A FIFO is a specialized dual port memory with an input and an output that operate asynchronously. That is, data can be input at one end of the FIFO at one pace and read from the other end at a different pace. A FIFO is often used when data is received in blocks at one data rate and processed at a steadier, slower rate. One such application is a disk drive interface.
The shift register in a FIFO and its supporting control circuitry may all experience failures, separately or in combination. When a failure or an intentional abort occurs, the FIFO may be left in an unknown state, that is, having an uncertain condition of the data being read, data in the transmit register, and data being sent to a host. This may result in duplication of data when data thought to have been lost is incorrectly re-sent. Such errors may also result in gaps when data thought to have been sent was actually lost.
A FIFO with integral error management determines the type of error and the state of input and output activity to determine next steps in FIFO error recovery. The error recovery process ensures that error-free processes continue to completion before action is initiated to reset the FIFO and restart operation. A state machine, implemented in a variety of technologies, may be used to manage the error recovery process by determining activities that should be continued or aborted responsive to a particular error. In this way, the FIFO may manage part of the error recovery process before a controller is even notified of the failure.
By processing errors to a known conclusion, the controller working in conjunction with the FIFO can be certain of the state of data and recover without duplication or gaps in data transmission.
Although the following text sets forth a detailed description of numerous different embodiments, it should be understood that the legal scope of the description is defined by the words of the claims set forth at the end of this disclosure. The detailed description is to be construed as exemplary only and does not describe every possible embodiment since describing every possible embodiment would be impractical, if not impossible. Numerous alternative embodiments could be implemented, using either current technology or technology developed after the filing date of this patent, which would still fall within the scope of the claims.
It should also be understood that, unless a term is expressly defined in this patent using the sentence “As used herein, the term ‘——————’ is hereby defined to mean . . . ” or a similar sentence, there is no intent to limit the meaning of that term, either expressly or by implication, beyond its plain or ordinary meaning, and such term should not be interpreted to be limited in scope based on any statement made in any section of this patent (other than the language of the claims). To the extent that any term recited in the claims at the end of this patent is referred to in this patent in a manner consistent with a single meaning, that is done for sake of clarity only so as to not confuse the reader, and it is not intended that such claim term by limited, by implication or otherwise, to that single meaning. Finally, unless a claim element is defined by reciting the word “means” and a function without the recital of any structure, it is not intended that the scope of any claim element be interpreted based on the application of 35 U.S.C. §112, sixth paragraph.
A common characteristic of rotating media memory and some solid state memory is that the rate at which data arrives may not be compatible with the rate at which data is taken. For example, data read from rotating media may arrive in bursty chunks with pauses in between caused by head relocation. On the other side, data being transferred to a host may be optimally sent in a high-speed continuous stream.
The common solution to this kind of mismatch is a first-in first-out (FIFO) memory. Data on the input side is accepted and buffered at one rate and is streamed to the output continuously in the order it is received, that is, the first data received is the first data sent.
In the simplified version of the disk drive 102 of
The digital output may be presented to a FIFO 110. The FIFO 110 allows data arriving at one rate from the signal processing unit 108 to be buffered and sent to the host 104 at a different rate. An exemplary FIFO in accordance with the current disclosure is discussed in more detail with regard to
A controller 112 may manage operation of the disk drive 102. The controller 112 may manage head movement, synchronize clock rates, manage control signaling with the host 104 and manage error recovery when a failure occurs in the signal processing unit 108 or FIFO 110, among other tasks.
In operation, the disk drive 102 may receive a request for data at a certain disk location. The controller 112 may translate the disk location to a head location or track number. When signals begin to stream from the mass storage 106, the signal processing unit 108 may translate analog signals to digital data. The digital data may be stored in the FIFO 110, formatted according to a protocol associated with the data interface, and sent to the host 104.
A data input 201 may load data into a buffer memory 202. A cyclic redundancy check (CRC) generator 204 may receive data over connection 206 while the same data is sent over connection 208 to multiplexer 211. The output 212 of the multiplexer 211 couples data to a FIFO register 214, or transmit buffer, used to hold transmit data. The FIFO register 214 may be a serial in—serial out shift register or may be a parallel in—serial out shift register, or another configuration known in the art. The FIFO register 214 is coupled to an output CRC checker 216 which may in turn be coupled to a frame CRC generator 218. In some embodiments, a single CRC engine may be used to check the payload CRC and generate the frame CRC value. The frame CRC generator 218 may be coupled to a first input 228 of the multiplexer 224. A header generator 220 may be coupled to a second input of the multiplexer 224. Frame data may be output through a host connection 230.
A state machine 232 may be used to manage operation of the components of the FIFO 200, including error state management. A controller 234 may serve the same function as the controller 112 of
In the configuration shown in
In operation, data may be transferred from a mass storage element, for example, mass storage 106 of
When the FIFO register 214 is full, that is, has a frame of data including data payload and CRC, data may begin clocking out data. First the CRC calculated at the input CRC generator 204 may be checked at the output CRC checker 216. If there is no error, a frame CRC may be generated over the entire frame. After setting up a host communication session, a header may be generated and sent over host connection 230 by selecting the input 226 of the mulitplexer 224. After the header is sent, the data frame may be sent by selecting input 228 of the mulitplexer 224. After receipt of the data frame, a confirmation may be returned. When successfully received at the host 104, the confirmation may be an acknowledgement (ACK) message. If the frame is not received in good order the confirmation may be a no acknowledgement (NACK) message. Host connection and transmission errors are discussed in more detail below. After an ACK message, the FIFO 200 may notify the controller 234 that the send process has completed normally. In other embodiments the host protocol management may be managed by the controller 234.
As discussed above, errors may occur at virtually any point in the process. For example, the buffer memory 202 may receive incomplete data or inaccurate data, e.g. data may be presented with a CRC or parity error detected in the buffer memory 202. The input CRC generator 204 may receive incomplete data or may not match a buffer memory parity bit (if a 9-bit buffer memory is used, for example). A mulitplexer 211 error or clocking error may prevent the FIFO register 214 from receiving complete data, leaving a register bit (not depicted) in an unknown state. The output CRC checker 216 may discover an error, such as one caused by the previous condition. The frame CRC generator 218 may receive incomplete data and generate an error.
Errors between the disk drive 102 and the host 104 may include an inability to establish a connection over the host connection 230. After establishing a connection, a no-acknowledge (NACK) received from the host may indicate data was not received in good order. Another host error may occur when a number of frames of data are sent before an acknowledgement is received for any of the frames sent. When no confirmation (either ACK or NACK) is received during an acknowledgement interval or if the number of unacknowledged frames exceeds a limit, an error may be generated, a so-called ACK-NACK timeout error. The state machine 232 may monitor all possible sources of errors or may monitor only key input and output points.
The state machine 302 may have exemplary error inputs such as a control signal abort 304, a buffer memory error 306, a FIFO register error 308, an output CRC error 310, a frame CRC error 312, a header error 314, a no-acknowledge (NACK) error 316, a retry exhausted error 318 (unacknowledged frames), and a connection denied error 320. This representative set of error inputs does not cover every possible error, but is sufficient to illustrate the operation of the state machine 302.
In addition to error inputs, several inputs may represent device state at any given moment. Exemplary state inputs shown are an input data active input 322, an output data active input 324, and a buffer memory empty input 326. The input data active input 322 may indicate when the buffer memory 202 is active, either receiving data via input 201 or forwarding data via connection 208. The output data active input 324 may indicate when data is present on the host connection 230, that is, when data is passing through mulitplexer 224. The buffer memory empty input 326 indicates that no more data is available in the buffer memory 202.
The outputs from the state machine 302 may include an abort input activity signal 328 and a complete current frame output signal 330. The abort input activity signal 328 may stop the loading of payload data from the buffer memory 202 to the FIFO register 214. The complete current frame signal 330 may cause the current data in the FIFO register 214, including frame CRC and header information to be sent via the host connection 230 and wait until a status is confirmed by the host 104. The confirmation may be either an ACK or a NACK. An error flag 332 may be used to signal the controller 234 that processing has stopped and, in some embodiments, may indicate the type of error and the current state of operation. A normal completion flag 334 may be used to signal the controller 234 of a normal end of processing.
As depicted, all signal lines are shown as single pins for the convenience of illustration. The signals may be expressed over a serial interface, that is, having several bytes of data rather than a single edge sensitivity. Alternatively, the signals may be carried over a bus as data packets representing messages of different types.
In general, errors may be categorized by type. The first, an explicit abort 304 from the controller 234, while not strictly an error, may be handled as an error. The second error type is buffer error 306 at the buffer memory 202, for example, a parity error. The third error type occurs at the output of the FIFO register 214 and is typified by a CRC error at the output CRC checker 216. The fourth error type occurs between the disk drive 102 and the host 104 and may be triggered by signals 316, 318, and 320.
When the first error type occurs, for example, when the control signal abort 304 goes active, the state machine 302 may examine the state of the FIFO 200 using input activity input 322 and output activity input 324. The state of the buffer memory indicated by input 326 is not a factor when handling control signal aborts. The error handling response of the state machine 302 is shown in Table 1.
When an error of the second type occurs, for example, a CRC error at the buffer memory 202, the state machine 302 may respond according to activity status as shown in Table 2.
When an error of the third type occurs, for example, a CRC error at the output of the FIFO register/transmit buffer, the state machine 302 may respond according to activity status as shown in Table 3. This type of error occurs when the FIFO register output is at a natural stopping spot, i.e. at the end of a frame of data. This type of error is usually indicative of a serious hardware failure.
The fourth type of error, host communication errors, may take several forms. Table 4 shows the error response steps taken by the state machine 302 for the various kinds of host communication errors. When a host confirmation interval is exceeded, a so called ACK/NACK timeout, the FIFO 200 will be at a natural stopping spot on the output side. Similarly, a retry exhausted or no connection error will also occur when the output is at a natural stopping spot. In each of these cases, the only change will be in input status.
At block 404, the buffer memory 202 may be checked to determine if data is being transferred from the buffer memory 202 to the transmit buffer register 214. If the input is active, the ‘yes’ branch from block 404 may be taken to block 406. At block 406 input activity may be stopped and processing continued at block 408.
Processing continues at block 408, when the input is not active and the ‘no’ branch from block 404 is followed, or after completion of activity at block 406. At block 408, the transmit buffer output 230 may be checked to see if data is being transferred to the host, such as host 104 of
Block 412 may be entered via the ‘no’ branch from block 408 or after completion of activity at block 410. At block 412, a check may be made to determine if the error is an abort error and if the buffer memory is empty, meaning that the input is inactive and all data has been transferred to the transmit buffer register 214. If so, the ‘yes’ branch from block 412 may be taken to block 414. At block 414, because the final data block will have been sent at block 410 and the FIFO memory 200 will have completed sending all data, the abort error signal may be ignored and a normal exit message may be sent.
When the two conditions of block 412 are not met, the ‘no’ branch from block 412 may be taken to block 416, where an error message may be sent indicating the type of error and current state of the FIFO memory.
Because a FIFO memory 200 in accordance with the current disclosure will finish in a known state, a controller 234 associated with the FIFO memory 200 will be able to deal with error conditions confident of the state of data because such a FIFO memory 200 will complete or abort data activity predictably and to completion. The controller 234 can recover the error, if possible, and begin resending data from the exact point where the error occurred, without gaps or duplications, as in prior art FIFO memories.
Referring now to
HDTV 420 may communicate with mass data storage 427 that stores data in a nonvolatile manner such as optical and/or magnetic storage devices. At least one mass storage device may have the configuration shown in
Referring now to
The present invention may also be embodied in other control systems 440 of vehicle 430. Control system 440 may likewise receive signals from input sensors 442 and/or output control signals to one or more output devices 444. In some implementations, control system 440 may be part of an anti-lock braking system (ABS), a navigation system, a telematics system, a vehicle telematics system, a lane departure system, an adaptive cruise control system, a vehicle entertainment system such as a stereo, DVD, compact disc and the like. Still other implementations are contemplated.
Powertrain control system 432 may communicate with mass data storage 427 that stores data in a nonvolatile manner such as optical and/or magnetic storage devices. At least one mass storage device may have the configuration shown in
Referring now to
Cellular phone 450 may communicate with mass data storage 464 that stores data in a nonvolatile manner such as optical and/or magnetic storage devices for example hard disk drives HDD and/or DVDs. At least one HDD and/or DVD may have the configuration shown in
Referring now to
Set top box 480 may communicate with mass data storage 490 that stores data in a nonvolatile manner. Mass data storage 490 may include optical and/or magnetic storage devices for example hard disk drives HDD and/or DVDs. At least one HDD and/or DVD may have the configuration shown in
Referring now to
Media player 500 may communicate with mass data storage 510 that stores data such as compressed audio and/or video content in a nonvolatile manner. In some implementations, the compressed audio files include files that are compliant with MP3 format or other suitable compressed audio and/or video formats. The mass data storage may include optical and/or magnetic storage devices for example hard disk drives HDD and/or DVDs. At least one HDD and/or DVD may have the configuration shown in
Referring to
VoIP phone 550 may communicate with mass data storage 502 that stores data in a nonvolatile manner such as optical and/or magnetic storage devices, for example hard disk drives HDD and/or DVDs. At least one HDD and/or DVD may have the configuration shown in
This application is a continuation of U.S. application Ser. No. 11/840,059 (now U.S. Pat. No. 7,953,907), filed on Aug. 16, 2007, which claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application No. 60/823,210, filed Aug. 22, 2006.
Number | Name | Date | Kind |
---|---|---|---|
3800281 | Devore et al. | Mar 1974 | A |
3930146 | Bogacz | Dec 1975 | A |
5121390 | Farrell et al. | Jun 1992 | A |
5261083 | Witkowski et al. | Nov 1993 | A |
5333274 | Amini et al. | Jul 1994 | A |
5459723 | Thor | Oct 1995 | A |
5513172 | Shikama et al. | Apr 1996 | A |
5563896 | Nakaguchi | Oct 1996 | A |
5577201 | Chan et al. | Nov 1996 | A |
5581715 | Verinsky et al. | Dec 1996 | A |
5629949 | Zook | May 1997 | A |
5691994 | Acosta et al. | Nov 1997 | A |
5742623 | Nuber et al. | Apr 1998 | A |
5758057 | Baba et al. | May 1998 | A |
5760792 | Holt et al. | Jun 1998 | A |
5764930 | Staats | Jun 1998 | A |
5812564 | Bonke et al. | Sep 1998 | A |
5978954 | Ou et al. | Nov 1999 | A |
6092231 | Sze | Jul 2000 | A |
6185214 | Schwartz et al. | Feb 2001 | B1 |
6192492 | Masiewicz et al. | Feb 2001 | B1 |
6195770 | Walton | Feb 2001 | B1 |
6275242 | Shah et al. | Aug 2001 | B1 |
6330626 | Dennin et al. | Dec 2001 | B1 |
6332181 | Bossen et al. | Dec 2001 | B1 |
6536000 | Jackson et al. | Mar 2003 | B1 |
6615374 | Moran | Sep 2003 | B1 |
6622260 | Marisetty et al. | Sep 2003 | B1 |
6625773 | Boivie et al. | Sep 2003 | B1 |
6741253 | Radke et al. | May 2004 | B2 |
6756988 | Wang et al. | Jun 2004 | B1 |
6804794 | Robidoux et al. | Oct 2004 | B1 |
6810489 | Zhang et al. | Oct 2004 | B1 |
6868517 | Feng et al. | Mar 2005 | B1 |
6950978 | Arndt et al. | Sep 2005 | B2 |
6990538 | Rojas et al. | Jan 2006 | B2 |
6996045 | Sumi et al. | Feb 2006 | B1 |
7325117 | Iwamitsu et al. | Jan 2008 | B2 |
20020085497 | Phillips et al. | Jul 2002 | A1 |
20030112798 | Ziegler et al. | Jun 2003 | A1 |
20040078665 | Rojas et al. | Apr 2004 | A1 |
20060053331 | Chou et al. | Mar 2006 | A1 |
20060098001 | Lai | May 2006 | A1 |
20070019661 | Rowett et al. | Jan 2007 | A1 |
20070050689 | Sasakura | Mar 2007 | A1 |
20090198694 | Thomas | Aug 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
60823210 | Aug 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11840059 | Aug 2007 | US |
Child | 13117974 | US |