Series Infusion System” Technical Service Manual, Feb. 2005, Lake Forest, Illinois, USA, pp. i-vii, 5-14, 8-3.
Ilfeld et al., “Delivery Rate Accuracy of Portable, Bolus-Capable Infusion Pumps Used for Patient-Controlled Continuous Regional Analgesia”, Regional Anesthesia and Pain Medicine, Jan.-Feb. 2003, vol. 28, No. 1, pp. 17-23.
Ilfeld et al., “Portable Infusion Pumps Used for Continuous Regional Analgesia: Delivery Rate Accuracy and Consistency”, Regional Anesthesia and Pain Medicine, Sep.-Oct. 2003, vol. 28, No. 5, pp. 424-432.
JMS Co., Ltd., “Infusion Pump: OT-701”, Tokyo, Japan, 2002, pp. 4.
Kim, M.D., et al., “Hyperglycemia Control of the Nil Per Os Patient in the Intensive Care Unit: Introduction of a Simple Subcutaneous Insulin Algorithm”, Nov. 2012, Journal of Diabetes Science and Technology, vol. 6, No. 6, pp. 1413-1419.
Kutcher et al., “The Effect of Lighting Conditions on Caries Interpretation with a Laptop Computer in a Clinical Setting”, Elsevier, Oct. 2006, vol. 102, No. 4, pp. 537-543.
Lamsdale et al., “A Usability Evaluation of an Infusion Pump by Nurses Using a Patient Simulator”, Proceedings of the Human Factors and Ergonomics Society 49th Annual Meeting, Sep. 2005, pp. 1024-1028.
Logan et al., “Fabricating Capacitive Micromachined Ultrasonic Transducers with a Novel Silicon-Nitride-Based Wafer Bonding Process”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, May 2009, vol. 56, No. 5, pp. 1074-1084.
Magaji et al., “Inpatient Management of Hyperglycemia and Diabetes”, Clinical Diabetes, 2011, vol. 29, No. 1, pp. 3-9.
Mauseth et al., “Proposed Clinical Application for Tuning Fuzzy Logic Controller of Artificial Pancreas Utilizing a Personalization Factor”, Journal of Diabetes Science and Technology, Jul. 2010, vol. 4, No. 4, pp. 913-922.
Maynard et al., “Subcutaneous Insulin Order Sets and Protocols: Effective Design and Implementation Strategies”, Journal of Hospital Medicine, Sep./Oct. 2008, vol. 3, Issue 5, Supplement 5, pp. S29-S41.
Merry et al., “A New, Safety-Oriented, Integrated Drug Administration and Automated Anesthesia Record System”, Anesthesia & Analgesia, Aug. 2001, vol. 93, No. 2 pp. 385-390.
Microchip Technology Inc., “MTA11200B; TrueGauge™ Intelligent Battery Management I.C.”, <https://www.elektronik.ropla.eu/pdf/stock/mcp/mta11200b.pdf>, 1995, pp. 44.
Moghissi, Etie, MD, FACP, FACE, “Hyperglycemia in Hospitalized Patients”, A Supplement to ACP Hospitalist, Jun. 15, 2008, pp. 32.
Nuckols et al., “Programmable Infusion Pumps in ICUs: An Analysis of Corresponding Adverse Drug Events”, Journal of General Internal Medicine, 2007, vol. 23, Supp. 1, pp. 41-45.
Pretty et al., “Hypoglycemia Detection in Critical Care Using Continuous Glucose Monitors: An in Silico Proof of Concept Analysis”, Journal of Diabetes Science and Technology, Jan. 2010, vol. 4, No. 1, pp. 15-24.
Saager et al., “Computer-Guided Versus Standard Protocol for Insulin Administration in Diabetic Patients Undergoing Cardiac Surgery”, Annual Meeting of the American Society of Critical Care Anesthesiologists, Oct. 13, 2006.
Sebald et al., “Numerical Analysis of a Comprehensive in Silico Subcutaneous Insulin Absorption Compartmental Model”, 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Sep. 2-6, 2009, pp. 3901-3904.
SGS-Thomson Microelectronics, “L6219—Stepper Motor Drive”, Datasheet, Dec. 1996, pp. 10.
SGS-Thomson Microelectronics, “PBL3717A—Stepper Motor Drive”, Datasheet, Apr. 1993, pp. 11.
Simonsen, Michael Ph.D., POC Testing, New Monitoring Strategies on Fast Growth Paths in European Healthcare Arenas, Biomedical Business & Technology, Jan. 2007, vol. 30, No. 1, pp. 1-36.
Smith, Joe, “Infusion Pump Informatics”, CatalyzeCare: Transforming Healthcare, as printed May 12, 2011, pp. 2.
Tang et al., “Linear Dimensionality Reduction Using Relevance Weighted LDA”, Pattern Recognition, 2005, vol. 38, pp. 485-493, <http://staff.ustc.edu.cn/˜ketang/papers/TangSuganYaoQin_PR04.pdf>.
Thomas et al., “Implementation of a Tight Glycaemic Control Protocol Using a Web-Based Insulin Dose Calculator”, Anaesthesia, 2005, vol. 60, pp. 1093-1100.
Van Den Berghe, M.D., Ph.D., et al., “Intensive Insulin Therapy in Critically Ill Patients”, The New England Journal of Medicine, Nov. 8, 2001, vol. 345, No. 19, pp. 1359-1367.
Van Den Berghe, M.D., Ph.D., et al., “Intensive Insulin Therapy in the Medical ICU”, The New England Journal of Medicine, Feb. 2, 2006, vol. 354, No. 5, pp. 449-461.
Westbrook et al., “Errors in the Administration of Intravenous Medications in Hospital and the Role of Correct Procedures and Nurse Experience”, BMJ Quality & Safety, 2011, vol. 20, pp. 1027-1034.
Zakariah et al., “Combination of Biphasic Transmittance Waveform with Blood Procalcitonin Levels for Diagnosis of Sepsis in Acutely Ill Patients”, Critical Care Medicine, 2008, vol. 36, No. 5, pp. 1507-1512.