A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document and/or the patent disclosure as it appears in the United States Patent and Trademark Office patent file and/or records, but otherwise reserves all copyrights whatsoever.
Businesses recognize the commercial value of their data and seek reliable, cost-effective ways to protect the information stored on their computer networks while minimizing impact on productivity. A company might back up critical computing systems such as databases, file servers, web servers, virtual machines, and so on as part of a daily, weekly, or monthly maintenance schedule. The company may similarly protect computing systems used by its employees, such as those used by an accounting department, marketing department, engineering department, and so forth. Given the rapidly expanding volume of data under management, companies also continue to seek innovative techniques for managing data growth, for example by migrating data to lower-cost storage over time, reducing redundant data, pruning lower priority data, etc. Enterprises also increasingly view their stored data as a valuable asset and look for solutions that leverage their data. For instance, data analysis capabilities, information management, improved data presentation and access features, and the like, are in increasing demand.
The company may issue one or more client computing devices, such as laptops, desktop computers, and so forth, to the company's employees. As the employees typically rely on their client computing devices for primary storage, the amount of data stored on the client computing devices can become exceedingly large. Furthermore, the client computing devices may store large files as single data structures, such as an e-mail database, code repository, image catalogue, and so forth. To preserve the large files, the client computing device may employ a backup technology that backs up the primary data of the client computing device. However, where large files are involved, the backup operation of the primary data may require a non-trivial amount of time to perform. Furthermore, if the backup operation of the primary data for a large file is interrupted, the backup operation may require that the client computing device restart the backup operation for that large file. The interruption and restarting process can be problematic for certain client computing devices, such as where the client computing device is using a communication medium that is unreliable (e.g., an intermittent wireless connection, a dial-up connection, a wired connection using an older communication protocol, etc.). These interruptions and restarts can result in the client computing device not being properly protected (e.g., the primary data not being backed up to a secondary storage device or cloud service).
To address these and other deficiencies, this disclosure describes an information management system that implements a concurrent transfer of a plurality of extents to one or more worker nodes in communication with a client computing device, where the plurality of extents may correspond to a single large file. The technological benefit of the disclosed implementations is that the backup time for a large file is significantly reduced as multiple portions of the large file (e.g., the plurality of extents) may be communicated to different worker nodes for backup and retrieval. In general, an extent is a data structure that includes a portion of a file, and includes data from the file but is less than the entire file. In addition, by tracking which extents have been transferred, the disclosed information management system can resume transfers of the extents should an interruption occur during transfer. This allows the information management system to resume the transfer of a large file rather than having to restart to transfer of the large file in its entirety.
Typically, a computing architecture that leveraged backup technologies is restricted to restricted to reading a file from start to end by a single computing process thread, and that thread transfers the file data to a secondary computing device or secondary computing storage device via a network connection. This disclosed information management system improves upon prior backup technologies by instantiating multiple computing process threads, where each read can simultaneously read from a different portion of the large file. Each portion of the large file may be a predetermined size, and each portion may be packaged into an extent (e.g., a type of data structure). The simultaneous reads allow the information management system to simultaneously package multiple extents, and then concurrently transfer the extents to one or more secondary computing devices. This improvement allows for a faster completion of a backup operation for that file.
The information management system may include one or more client computing devices that are being monitored by a data agent executing on the client computing device. The client computing device may include one or more primary storage devices that store primary data and are being monitored by their respective data agent. The data agent is in communication with one or more secondary storage computing devices and a storage manager. As discussed below with reference to
The information management system is configured to perform both backup and restore operations using the plurality of extents determined by the data agent of a client computing device. The backup operation generally includes several phases: an initialization phase, a scan phase, a read phase, and a validation phase. During the initialization phase, the coordinator (e.g., a designated secondary storage computing device) determines the types of backup operations to perform on a given client computing device. In one implementation, a backup operation for a file is treated individually as a backup job, such that the backup operation for a single client computing device may include thousands of backup jobs. At the initialization phase, the coordinator determines whether any prior backup jobs (e.g., the backup of a particular large file) failed. Where the coordinator determines that there were failed backup jobs, the coordinator adds the restart or resumption of the backup job to a list of backup jobs to perform on the client computing device. If the storage manager instructs the coordinator to also perform a new backup operation on the client computing device, the failed backup job may be added to the list of backup jobs to be performed as part of the new backup operation.
After the initialization phase, the client computing device performs a scanning phase of the primary data. In one embodiment, the coordinator instructs the data agent of the client computing device to scan the client computing device for files having a predetermined size. For example, the coordinator may instruct the data agent to scan for files that are larger than two gigabytes (e.g., 2 GBs). For each file that meets or exceeds the predetermined size, the data agent records the file as being extent eligible. For example, the data agent may create a text file and store a list of the files that are extent eligible. Recording a file as being extent-eligible may constitute as the data agent “marking” the file for extent backup. In addition, for each extent-eligible file, the data agent may determine the number of extents needed to transfer the file. In one embodiment, an extent is a predetermined size (e.g., 4 megabytes (MBs)). Accordingly, the data agent may determine the number of extents needed for an extent-eligible file based on the size of the file and the predetermined size of the extent.
After the scanning phase, the data agent may receive an instruction to perform a backup of the primary data of the client computing device. The data agent may also receive instructions or distribution logic from the coordinator that instructs the data agent as to the locations where one or more extents are to be transferred. For example, the coordinator may be in communication with a number of worker nodes (e.g., a device configured to receive data from and/or transfer data to a client computing device), and the distribution logic may specify which extents and/or files of the client computing device are to be sent to which worker node.
During the backup phase of the client computing device, the data agent may perform simultaneous streaming of extents only for those files that been marked as extent-eligible. In one embodiment, the data agent may create a predetermined number of process threads for each file that is extent-eligible. For example, the data agent may create four process threads per file, where each process file handles the transfer of an extent. Thus, during the backup of a file that is extent-eligible, four process threads may each be simultaneously transmitting an extent to a worker node. Furthermore, the worker node to which an extent is sent may be different for each process thread or for each file. Thus, in some cases, a single worker node may receive all of the extents for a particular extent-eligible file, whereas, in other cases, multiple worker nodes may receive different extents for the same extent-eligible file. As discussed below with reference to
The coordinator and/or the data agent also support the restoration of an extent-eligible file through the simultaneous transfer of extents. When a restoration is to be performed, the data agent may initially create a sparse file for the file to be restored on the client computing device. The coordinator may then instruct one or more worker nodes to transfer extents corresponding to the file to be restored to the data agent. In one embodiment, the data agent is configured to receive a predetermined number of simultaneous extents to receive (e.g., four extents simultaneously). For each extent, the worker node may also communicate an offset that indicates an address within the sparse file where the data of the extent is to be written. Furthermore, as the data agent receives each extent, the data agent may create a process thread to perform the writing of the extent data. Thus, for each extent that the data agent receives, the data agent creates a corresponding process thread, and writes the extent data at the offset associated with the corresponding extent. The data agent may further validate the extent data after it has been written to the sparse file.
In this manner, the simultaneous transfer of extents reduces the amount of time it would ordinarily take to backup primary data from a client computing device, and restore that backed-up data from a secondary storage device (e.g., one or more of the worker nodes). Furthermore, as the extent data may be distributed among one or more worker nodes, the extent data is secured from outside interference, as no one worker node may contain all of the extent data for a single client computing device or for a single file. However, in some implementations, a worker node may be configured to store all of the extents for a particular file that is extent-eligible. These benefits and the ones discussed further demonstrate that the disclosed subject matter prevents a technological improvement in the field of data backup, data restoration, and data security.
Detailed descriptions and examples of systems and methods according to one or more illustrative embodiments may be found in the section titled “Concurrently Transmitting Multiple Extents of Extent Eligible Files,” as well as in the section titled Example Embodiments, and also in
Various embodiments described herein are intimately tied to, enabled by, and would not exist except for, computer technology. For example, the transference of backup jobs from the storage manager to the recovery manager described herein, in reference to various embodiments, cannot reasonably be performed by humans alone, without the computer technology upon which they are implemented.
With the increasing importance of protecting and leveraging data, organizations simply cannot risk losing critical data. Moreover, runaway data growth and other modern realities make protecting and managing data increasingly difficult. There is therefore a need for efficient, powerful, and user-friendly solutions for protecting and managing data and for smart and efficient management of data storage. Depending on the size of the organization, there may be many data production sources which are under the purview of tens, hundreds, or even thousands of individuals. In the past, individuals were sometimes responsible for managing and protecting their own data, and a patchwork of hardware and software point solutions may have been used in any given organization. These solutions were often provided by different vendors and had limited or no interoperability. Certain embodiments described herein address these and other shortcomings of prior approaches by implementing scalable, unified, organization-wide information management, including data storage management.
Generally, the systems and associated components described herein may be compatible with and/or provide some or all of the functionality of the systems and corresponding components described in one or more of the following U.S. patents/publications and patent applications assigned to Commvault Systems, Inc., each of which is hereby incorporated by reference in its entirety herein:
System 100 includes computing devices and computing technologies. For instance, system 100 can include one or more client computing devices 102 and secondary storage computing devices 106, as well as storage manager 140 or a host computing device for it. Computing devices can include, without limitation, one or more: workstations, personal computers, desktop computers, or other types of generally fixed computing systems such as mainframe computers, servers, and minicomputers. Other computing devices can include mobile or portable computing devices, such as one or more laptops, tablet computers, personal data assistants, mobile phones (such as smartphones), and other mobile or portable computing devices such as embedded computers, set top boxes, vehicle-mounted devices, wearable computers, etc. Servers can include mail servers, file servers, database servers, virtual machine servers, and web servers. Any given computing device comprises one or more processors (e.g., CPU and/or single-core or multi-core processors), as well as corresponding non-transitory computer memory (e.g., random-access memory (RAM)) for storing computer programs which are to be executed by the one or more processors. Other computer memory for mass storage of data may be packaged/configured with the computing device (e.g., an internal hard disk) and/or may be external and accessible by the computing device (e.g., network-attached storage, a storage array, etc.). In some cases, a computing device includes cloud computing resources, which may be implemented as virtual machines. For instance, one or more virtual machines may be provided to the organization by a third-party cloud service vendor.
In some embodiments, computing devices can include one or more virtual machine(s) running on a physical host computing device (or “host machine”) operated by the organization. As one example, the organization may use one virtual machine as a database server and another virtual machine as a mail server, both virtual machines operating on the same host machine. A Virtual machine (“VM”) is a software implementation of a computer that does not physically exist and is instead instantiated in an operating system of a physical computer (or host machine) to enable applications to execute within the VM's environment, i.e., a VM emulates a physical computer. A VM includes an operating system and associated virtual resources, such as computer memory and processor(s). A hypervisor operates between the VM and the hardware of the physical host machine and is generally responsible for creating and running the VMs. Hypervisors are also known in the art as virtual machine monitors or a virtual machine managers or “VMMs”, and may be implemented in software, firmware, and/or specialized hardware installed on the host machine. Examples of hypervisors include ESX Server, by VMware, Inc. of Palo Alto, Calif.; Microsoft Virtual Server and Microsoft Windows Server Hyper-V, both by Microsoft Corporation of Redmond, Wash.; Sun xVM by Oracle America Inc. of Santa Clara, Calif.; and Xen by Citrix Systems, Santa Clara, Calif. The hypervisor provides resources to each virtual operating system such as a virtual processor, virtual memory, a virtual network device, and a virtual disk. Each virtual machine has one or more associated virtual disks. The hypervisor typically stores the data of virtual disks in files on the file system of the physical host machine, called virtual machine disk files (“VMDK” in VMware lingo) or virtual hard disk image files (in Microsoft lingo). For example, VMware's ESX Server provides the Virtual Machine File System (VMFS) for the storage of virtual machine disk files. A virtual machine reads data from and writes data to its virtual disk much the way that a physical machine reads data from and writes data to a physical disk. Examples of techniques for implementing information management in a cloud computing environment are described in U.S. Pat. No. 8,285,681. Examples of techniques for implementing information management in a virtualized computing environment are described in U.S. Pat. No. 8,307,177.
Information management system 100 can also include electronic data storage devices, generally used for mass storage of data, including, e.g., primary storage devices 104 and secondary storage devices 108. Storage devices can generally be of any suitable type including, without limitation, disk drives, storage arrays (e.g., storage-area network (SAN) and/or network-attached storage (NAS) technology), semiconductor memory (e.g., solid state storage devices), network attached storage (NAS) devices, tape libraries, or other magnetic, non-tape storage devices, optical media storage devices, combinations of the same, etc. In some embodiments, storage devices form part of a distributed file system. In some cases, storage devices are provided in a cloud storage environment (e.g., a private cloud or one operated by a third-party vendor), whether for primary data or secondary copies or both.
Depending on context, the term “information management system” can refer to generally all of the illustrated hardware and software components in
One or more client computing devices 102 may be part of system 100, each client computing device 102 having an operating system and at least one application 110 and one or more accompanying data agents executing thereon; and associated with one or more primary storage devices 104 storing primary data 112. Client computing device(s) 102 and primary storage devices 104 may generally be referred to in some cases as primary storage subsystem 117.
Typically, a variety of sources in an organization produce data to be protected and managed. As just one illustrative example, in a corporate environment such data sources can be employee workstations and company servers such as a mail server, a web server, a database server, a transaction server, or the like. In system 100, data generation sources include one or more client computing devices 102. A computing device that has a data agent 142 installed and operating on it is generally referred to as a “client computing device” 102, and may include any type of computing device, without limitation. A client computing device 102 may be associated with one or more users and/or user accounts.
A “client” is a logical component of information management system 100, which may represent a logical grouping of one or more data agents installed on a client computing device 102. Storage manager 140 recognizes a client as a component of system 100, and in some embodiments, may automatically create a client component the first time a data agent 142 is installed on a client computing device 102. Because data generated by executable component(s) 110 is tracked by the associated data agent 142 so that it may be properly protected in system 100, a client may be said to generate data and to store the generated data to primary storage, such as primary storage device 104. However, the terms “client” and “client computing device” as used herein do not imply that a client computing device 102 is necessarily configured in the client/server sense relative to another computing device such as a mail server, or that a client computing device 102 cannot be a server in its own right. As just a few examples, a client computing device 102 can be and/or include mail servers, file servers, database servers, virtual machine servers, and/or web servers.
Each client computing device 102 may have application(s) 110 executing thereon which generate and manipulate the data that is to be protected from loss and managed in system 100. Applications 110 generally facilitate the operations of an organization, and can include, without limitation, mail server applications (e.g., Microsoft Exchange Server), file system applications, mail client applications (e.g., Microsoft Exchange Client), database applications or database management systems (e.g., SQL, Oracle, SAP, Lotus Notes Database), word processing applications (e.g., Microsoft Word), spreadsheet applications, financial applications, presentation applications, graphics and/or video applications, browser applications, mobile applications, entertainment applications, and so on. Each application 110 may be accompanied by an application-specific data agent 142, though not all data agents 142 are application-specific or associated with only application. A file manager application, e.g., Microsoft Windows Explorer, may be considered an application 110 and may be accompanied by its own data agent 142. Client computing devices 102 can have at least one operating system (e.g., Microsoft Windows, Mac OS X, iOS, IBM z/OS, Linux, other Unix-based operating systems, etc.) installed thereon, which may support or host one or more file systems and other applications 110. In some embodiments, a virtual machine that executes on a host client computing device 102 may be considered an application 110 and may be accompanied by a specific data agent 142 (e.g., virtual server data agent).
Client computing devices 102 and other components in system 100 can be connected to one another via one or more electronic communication pathways 114. For example, a first communication pathway 114 may communicatively couple client computing device 102 and secondary storage computing device 106; a second communication pathway 114 may communicatively couple storage manager 140 and client computing device 102; and a third communication pathway 114 may communicatively couple storage manager 140 and secondary storage computing device 106, etc. (see, e.g.,
A “subclient” is a logical grouping of all or part of a client's primary data 112. In general, a subclient may be defined according to how the subclient data is to be protected as a unit in system 100. For example, a subclient may be associated with a certain storage policy. A given client may thus comprise several subclients, each subclient associated with a different storage policy. For example, some files may form a first subclient that requires compression and deduplication and is associated with a first storage policy. Other files of the client may form a second subclient that requires a different retention schedule as well as encryption, and may be associated with a different, second storage policy. As a result, though the primary data may be generated by the same application 110 and may belong to one given client, portions of the data may be assigned to different subclients for distinct treatment by system 100. More detail on subclients is given in regard to storage policies below.
Primary data 112 is generally production data or “live” data generated by the operating system and/or applications 110 executing on client computing device 102. Primary data 112 is generally stored on primary storage device(s) 104 and is organized via a file system operating on the client computing device 102. Thus, client computing device(s) 102 and corresponding applications 110 may create, access, modify, write, delete, and otherwise use primary data 112. Primary data 112 is generally in the native format of the source application 110. Primary data 112 is an initial or first stored body of data generated by the source application 110. Primary data 112 in some cases is created substantially directly from data generated by the corresponding source application 110. It can be useful in performing certain tasks to organize primary data 112 into units of different granularities. In general, primary data 112 can include files, directories, file system volumes, data blocks, extents, or any other hierarchies or organizations of data objects. As used herein, a “data object” can refer to (i) any file that is currently addressable by a file system or that was previously addressable by the file system (e.g., an archive file), and/or to (ii) a subset of such a file (e.g., a data block, an extent, etc.). Primary data 112 may include structured data (e.g., database files), unstructured data (e.g., documents), and/or semi-structured data. See, e.g.,
It can also be useful in performing certain functions of system 100 to access and modify metadata within primary data 112. Metadata generally includes information about data objects and/or characteristics associated with the data objects. For simplicity herein, it is to be understood that, unless expressly stated otherwise, any reference to primary data 112 generally also includes its associated metadata, but references to metadata generally do not include the primary data. Metadata can include, without limitation, one or more of the following: the data owner (e.g., the client or user that generates the data), the last modified time (e.g., the time of the most recent modification of the data object), a data object name (e.g., a file name), a data object size (e.g., a number of bytes of data), information about the content (e.g., an indication as to the existence of a particular search term), user-supplied tags, to/from information for email (e.g., an email sender, recipient, etc.), creation date, file type (e.g., format or application type), last accessed time, application type (e.g., type of application that generated the data object), location/network (e.g., a current, past or future location of the data object and network pathways to/from the data object), geographic location (e.g., GPS coordinates), frequency of change (e.g., a period in which the data object is modified), business unit (e.g., a group or department that generates, manages or is otherwise associated with the data object), aging information (e.g., a schedule, such as a time period, in which the data object is migrated to secondary or long term storage), boot sectors, partition layouts, file location within a file folder directory structure, user permissions, owners, groups, access control lists (ACLs), system metadata (e.g., registry information), combinations of the same or other similar information related to the data object. In addition to metadata generated by or related to file systems and operating systems, some applications 110 and/or other components of system 100 maintain indices of metadata for data objects, e.g., metadata associated with individual email messages. The use of metadata to perform classification and other functions is described in greater detail below.
Primary storage devices 104 storing primary data 112 may be relatively fast and/or expensive technology (e.g., flash storage, a disk drive, a hard-disk storage array, solid state memory, etc.), typically to support high-performance live production environments. Primary data 112 may be highly changeable and/or may be intended for relatively short term retention (e.g., hours, days, or weeks). According to some embodiments, client computing device 102 can access primary data 112 stored in primary storage device 104 by making conventional file system calls via the operating system. Each client computing device 102 is generally associated with and/or in communication with one or more primary storage devices 104 storing corresponding primary data 112. A client computing device 102 is said to be associated with or in communication with a particular primary storage device 104 if it is capable of one or more of: routing and/or storing data (e.g., primary data 112) to the primary storage device 104, coordinating the routing and/or storing of data to the primary storage device 104, retrieving data from the primary storage device 104, coordinating the retrieval of data from the primary storage device 104, and modifying and/or deleting data in the primary storage device 104. Thus, a client computing device 102 may be said to access data stored in an associated storage device 104.
Primary storage device 104 may be dedicated or shared. In some cases, each primary storage device 104 is dedicated to an associated client computing device 102, e.g., a local disk drive. In other cases, one or more primary storage devices 104 can be shared by multiple client computing devices 102, e.g., via a local network, in a cloud storage implementation, etc. As one example, primary storage device 104 can be a storage array shared by a group of client computing devices 102, such as EMC Clariion, EMC Symmetrix, EMC Celerra, Dell EqualLogic, IBM XIV, NetApp FAS, HP EVA, and HP 3PAR.
System 100 may also include hosted services (not shown), which may be hosted in some cases by an entity other than the organization that employs the other components of system 100. For instance, the hosted services may be provided by online service providers. Such service providers can provide social networking services, hosted email services, or hosted productivity applications or other hosted applications such as software-as-a-service (SaaS), platform-as-a-service (PaaS), application service providers (ASPs), cloud services, or other mechanisms for delivering functionality via a network. As it services users, each hosted service may generate additional data and metadata, which may be managed by system 100, e.g., as primary data 112. In some cases, the hosted services may be accessed using one of the applications 110. As an example, a hosted mail service may be accessed via browser running on a client computing device 102.
Primary data 112 stored on primary storage devices 104 may be compromised in some cases, such as when an employee deliberately or accidentally deletes or overwrites primary data 112. Or primary storage devices 104 can be damaged, lost, or otherwise corrupted. For recovery and/or regulatory compliance purposes, it is therefore useful to generate and maintain copies of primary data 112. Accordingly, system 100 includes one or more secondary storage computing devices 106 and one or more secondary storage devices 108 configured to create and store one or more secondary copies 116 of primary data 112 including its associated metadata. The secondary storage computing devices 106 and the secondary storage devices 108 may be referred to as secondary storage subsystem 118.
Secondary copies 116 can help in search and analysis efforts and meet other information management goals as well, such as: restoring data and/or metadata if an original version is lost (e.g., by deletion, corruption, or disaster); allowing point-in-time recovery; complying with regulatory data retention and electronic discovery (e-discovery) requirements; reducing utilized storage capacity in the production system and/or in secondary storage; facilitating organization and search of data; improving user access to data files across multiple computing devices and/or hosted services; and implementing data retention and pruning policies.
A secondary copy 116 can comprise a separate stored copy of data that is derived from one or more earlier-created stored copies (e.g., derived from primary data 112 or from another secondary copy 116). Secondary copies 116 can include point-in-time data, and may be intended for relatively long-term retention before some or all of the data is moved to other storage or discarded. In some cases, a secondary copy 116 may be in a different storage device than other previously stored copies; and/or may be remote from other previously stored copies. Secondary copies 116 can be stored in the same storage device as primary data 112. For example, a disk array capable of performing hardware snapshots stores primary data 112 and creates and stores hardware snapshots of the primary data 112 as secondary copies 116. Secondary copies 116 may be stored in relatively slow and/or lower cost storage (e.g., magnetic tape). A secondary copy 116 may be stored in a backup or archive format, or in some other format different from the native source application format or other format of primary data 112.
Secondary storage computing devices 106 may index secondary copies 116 (e.g., using a media agent 144), enabling users to browse and restore at a later time and further enabling the lifecycle management of the indexed data. After creation of a secondary copy 116 that represents certain primary data 112, a pointer or other location indicia (e.g., a stub) may be placed in primary data 112, or be otherwise associated with primary data 112, to indicate the current location of a particular secondary copy 116. Since an instance of a data object or metadata in primary data 112 may change over time as it is modified by application 110 (or hosted service or the operating system), system 100 may create and manage multiple secondary copies 116 of a particular data object or metadata, each copy representing the state of the data object in primary data 112 at a particular point in time. Moreover, since an instance of a data object in primary data 112 may eventually be deleted from primary storage device 104 and the file system, system 100 may continue to manage point-in-time representations of that data object, even though the instance in primary data 112 no longer exists. For virtual machines, the operating system and other applications 110 of client computing device(s) 102 may execute within or under the management of virtualization software (e.g., a VMM), and the primary storage device(s) 104 may comprise a virtual disk created on a physical storage device. System 100 may create secondary copies 116 of the files or other data objects in a virtual disk file and/or secondary copies 116 of the entire virtual disk file itself (e.g., of an entire .vmdk file).
Secondary copies 116 are distinguishable from corresponding primary data 112. First, secondary copies 116 can be stored in a different format from primary data 112 (e.g., backup, archive, or other non-native format). For this or other reasons, secondary copies 116 may not be directly usable by applications 110 or client computing device 102 (e.g., via standard system calls or otherwise) without modification, processing, or other intervention by system 100 which may be referred to as “restore” operations. Secondary copies 116 may have been processed by data agent 142 and/or media agent 144 in the course of being created (e.g., compression, deduplication, encryption, integrity markers, indexing, formatting, application-aware metadata, etc.), and thus secondary copy 116 may represent source primary data 112 without necessarily being exactly identical to the source.
Second, secondary copies 116 may be stored on a secondary storage device 108 that is inaccessible to application 110 running on client computing device 102 and/or hosted service. Some secondary copies 116 may be “offline copies,” in that they are not readily available (e.g., not mounted to tape or disk). Offline copies can include copies of data that system 100 can access without human intervention (e.g., tapes within an automated tape library, but not yet mounted in a drive), and copies that the system 100 can access only with some human intervention (e.g., tapes located at an offsite storage site).
Creating secondary copies can be challenging when hundreds or thousands of client computing devices 102 continually generate large volumes of primary data 112 to be protected. Also, there can be significant overhead involved in the creation of secondary copies 116. Moreover, specialized programmed intelligence and/or hardware capability is generally needed for accessing and interacting with secondary storage devices 108. Client computing devices 102 may interact directly with a secondary storage device 108 to create secondary copies 116, but in view of the factors described above, this approach can negatively impact the ability of client computing device 102 to serve/service application 110 and produce primary data 112. Further, any given client computing device 102 may not be optimized for interaction with certain secondary storage devices 108.
Thus, system 100 may include one or more software and/or hardware components which generally act as intermediaries between client computing devices 102 (that generate primary data 112) and secondary storage devices 108 (that store secondary copies 116). In addition to off-loading certain responsibilities from client computing devices 102, these intermediate components provide other benefits. For instance, as discussed further below with respect to
Secondary storage computing device(s) 106 can comprise any of the computing devices described above, without limitation. In some cases, secondary storage computing device(s) 106 also include specialized hardware componentry and/or software intelligence (e.g., specialized interfaces) for interacting with certain secondary storage device(s) 108 with which they may be specially associated.
To create a secondary copy 116 involving the copying of data from primary storage subsystem 117 to secondary storage subsystem 118, client computing device 102 may communicate the primary data 112 to be copied (or a processed version thereof generated by a data agent 142) to the designated secondary storage computing device 106, via a communication pathway 114. Secondary storage computing device 106 in turn may further process and convey the data or a processed version thereof to secondary storage device 108. One or more secondary copies 116 may be created from existing secondary copies 116, such as in the case of an auxiliary copy operation, described further below.
Secondary copy data objects 134A-C can individually represent more than one primary data object. For example, secondary copy data object 134A represents three separate primary data objects 133C, 122, and 129C (represented as 133C′, 122′, and 129C′, respectively, and accompanied by corresponding metadata Meta11, Meta3, and Meta8, respectively). Moreover, as indicated by the prime mark (′), secondary storage computing devices 106 or other components in secondary storage subsystem 118 may process the data received from primary storage subsystem 117 and store a secondary copy including a transformed and/or supplemented representation of a primary data object and/or metadata that is different from the original format, e.g., in a compressed, encrypted, deduplicated, or other modified format. For instance, secondary storage computing devices 106 can generate new metadata or other information based on said processing, and store the newly generated information along with the secondary copies. Secondary copy data object 1346 represents primary data objects 120, 1336, and 119A as 120′, 1336′, and 119A′, respectively, accompanied by corresponding metadata Meta2, Meta10, and Meta1, respectively. Also, secondary copy data object 134C represents primary data objects 133A, 1196, and 129A as 133A′, 1196′, and 129A′, respectively, accompanied by corresponding metadata Meta9, Meta5, and Meta6, respectively.
System 100 can incorporate a variety of different hardware and software components, which can in turn be organized with respect to one another in many different configurations, depending on the embodiment. There are critical design choices involved in specifying the functional responsibilities of the components and the role of each component in system 100. Such design choices can impact how system 100 performs and adapts to data growth and other changing circumstances.
Storage Manager
Storage manager 140 is a centralized storage and/or information manager that is configured to perform certain control functions and also to store certain critical information about system 100—hence storage manager 140 is said to manage system 100. As noted, the number of components in system 100 and the amount of data under management can be large. Managing the components and data is therefore a significant task, which can grow unpredictably as the number of components and data scale to meet the needs of the organization. For these and other reasons, according to certain embodiments, responsibility for controlling system 100, or at least a significant portion of that responsibility, is allocated to storage manager 140. Storage manager 140 can be adapted independently according to changing circumstances, without having to replace or re-design the remainder of the system. Moreover, a computing device for hosting and/or operating as storage manager 140 can be selected to best suit the functions and networking needs of storage manager 140. These and other advantages are described in further detail below and with respect to
Storage manager 140 may be a software module or other application hosted by a suitable computing device. In some embodiments, storage manager 140 is itself a computing device that performs the functions described herein. Storage manager 140 comprises or operates in conjunction with one or more associated data structures such as a dedicated database (e.g., management database 146), depending on the configuration. The storage manager 140 generally initiates, performs, coordinates, and/or controls storage and other information management operations performed by system 100, e.g., to protect and control primary data 112 and secondary copies 116. In general, storage manager 140 is said to manage system 100, which includes communicating with, instructing, and controlling in some circumstances components such as data agents 142 and media agents 144, etc.
As shown by the dashed arrowed lines 114 in
According to certain embodiments, storage manager 140 provides one or more of the following functions:
Storage manager 140 may maintain an associated database 146 (or “storage manager database 146” or “management database 146”) of management-related data and information management policies 148. Database 146 is stored in computer memory accessible by storage manager 140. Database 146 may include a management index 150 (or “index 150”) or other data structure(s) that may store: logical associations between components of the system; user preferences and/or profiles (e.g., preferences regarding encryption, compression, or deduplication of primary data or secondary copies; preferences regarding the scheduling, type, or other aspects of secondary copy or other operations; mappings of particular information management users or user accounts to certain computing devices or other components, etc.; management tasks; media containerization; other useful data; and/or any combination thereof. For example, storage manager 140 may use index 150 to track logical associations between media agents 144 and secondary storage devices 108 and/or movement of data to/from secondary storage devices 108. For instance, index 150 may store data associating a client computing device 102 with a particular media agent 144 and/or secondary storage device 108, as specified in an information management policy 148.
Administrators and others may configure and initiate certain information management operations on an individual basis. But while this may be acceptable for some recovery operations or other infrequent tasks, it is often not workable for implementing on-going organization-wide data protection and management. Thus, system 100 may utilize information management policies 148 for specifying and executing information management operations on an automated basis. Generally, an information management policy 148 can include a stored data structure or other information source that specifies parameters (e.g., criteria and rules) associated with storage management or other information management operations. Storage manager 140 can process an information management policy 148 and/or index 150 and, based on the results, identify an information management operation to perform, identify the appropriate components in system 100 to be involved in the operation (e.g., client computing devices 102 and corresponding data agents 142, secondary storage computing devices 106 and corresponding media agents 144, etc.), establish connections to those components and/or between those components, and/or instruct and control those components to carry out the operation. In this manner, system 100 can translate stored information into coordinated activity among the various computing devices in system 100.
Management database 146 may maintain information management policies 148 and associated data, although information management policies 148 can be stored in computer memory at any appropriate location outside management database 146. For instance, an information management policy 148 such as a storage policy may be stored as metadata in a media agent database 152 or in a secondary storage device 108 (e.g., as an archive copy) for use in restore or other information management operations, depending on the embodiment. Information management policies 148 are described further below. According to certain embodiments, management database 146 comprises a relational database (e.g., an SQL database) for tracking metadata, such as metadata associated with secondary copy operations (e.g., what client computing devices 102 and corresponding subclient data were protected and where the secondary copies are stored and which media agent 144 performed the storage operation(s)). This and other metadata may additionally be stored in other locations, such as at secondary storage computing device 106 or on the secondary storage device 108, allowing data recovery without the use of storage manager 140 in some cases. Thus, management database 146 may comprise data needed to kick off secondary copy operations (e.g., storage policies, schedule policies, etc.), status and reporting information about completed jobs (e.g., status and error reports on yesterday's backup jobs), and additional information sufficient to enable restore and disaster recovery operations (e.g., media agent associations, location indexing, content indexing, etc.).
Storage manager 140 may include a jobs agent 156, a user interface 158, and a management agent 154, all of which may be implemented as interconnected software modules or application programs. These are described further below.
Jobs agent 156 in some embodiments initiates, controls, and/or monitors the status of some or all information management operations previously performed, currently being performed, or scheduled to be performed by system 100. A job is a logical grouping of information management operations such as daily storage operations scheduled for a certain set of subclients (e.g., generating incremental block-level backup copies 116 at a certain time every day for database files in a certain geographical location). Thus, jobs agent 156 may access information management policies 148 (e.g., in management database 146) to determine when, where, and how to initiate/control jobs in system 100.
Storage Manager User Interfaces
User interface 158 may include information processing and display software, such as a graphical user interface (GUI), an application program interface (API), and/or other interactive interface(s) through which users and system processes can retrieve information about the status of information management operations or issue instructions to storage manager 140 and other components. Via user interface 158, users may issue instructions to the components in system 100 regarding performance of secondary copy and recovery operations. For example, a user may modify a schedule concerning the number of pending secondary copy operations. As another example, a user may employ the GUI to view the status of pending secondary copy jobs or to monitor the status of certain components in system 100 (e.g., the amount of capacity left in a storage device). Storage manager 140 may track information that permits it to select, designate, or otherwise identify content indices, deduplication databases, or similar databases or resources or data sets within its information management cell (or another cell) to be searched in response to certain queries. Such queries may be entered by the user by interacting with user interface 158.
Various embodiments of information management system 100 may be configured and/or designed to generate user interface data usable for rendering the various interactive user interfaces described. The user interface data may be used by system 100 and/or by another system, device, and/or software program (for example, a browser program), to render the interactive user interfaces. The interactive user interfaces may be displayed on, for example, electronic displays (including, for example, touch-enabled displays), consoles, etc., whether direct-connected to storage manager 140 or communicatively coupled remotely, e.g., via an internet connection. The present disclosure describes various embodiments of interactive and dynamic user interfaces, some of which may be generated by user interface agent 158, and which are the result of significant technological development. The user interfaces described herein may provide improved human-computer interactions, allowing for significant cognitive and ergonomic efficiencies and advantages over previous systems, including reduced mental workloads, improved decision-making, and the like. User interface 158 may operate in a single integrated view or console (not shown). The console may support a reporting capability for generating a variety of reports, which may be tailored to a particular aspect of information management.
User interfaces are not exclusive to storage manager 140 and in some embodiments a user may access information locally from a computing device component of system 100. For example, some information pertaining to installed data agents 142 and associated data streams may be available from client computing device 102. Likewise, some information pertaining to media agents 144 and associated data streams may be available from secondary storage computing device 106.
Storage Manager Management Agent
Management agent 154 can provide storage manager 140 with the ability to communicate with other components within system 100 and/or with other information management cells via network protocols and application programming interfaces (APIs) including, e.g., HTTP, HTTPS, FTP, REST, virtualization software APIs, cloud service provider APIs, and hosted service provider APIs, without limitation. Management agent 154 also allows multiple information management cells to communicate with one another. For example, system 100 in some cases may be one information management cell in a network of multiple cells adjacent to one another or otherwise logically related, e.g., in a WAN or LAN. With this arrangement, the cells may communicate with one another through respective management agents 154. Inter-cell communications and hierarchy is described in greater detail in e.g., U.S. Pat. No. 7,343,453.
Information Management Cell
An “information management cell” (or “storage operation cell” or “cell”) may generally include a logical and/or physical grouping of a combination of hardware and software components associated with performing information management operations on electronic data, typically one storage manager 140 and at least one data agent 142 (executing on a client computing device 102) and at least one media agent 144 (executing on a secondary storage computing device 106). For instance, the components shown in
Multiple cells may be organized hierarchically, so that cells may inherit properties from hierarchically superior cells or be controlled by other cells in the hierarchy (automatically or otherwise). Alternatively, in some embodiments, cells may inherit or otherwise be associated with information management policies, preferences, information management operational parameters, or other properties or characteristics according to their relative position in a hierarchy of cells. Cells may also be organized hierarchically according to function, geography, architectural considerations, or other factors useful or desirable in performing information management operations. For example, a first cell may represent a geographic segment of an enterprise, such as a Chicago office, and a second cell may represent a different geographic segment, such as a New York City office. Other cells may represent departments within a particular office, e.g., human resources, finance, engineering, etc. Where delineated by function, a first cell may perform one or more first types of information management operations (e.g., one or more first types of secondary copies at a certain frequency), and a second cell may perform one or more second types of information management operations (e.g., one or more second types of secondary copies at a different frequency and under different retention rules). In general, the hierarchical information is maintained by one or more storage managers 140 that manage the respective cells (e.g., in corresponding management database(s) 146).
Data Agents
A variety of different applications 110 can operate on a given client computing device 102, including operating systems, file systems, database applications, e-mail applications, and virtual machines, just to name a few. And, as part of the process of creating and restoring secondary copies 116, the client computing device 102 may be tasked with processing and preparing the primary data 112 generated by these various applications 110. Moreover, the nature of the processing/preparation can differ across application types, e.g., due to inherent structural, state, and formatting differences among applications 110 and/or the operating system of client computing device 102. Each data agent 142 is therefore advantageously configured in some embodiments to assist in the performance of information management operations based on the type of data that is being protected at a client-specific and/or application-specific level.
Data agent 142 is a component of information system 100 and is generally directed by storage manager 140 to participate in creating or restoring secondary copies 116. Data agent 142 may be a software program (e.g., in the form of a set of executable binary files) that executes on the same client computing device 102 as the associated application 110 that data agent 142 is configured to protect. Data agent 142 is generally responsible for managing, initiating, or otherwise assisting in the performance of information management operations in reference to its associated application(s) 110 and corresponding primary data 112 which is generated/accessed by the particular application(s) 110. For instance, data agent 142 may take part in copying, archiving, migrating, and/or replicating of certain primary data 112 stored in the primary storage device(s) 104. Data agent 142 may receive control information from storage manager 140, such as commands to transfer copies of data objects and/or metadata to one or more media agents 144. Data agent 142 also may compress, deduplicate, and encrypt certain primary data 112, as well as capture application-related metadata before transmitting the processed data to media agent 144. Data agent 142 also may receive instructions from storage manager 140 to restore (or assist in restoring) a secondary copy 116 from secondary storage device 108 to primary storage 104, such that the restored data may be properly accessed by application 110 in a suitable format as though it were primary data 112.
Each data agent 142 may be specialized for a particular application 110. For instance, different individual data agents 142 may be designed to handle Microsoft Exchange data, Lotus Notes data, Microsoft Windows file system data, Microsoft Active Directory Objects data, SQL Server data, Share Point data, Oracle database data, SAP database data, virtual machines and/or associated data, and other types of data. A file system data agent, for example, may handle data files and/or other file system information. If a client computing device 102 has two or more types of data 112, a specialized data agent 142 may be used for each data type. For example, to backup, migrate, and/or restore all of the data on a Microsoft Exchange server, the client computing device 102 may use: (1) a Microsoft Exchange Mailbox data agent 142 to back up the Exchange mailboxes; (2) a Microsoft Exchange Database data agent 142 to back up the Exchange databases; (3) a Microsoft Exchange Public Folder data agent 142 to back up the Exchange Public Folders; and (4) a Microsoft Windows File System data agent 142 to back up the file system of client computing device 102. In this example, these specialized data agents 142 are treated as four separate data agents 142 even though they operate on the same client computing device 102. Other examples may include archive management data agents such as a migration archiver or a compliance archiver, Quick Recovery® agents, and continuous data replication agents. Application-specific data agents 142 can provide improved performance as compared to generic agents. For instance, because application-specific data agents 142 may only handle data for a single software application, the design, operation, and performance of the data agent 142 can be streamlined. The data agent 142 may therefore execute faster and consume less persistent storage and/or operating memory than data agents designed to generically accommodate multiple different software applications 110.
Each data agent 142 may be configured to access data and/or metadata stored in the primary storage device(s) 104 associated with data agent 142 and its host client computing device 102, and process the data appropriately. For example, during a secondary copy operation, data agent 142 may arrange or assemble the data and metadata into one or more files having a certain format (e.g., a particular backup or archive format) before transferring the file(s) to a media agent 144 or other component. The file(s) may include a list of files or other metadata. In some embodiments, a data agent 142 may be distributed between client computing device 102 and storage manager 140 (and any other intermediate components) or may be deployed from a remote location or its functions approximated by a remote process that performs some or all of the functions of data agent 142. In addition, a data agent 142 may perform some functions provided by media agent 144. Other embodiments may employ one or more generic data agents 142 that can handle and process data from two or more different applications 110, or that can handle and process multiple data types, instead of or in addition to using specialized data agents 142. For example, one generic data agent 142 may be used to back up, migrate and restore Microsoft Exchange Mailbox data and Microsoft Exchange Database data, while another generic data agent may handle Microsoft Exchange Public Folder data and Microsoft Windows File System data.
Media Agents
As noted, off-loading certain responsibilities from client computing devices 102 to intermediate components such as secondary storage computing device(s) 106 and corresponding media agent(s) 144 can provide a number of benefits including improved performance of client computing device 102, faster and more reliable information management operations, and enhanced scalability. In one example which will be discussed further below, media agent 144 can act as a local cache of recently-copied data and/or metadata stored to secondary storage device(s) 108, thus improving restore capabilities and performance for the cached data.
Media agent 144 is a component of system 100 and is generally directed by storage manager 140 in creating and restoring secondary copies 116. Whereas storage manager 140 generally manages system 100 as a whole, media agent 144 provides a portal to certain secondary storage devices 108, such as by having specialized features for communicating with and accessing certain associated secondary storage device 108. Media agent 144 may be a software program (e.g., in the form of a set of executable binary files) that executes on a secondary storage computing device 106. Media agent 144 generally manages, coordinates, and facilitates the transmission of data between a data agent 142 (executing on client computing device 102) and secondary storage device(s) 108 associated with media agent 144. For instance, other components in the system may interact with media agent 144 to gain access to data stored on associated secondary storage device(s) 108, (e.g., to browse, read, write, modify, delete, or restore data). Moreover, media agents 144 can generate and store information relating to characteristics of the stored data and/or metadata, or can generate and store other types of information that generally provides insight into the contents of the secondary storage devices 108—generally referred to as indexing of the stored secondary copies 116. Each media agent 144 may operate on a dedicated secondary storage computing device 106, while in other embodiments a plurality of media agents 144 may operate on the same secondary storage computing device 106.
A media agent 144 may be associated with a particular secondary storage device 108 if that media agent 144 is capable of one or more of: routing and/or storing data to the particular secondary storage device 108; coordinating the routing and/or storing of data to the particular secondary storage device 108; retrieving data from the particular secondary storage device 108; coordinating the retrieval of data from the particular secondary storage device 108; and modifying and/or deleting data retrieved from the particular secondary storage device 108. Media agent 144 in certain embodiments is physically separate from the associated secondary storage device 108. For instance, a media agent 144 may operate on a secondary storage computing device 106 in a distinct housing, package, and/or location from the associated secondary storage device 108. In one example, a media agent 144 operates on a first server computer and is in communication with a secondary storage device(s) 108 operating in a separate rack-mounted RAID-based system.
A media agent 144 associated with a particular secondary storage device 108 may instruct secondary storage device 108 to perform an information management task. For instance, a media agent 144 may instruct a tape library to use a robotic arm or other retrieval means to load or eject a certain storage media, and to subsequently archive, migrate, or retrieve data to or from that media, e.g., for the purpose of restoring data to a client computing device 102. As another example, a secondary storage device 108 may include an array of hard disk drives or solid state drives organized in a RAID configuration, and media agent 144 may forward a logical unit number (LUN) and other appropriate information to the array, which uses the received information to execute the desired secondary copy operation. Media agent 144 may communicate with a secondary storage device 108 via a suitable communications link, such as a SCSI or Fibre Channel link.
Each media agent 144 may maintain an associated media agent database 152. Media agent database 152 may be stored to a disk or other storage device (not shown) that is local to the secondary storage computing device 106 on which media agent 144 executes. In other cases, media agent database 152 is stored separately from the host secondary storage computing device 106. Media agent database 152 can include, among other things, a media agent index 153 (see, e.g.,
Media agent index 153 (or “index 153”) may be a data structure associated with the particular media agent 144 that includes information about the stored data associated with the particular media agent and which may be generated in the course of performing a secondary copy operation or a restore. Index 153 provides a fast and efficient mechanism for locating/browsing secondary copies 116 or other data stored in secondary storage devices 108 without having to access secondary storage device 108 to retrieve the information from there. For instance, for each secondary copy 116, index 153 may include metadata such as a list of the data objects (e.g., files/subdirectories, database objects, mailbox objects, etc.), a logical path to the secondary copy 116 on the corresponding secondary storage device 108, location information (e.g., offsets) indicating where the data objects are stored in the secondary storage device 108, when the data objects were created or modified, etc. Thus, index 153 includes metadata associated with the secondary copies 116 that is readily available for use from media agent 144. In some embodiments, some or all of the information in index 153 may instead or additionally be stored along with secondary copies 116 in secondary storage device 108. In some embodiments, a secondary storage device 108 can include sufficient information to enable a “bare metal restore,” where the operating system and/or software applications of a failed client computing device 102 or another target may be automatically restored without manually reinstalling individual software packages (including operating systems).
Because index 153 may operate as a cache, it can also be referred to as an “index cache.” In such cases, information stored in index cache 153 typically comprises data that reflects certain particulars about relatively recent secondary copy operations. After some triggering event, such as after some time elapses or index cache 153 reaches a particular size, certain portions of index cache 153 may be copied or migrated to secondary storage device 108, e.g., on a least-recently-used basis. This information may be retrieved and uploaded back into index cache 153 or otherwise restored to media agent 144 to facilitate retrieval of data from the secondary storage device(s) 108. In some embodiments, the cached information may include format or containerization information related to archives or other files stored on storage device(s) 108.
In some alternative embodiments media agent 144 generally acts as a coordinator or facilitator of secondary copy operations between client computing devices 102 and secondary storage devices 108, but does not actually write the data to secondary storage device 108. For instance, storage manager 140 (or media agent 144) may instruct a client computing device 102 and secondary storage device 108 to communicate with one another directly. In such a case, client computing device 102 transmits data directly or via one or more intermediary components to secondary storage device 108 according to the received instructions, and vice versa. Media agent 144 may still receive, process, and/or maintain metadata related to the secondary copy operations, i.e., may continue to build and maintain index 153. In these embodiments, payload data can flow through media agent 144 for the purposes of populating index 153, but not for writing to secondary storage device 108. Media agent 144 and/or other components such as storage manager 140 may in some cases incorporate additional functionality, such as data classification, content indexing, deduplication, encryption, compression, and the like. Further details regarding these and other functions are described below.
As described, certain functions of system 100 can be distributed amongst various physical and/or logical components. For instance, one or more of storage manager 140, data agents 142, and media agents 144 may operate on computing devices that are physically separate from one another. This architecture can provide a number of benefits. For instance, hardware and software design choices for each distributed component can be targeted to suit its particular function. The secondary computing devices 106 on which media agents 144 operate can be tailored for interaction with associated secondary storage devices 108 and provide fast index cache operation, among other specific tasks. Similarly, client computing device(s) 102 can be selected to effectively service applications 110 in order to efficiently produce and store primary data 112.
Moreover, in some cases, one or more of the individual components of information management system 100 can be distributed to multiple separate computing devices. As one example, for large file systems where the amount of data stored in management database 146 is relatively large, database 146 may be migrated to or may otherwise reside on a specialized database server (e.g., an SQL server) separate from a server that implements the other functions of storage manager 140. This distributed configuration can provide added protection because database 146 can be protected with standard database utilities (e.g., SQL log shipping or database replication) independent from other functions of storage manager 140. Database 146 can be efficiently replicated to a remote site for use in the event of a disaster or other data loss at the primary site. Or database 146 can be replicated to another computing device within the same site, such as to a higher performance machine in the event that a storage manager host computing device can no longer service the needs of a growing system 100.
The distributed architecture also provides scalability and efficient component utilization.
Where system 100 includes multiple media agents 144 (see, e.g.,
While distributing functionality amongst multiple computing devices can have certain advantages, in other contexts it can be beneficial to consolidate functionality on the same computing device. In alternative configurations, certain components may reside and execute on the same computing device. As such, in other embodiments, one or more of the components shown in
In order to protect and leverage stored data, system 100 can be configured to perform a variety of information management operations, which may also be referred to in some cases as storage management operations or storage operations. These operations can generally include (i) data movement operations, (ii) processing and data manipulation operations, and (iii) analysis, reporting, and management operations.
Data movement operations are generally storage operations that involve the copying or migration of data between different locations in system 100. For example, data movement operations can include operations in which stored data is copied, migrated, or otherwise transferred from one or more first storage devices to one or more second storage devices, such as from primary storage device(s) 104 to secondary storage device(s) 108, from secondary storage device(s) 108 to different secondary storage device(s) 108, from secondary storage devices 108 to primary storage devices 104, or from primary storage device(s) 104 to different primary storage device(s) 104, or in some cases within the same primary storage device 104 such as within a storage array.
Data movement operations can include by way of example, backup operations, archive operations, information lifecycle management operations such as hierarchical storage management operations, replication operations (e.g., continuous data replication), snapshot operations, deduplication or single-instancing operations, auxiliary copy operations, disaster-recovery copy operations, and the like. As will be discussed, some of these operations do not necessarily create distinct copies. Nonetheless, some or all of these operations are generally referred to as “secondary copy operations” for simplicity, because they involve secondary copies. Data movement also comprises restoring secondary copies.
Backup Operations
A backup operation creates a copy of a version of primary data 112 at a particular point in time (e.g., one or more files or other data units). Each subsequent backup copy 116 (which is a form of secondary copy 116) may be maintained independently of the first. A backup generally involves maintaining a version of the copied primary data 112 as well as backup copies 116. Further, a backup copy in some embodiments is generally stored in a form that is different from the native format, e.g., a backup format. This contrasts to the version in primary data 112 which may instead be stored in a format native to the source application(s) 110. In various cases, backup copies can be stored in a format in which the data is compressed, encrypted, deduplicated, and/or otherwise modified from the original native application format. For example, a backup copy may be stored in a compressed backup format that facilitates efficient long-term storage. Backup copies 116 can have relatively long retention periods as compared to primary data 112, which is generally highly changeable. Backup copies 116 may be stored on media with slower retrieval times than primary storage device 104. Some backup copies may have shorter retention periods than some other types of secondary copies 116, such as archive copies (described below). Backups may be stored at an offsite location.
Backup operations can include full backups, differential backups, incremental backups, “synthetic full” backups, and/or creating a “reference copy.” A full backup (or “standard full backup”) in some embodiments is generally a complete image of the data to be protected. However, because full backup copies can consume a relatively large amount of storage, it can be useful to use a full backup copy as a baseline and only store changes relative to the full backup copy afterwards.
A differential backup operation (or cumulative incremental backup operation) tracks and stores changes that occurred since the last full backup. Differential backups can grow quickly in size, but can restore relatively efficiently because a restore can be completed in some cases using only the full backup copy and the latest differential copy.
An incremental backup operation generally tracks and stores changes since the most recent backup copy of any type, which can greatly reduce storage utilization. In some cases, however, restoring can be lengthy compared to full or differential backups because completing a restore operation may involve accessing a full backup in addition to multiple incremental backups.
Synthetic full backups generally consolidate data without directly backing up data from the client computing device. A synthetic full backup is created from the most recent full backup (i.e., standard or synthetic) and subsequent incremental and/or differential backups. The resulting synthetic full backup is identical to what would have been created had the last backup for the subclient been a standard full backup. Unlike standard full, incremental, and differential backups, however, a synthetic full backup does not actually transfer data from primary storage to the backup media, because it operates as a backup consolidator. A synthetic full backup extracts the index data of each participating subclient. Using this index data and the previously backed up user data images, it builds new full backup images (e.g., bitmaps), one for each subclient. The new backup images consolidate the index and user data stored in the related incremental, differential, and previous full backups into a synthetic backup file that fully represents the subclient (e.g., via pointers) but does not comprise all its constituent data.
Any of the above types of backup operations can be at the volume level, file level, or block level. Volume level backup operations generally involve copying of a data volume (e.g., a logical disk or partition) as a whole. In a file-level backup, information management system 100 generally tracks changes to individual files and includes copies of files in the backup copy. For block-level backups, files are broken into constituent blocks, and changes are tracked at the block level. Upon restore, system 100 reassembles the blocks into files in a transparent fashion. Far less data may actually be transferred and copied to secondary storage devices 108 during a file-level copy than a volume-level copy. Likewise, a block-level copy may transfer less data than a file-level copy, resulting in faster execution. However, restoring a relatively higher-granularity copy can result in longer restore times. For instance, when restoring a block-level copy, the process of locating and retrieving constituent blocks can sometimes take longer than restoring file-level backups.
A reference copy may comprise copy(ies) of selected objects from backed up data, typically to help organize data by keeping contextual information from multiple sources together, and/or help retain specific data for a longer period of time, such as for legal hold needs. A reference copy generally maintains data integrity, and when the data is restored, it may be viewed in the same format as the source data. In some embodiments, a reference copy is based on a specialized client, individual subclient and associated information management policies (e.g., storage policy, retention policy, etc.) that are administered within system 100.
Archive Operations
Because backup operations generally involve maintaining a version of the copied primary data 112 and also maintaining backup copies in secondary storage device(s) 108, they can consume significant storage capacity. To reduce storage consumption, an archive operation according to certain embodiments creates an archive copy 116 by both copying and removing source data. Or, seen another way, archive operations can involve moving some or all of the source data to the archive destination. Thus, data satisfying criteria for removal (e.g., data of a threshold age or size) may be removed from source storage. The source data may be primary data 112 or a secondary copy 116, depending on the situation. As with backup copies, archive copies can be stored in a format in which the data is compressed, encrypted, deduplicated, and/or otherwise modified from the format of the original application or source copy. In addition, archive copies may be retained for relatively long periods of time (e.g., years) and, in some cases are never deleted. In certain embodiments, archive copies may be made and kept for extended periods in order to meet compliance regulations.
Archiving can also serve the purpose of freeing up space in primary storage device(s) 104 and easing the demand on computational resources on client computing device 102. Similarly, when a secondary copy 116 is archived, the archive copy can therefore serve the purpose of freeing up space in the source secondary storage device(s) 108. Examples of data archiving operations are provided in U.S. Pat. No. 7,107,298.
Snapshot Operations
Snapshot operations can provide a relatively lightweight, efficient mechanism for protecting data. From an end-user viewpoint, a snapshot may be thought of as an “instant” image of primary data 112 at a given point in time, and may include state and/or status information relative to an application 110 that creates/manages primary data 112. In one embodiment, a snapshot may generally capture the directory structure of an object in primary data 112 such as a file or volume or other data set at a particular moment in time and may also preserve file attributes and contents. A snapshot in some cases is created relatively quickly, e.g., substantially instantly, using a minimum amount of file space, but may still function as a conventional file system backup.
A “hardware snapshot” (or “hardware-based snapshot”) operation occurs where a target storage device (e.g., a primary storage device 104 or a secondary storage device 108) performs the snapshot operation in a self-contained fashion, substantially independently, using hardware, firmware and/or software operating on the storage device itself. For instance, the storage device may perform snapshot operations generally without intervention or oversight from any of the other components of the system 100, e.g., a storage array may generate an “array-created” hardware snapshot and may also manage its storage, integrity, versioning, etc. In this manner, hardware snapshots can off-load other components of system 100 from snapshot processing. An array may receive a request from another component to take a snapshot and then proceed to execute the “hardware snapshot” operations autonomously, preferably reporting success to the requesting component.
A “software snapshot” (or “software-based snapshot”) operation, on the other hand, occurs where a component in system 100 (e.g., client computing device 102, etc.) implements a software layer that manages the snapshot operation via interaction with the target storage device. For instance, the component executing the snapshot management software layer may derive a set of pointers and/or data that represents the snapshot. The snapshot management software layer may then transmit the same to the target storage device, along with appropriate instructions for writing the snapshot. One example of a software snapshot product is Microsoft Volume Snapshot Service (VSS), which is part of the Microsoft Windows operating system.
Some types of snapshots do not actually create another physical copy of all the data as it existed at the particular point in time, but may simply create pointers that map files and directories to specific memory locations (e.g., to specific disk blocks) where the data resides as it existed at the particular point in time. For example, a snapshot copy may include a set of pointers derived from the file system or from an application. In some other cases, the snapshot may be created at the block-level, such that creation of the snapshot occurs without awareness of the file system. Each pointer points to a respective stored data block, so that collectively, the set of pointers reflect the storage location and state of the data object (e.g., file(s) or volume(s) or data set(s)) at the point in time when the snapshot copy was created.
An initial snapshot may use only a small amount of disk space needed to record a mapping or other data structure representing or otherwise tracking the blocks that correspond to the current state of the file system. Additional disk space is usually required only when files and directories change later on. Furthermore, when files change, typically only the pointers which map to blocks are copied, not the blocks themselves. For example for “copy-on-write” snapshots, when a block changes in primary storage, the block is copied to secondary storage or cached in primary storage before the block is overwritten in primary storage, and the pointer to that block is changed to reflect the new location of that block. The snapshot mapping of file system data may also be updated to reflect the changed block(s) at that particular point in time. In some other cases, a snapshot includes a full physical copy of all or substantially all of the data represented by the snapshot. Further examples of snapshot operations are provided in U.S. Pat. No. 7,529,782. A snapshot copy in many cases can be made quickly and without significantly impacting primary computing resources because large amounts of data need not be copied or moved. In some embodiments, a snapshot may exist as a virtual file system, parallel to the actual file system. Users in some cases gain read-only access to the record of files and directories of the snapshot. By electing to restore primary data 112 from a snapshot taken at a given point in time, users may also return the current file system to the state of the file system that existed when the snapshot was taken.
Replication Operations
Replication is another type of secondary copy operation. Some types of secondary copies 116 periodically capture images of primary data 112 at particular points in time (e.g., backups, archives, and snapshots). However, it can also be useful for recovery purposes to protect primary data 112 in a more continuous fashion, by replicating primary data 112 substantially as changes occur. In some cases a replication copy can be a mirror copy, for instance, where changes made to primary data 112 are mirrored or substantially immediately copied to another location (e.g., to secondary storage device(s) 108). By copying each write operation to the replication copy, two storage systems are kept synchronized or substantially synchronized so that they are virtually identical at approximately the same time. Where entire disk volumes are mirrored, however, mirroring can require significant amount of storage space and utilizes a large amount of processing resources.
According to some embodiments, secondary copy operations are performed on replicated data that represents a recoverable state, or “known good state” of a particular application running on the source system. For instance, in certain embodiments, known good replication copies may be viewed as copies of primary data 112. This feature allows the system to directly access, copy, restore, back up, or otherwise manipulate the replication copies as if they were the “live” primary data 112. This can reduce access time, storage utilization, and impact on source applications 110, among other benefits. Based on known good state information, system 100 can replicate sections of application data that represent a recoverable state rather than rote copying of blocks of data. Examples of replication operations (e.g., continuous data replication) are provided in U.S. Pat. No. 7,617,262.
Deduplication/Single-Instancing Operations
Deduplication or single-instance storage is useful to reduce the amount of non-primary data. For instance, some or all of the above-described secondary copy operations can involve deduplication in some fashion. New data is read, broken down into data portions of a selected granularity (e.g., sub-file level blocks, files, etc.), compared with corresponding portions that are already in secondary storage, and only new/changed portions are stored. Portions that already exist are represented as pointers to the already-stored data. Thus, a deduplicated secondary copy 116 may comprise actual data portions copied from primary data 112 and may further comprise pointers to already-stored data, which is generally more storage-efficient than a full copy.
In order to streamline the comparison process, system 100 may calculate and/or store signatures (e.g., hashes or cryptographically unique IDs) corresponding to the individual source data portions and compare the signatures to already-stored data signatures, instead of comparing entire data portions. In some cases, only a single instance of each data portion is stored, and deduplication operations may therefore be referred to interchangeably as “single-instancing” operations. Depending on the implementation, however, deduplication operations can store more than one instance of certain data portions, yet still significantly reduce stored-data redundancy. Depending on the embodiment, deduplication portions such as data blocks can be of fixed or variable length. Using variable length blocks can enhance deduplication by responding to changes in the data stream, but can involve more complex processing. In some cases, system 100 utilizes a technique for dynamically aligning deduplication blocks based on changing content in the data stream, as described in U.S. Pat. No. 8,364,652.
System 100 can deduplicate in a variety of manners at a variety of locations. For instance, in some embodiments, system 100 implements “target-side” deduplication by deduplicating data at the media agent 144 after being received from data agent 142. In some such cases, media agents 144 are generally configured to manage the deduplication process. For instance, one or more of the media agents 144 maintain a corresponding deduplication database that stores deduplication information (e.g., data block signatures). Examples of such a configuration are provided in U.S. Pat. No. 9,020,900. Instead of or in combination with “target-side” deduplication, “source-side” (or “client-side”) deduplication can also be performed, e.g., to reduce the amount of data to be transmitted by data agent 142 to media agent 144. Storage manager 140 may communicate with other components within system 100 via network protocols and cloud service provider APIs to facilitate cloud-based deduplication/single instancing, as exemplified in U.S. Pat. No. 8,954,446. Some other deduplication/single instancing techniques are described in U.S. Pat. Pub. No. 2006/0224846 and in U.S. Pat. No. 9,098,495.
Information Lifecycle Management and Hierarchical Storage Management
In some embodiments, files and other data over their lifetime move from more expensive quick-access storage to less expensive slower-access storage. Operations associated with moving data through various tiers of storage are sometimes referred to as information lifecycle management (ILM) operations.
One type of ILM operation is a hierarchical storage management (HSM) operation, which generally automatically moves data between classes of storage devices, such as from high-cost to low-cost storage devices. For instance, an HSM operation may involve movement of data from primary storage devices 104 to secondary storage devices 108, or between tiers of secondary storage devices 108. With each tier, the storage devices may be progressively cheaper, have relatively slower access/restore times, etc. For example, movement of data between tiers may occur as data becomes less important over time. In some embodiments, an HSM operation is similar to archiving in that creating an HSM copy may (though not always) involve deleting some of the source data, e.g., according to one or more criteria related to the source data. For example, an HSM copy may include primary data 112 or a secondary copy 116 that exceeds a given size threshold or a given age threshold. Often, and unlike some types of archive copies, HSM data that is removed or aged from the source is replaced by a logical reference pointer or stub. The reference pointer or stub can be stored in the primary storage device 104 or other source storage device, such as a secondary storage device 108 to replace the deleted source data and to point to or otherwise indicate the new location in (another) secondary storage device 108.
For example, files are generally moved between higher and lower cost storage depending on how often the files are accessed. When a user requests access to HSM data that has been removed or migrated, system 100 uses the stub to locate the data and can make recovery of the data appear transparent, even though the HSM data may be stored at a location different from other source data. In this manner, the data appears to the user (e.g., in file system browsing windows and the like) as if it still resides in the source location (e.g., in a primary storage device 104). The stub may include metadata associated with the corresponding data, so that a file system and/or application can provide some information about the data object and/or a limited-functionality version (e.g., a preview) of the data object.
An HSM copy may be stored in a format other than the native application format (e.g., compressed, encrypted, deduplicated, and/or otherwise modified). In some cases, copies which involve the removal of data from source storage and the maintenance of stub or other logical reference information on source storage may be referred to generally as “online archive copies.” On the other hand, copies which involve the removal of data from source storage without the maintenance of stub or other logical reference information on source storage may be referred to as “off-line archive copies.” Examples of HSM and ILM techniques are provided in U.S. Pat. No. 7,343,453.
Auxiliary Copy Operations
An auxiliary copy is generally a copy of an existing secondary copy 116. For instance, an initial secondary copy 116 may be derived from primary data 112 or from data residing in secondary storage subsystem 118, whereas an auxiliary copy is generated from the initial secondary copy 116. Auxiliary copies provide additional standby copies of data and may reside on different secondary storage devices 108 than the initial secondary copies 116. Thus, auxiliary copies can be used for recovery purposes if initial secondary copies 116 become unavailable. Exemplary auxiliary copy techniques are described in further detail in U.S. Pat. No. 8,230,195.
Disaster-Recovery Copy Operations
System 100 may also make and retain disaster recovery copies, often as secondary, high-availability disk copies. System 100 may create secondary copies and store them at disaster recovery locations using auxiliary copy or replication operations, such as continuous data replication technologies. Depending on the particular data protection goals, disaster recovery locations can be remote from the client computing devices 102 and primary storage devices 104, remote from some or all of the secondary storage devices 108, or both.
Data Manipulation, Including Encryption and Compression
Data manipulation and processing may include encryption and compression as well as integrity marking and checking, formatting for transmission, formatting for storage, etc. Data may be manipulated “client-side” by data agent 142 as well as “target-side” by media agent 144 in the course of creating secondary copy 116, or conversely in the course of restoring data from secondary to primary.
Encryption Operations
System 100 in some cases is configured to process data (e.g., files or other data objects, primary data 112, secondary copies 116, etc.), according to an appropriate encryption algorithm (e.g., Blowfish, Advanced Encryption Standard (AES), Triple Data Encryption Standard (3-DES), etc.) to limit access and provide data security. System 100 in some cases encrypts the data at the client level, such that client computing devices 102 (e.g., data agents 142) encrypt the data prior to transferring it to other components, e.g., before sending the data to media agents 144 during a secondary copy operation. In such cases, client computing device 102 may maintain or have access to an encryption key or passphrase for decrypting the data upon restore. Encryption can also occur when media agent 144 creates auxiliary copies or archive copies. Encryption may be applied in creating a secondary copy 116 of a previously unencrypted secondary copy 116, without limitation. In further embodiments, secondary storage devices 108 can implement built-in, high performance hardware-based encryption.
Compression Operations
Similar to encryption, system 100 may also or alternatively compress data in the course of generating a secondary copy 116. Compression encodes information such that fewer bits are needed to represent the information as compared to the original representation. Compression techniques are well known in the art. Compression operations may apply one or more data compression algorithms. Compression may be applied in creating a secondary copy 116 of a previously uncompressed secondary copy, e.g., when making archive copies or disaster recovery copies. The use of compression may result in metadata that specifies the nature of the compression, so that data may be uncompressed on restore if appropriate.
Data Analysis, Reporting, and Management Operations
Data analysis, reporting, and management operations can differ from data movement operations in that they do not necessarily involve copying, migration or other transfer of data between different locations in the system. For instance, data analysis operations may involve processing (e.g., offline processing) or modification of already stored primary data 112 and/or secondary copies 116. However, in some embodiments data analysis operations are performed in conjunction with data movement operations. Some data analysis operations include content indexing operations and classification operations which can be useful in leveraging data under management to enhance search and other features.
Classification Operations/Content Indexing
In some embodiments, information management system 100 analyzes and indexes characteristics, content, and metadata associated with primary data 112 (“online content indexing”) and/or secondary copies 116 (“off-line content indexing”). Content indexing can identify files or other data objects based on content (e.g., user-defined keywords or phrases, other keywords/phrases that are not defined by a user, etc.), and/or metadata (e.g., email metadata such as “to,” “from,” “cc,” “bcc,” attachment name, received time, etc.). Content indexes may be searched and search results may be restored.
System 100 generally organizes and catalogues the results into a content index, which may be stored within media agent database 152, for example. The content index can also include the storage locations of or pointer references to indexed data in primary data 112 and/or secondary copies 116. Results may also be stored elsewhere in system 100 (e.g., in primary storage device 104 or in secondary storage device 108). Such content index data provides storage manager 140 or other components with an efficient mechanism for locating primary data 112 and/or secondary copies 116 of data objects that match particular criteria, thus greatly increasing the search speed capability of system 100. For instance, search criteria can be specified by a user through user interface 158 of storage manager 140. Moreover, when system 100 analyzes data and/or metadata in secondary copies 116 to create an “off-line content index,” this operation has no significant impact on the performance of client computing devices 102 and thus does not take a toll on the production environment. Examples of content indexing techniques are provided in U.S. Pat. No. 8,170,995.
One or more components, such as a content index engine, can be configured to scan data and/or associated metadata for classification purposes to populate a database (or other data structure) of information, which can be referred to as a “data classification database” or a “metabase.” Depending on the embodiment, the data classification database(s) can be organized in a variety of different ways, including centralization, logical sub-divisions, and/or physical sub-divisions. For instance, one or more data classification databases may be associated with different subsystems or tiers within system 100. As an example, there may be a first metabase associated with primary storage subsystem 117 and a second metabase associated with secondary storage subsystem 118. In other cases, metabase(s) may be associated with individual components, e.g., client computing devices 102 and/or media agents 144. In some embodiments, a data classification database may reside as one or more data structures within management database 146, may be otherwise associated with storage manager 140, and/or may reside as a separate component. In some cases, metabase(s) may be included in separate database(s) and/or on separate storage device(s) from primary data 112 and/or secondary copies 116, such that operations related to the metabase(s) do not significantly impact performance on other components of system 100. In other cases, metabase(s) may be stored along with primary data 112 and/or secondary copies 116. Files or other data objects can be associated with identifiers (e.g., tag entries, etc.) to facilitate searches of stored data objects. Among a number of other benefits, the metabase can also allow efficient, automatic identification of files or other data objects to associate with secondary copy or other information management operations. For instance, a metabase can dramatically improve the speed with which system 100 can search through and identify data as compared to other approaches that involve scanning an entire file system. Examples of metabases and data classification operations are provided in U.S. Pat. Nos. 7,734,669 and 7,747,579.
Management and Reporting Operations
Certain embodiments leverage the integrated ubiquitous nature of system 100 to provide useful system-wide management and reporting. Operations management can generally include monitoring and managing the health and performance of system 100 by, without limitation, performing error tracking, generating granular storage/performance metrics (e.g., job success/failure information, deduplication efficiency, etc.), generating storage modeling and costing information, and the like. As an example, storage manager 140 or another component in system 100 may analyze traffic patterns and suggest and/or automatically route data to minimize congestion. In some embodiments, the system can generate predictions relating to storage operations or storage operation information. Such predictions, which may be based on a trending analysis, may predict various network operations or resource usage, such as network traffic levels, storage media use, use of bandwidth of communication links, use of media agent components, etc. Further examples of traffic analysis, trend analysis, prediction generation, and the like are described in U.S. Pat. No. 7,343,453.
In some configurations having a hierarchy of storage operation cells, a master storage manager 140 may track the status of subordinate cells, such as the status of jobs, system components, system resources, and other items, by communicating with storage managers 140 (or other components) in the respective storage operation cells. Moreover, the master storage manager 140 may also track status by receiving periodic status updates from the storage managers 140 (or other components) in the respective cells regarding jobs, system components, system resources, and other items. In some embodiments, a master storage manager 140 may store status information and other information regarding its associated storage operation cells and other system information in its management database 146 and/or index 150 (or in another location). The master storage manager 140 or other component may also determine whether certain storage-related or other criteria are satisfied, and may perform an action or trigger event (e.g., data migration) in response to the criteria being satisfied, such as where a storage threshold is met for a particular volume, or where inadequate protection exists for certain data. For instance, data from one or more storage operation cells is used to dynamically and automatically mitigate recognized risks, and/or to advise users of risks or suggest actions to mitigate these risks. For example, an information management policy may specify certain requirements (e.g., that a storage device should maintain a certain amount of free space, that secondary copies should occur at a particular interval, that data should be aged and migrated to other storage after a particular period, that data on a secondary volume should always have a certain level of availability and be restorable within a given time period, that data on a secondary volume may be mirrored or otherwise migrated to a specified number of other volumes, etc.). If a risk condition or other criterion is triggered, the system may notify the user of these conditions and may suggest (or automatically implement) a mitigation action to address the risk. For example, the system may indicate that data from a primary copy 112 should be migrated to a secondary storage device 108 to free up space on primary storage device 104. Examples of the use of risk factors and other triggering criteria are described in U.S. Pat. No. 7,343,453.
In some embodiments, system 100 may also determine whether a metric or other indication satisfies particular storage criteria sufficient to perform an action. For example, a storage policy or other definition might indicate that a storage manager 140 should initiate a particular action if a storage metric or other indication drops below or otherwise fails to satisfy specified criteria such as a threshold of data protection. In some embodiments, risk factors may be quantified into certain measurable service or risk levels. For example, certain applications and associated data may be considered to be more important relative to other data and services. Financial compliance data, for example, may be of greater importance than marketing materials, etc. Network administrators may assign priority values or “weights” to certain data and/or applications corresponding to the relative importance. The level of compliance of secondary copy operations specified for these applications may also be assigned a certain value. Thus, the health, impact, and overall importance of a service may be determined, such as by measuring the compliance value and calculating the product of the priority value and the compliance value to determine the “service level” and comparing it to certain operational thresholds to determine whether it is acceptable. Further examples of the service level determination are provided in U.S. Pat. No. 7,343,453.
System 100 may additionally calculate data costing and data availability associated with information management operation cells. For instance, data received from a cell may be used in conjunction with hardware-related information and other information about system elements to determine the cost of storage and/or the availability of particular data. Exemplary information generated could include how fast a particular department is using up available storage space, how long data would take to recover over a particular pathway from a particular secondary storage device, costs over time, etc. Moreover, in some embodiments, such information may be used to determine or predict the overall cost associated with the storage of certain information. The cost associated with hosting a certain application may be based, at least in part, on the type of media on which the data resides, for example. Storage devices may be assigned to a particular cost categories, for example. Further examples of costing techniques are described in U.S. Pat. No. 7,343,453.
Any of the above types of information (e.g., information related to trending, predictions, job, cell or component status, risk, service level, costing, etc.) can generally be provided to users via user interface 158 in a single integrated view or console (not shown). Report types may include: scheduling, event management, media management and data aging. Available reports may also include backup history, data aging history, auxiliary copy history, job history, library and drive, media in library, restore history, and storage policy, etc., without limitation. Such reports may be specified and created at a certain point in time as a system analysis, forecasting, or provisioning tool. Integrated reports may also be generated that illustrate storage and performance metrics, risks and storage costing information. Moreover, users may create their own reports based on specific needs. User interface 158 can include an option to graphically depict the various components in the system using appropriate icons. As one example, user interface 158 may provide a graphical depiction of primary storage devices 104, secondary storage devices 108, data agents 142 and/or media agents 144, and their relationship to one another in system 100.
In general, the operations management functionality of system 100 can facilitate planning and decision-making. For example, in some embodiments, a user may view the status of some or all jobs as well as the status of each component of information management system 100. Users may then plan and make decisions based on this data. For instance, a user may view high-level information regarding secondary copy operations for system 100, such as job status, component status, resource status (e.g., communication pathways, etc.), and other information. The user may also drill down or use other means to obtain more detailed information regarding a particular component, job, or the like. Further examples are provided in U.S. Pat. No. 7,343,453.
System 100 can also be configured to perform system-wide e-discovery operations in some embodiments. In general, e-discovery operations provide a unified collection and search capability for data in the system, such as data stored in secondary storage devices 108 (e.g., backups, archives, or other secondary copies 116). For example, system 100 may construct and maintain a virtual repository for data stored in system 100 that is integrated across source applications 110, different storage device types, etc. According to some embodiments, e-discovery utilizes other techniques described herein, such as data classification and/or content indexing.
Information Management Policies
An information management policy 148 can include a data structure or other information source that specifies a set of parameters (e.g., criteria and rules) associated with secondary copy and/or other information management operations.
One type of information management policy 148 is a “storage policy.” According to certain embodiments, a storage policy generally comprises a data structure or other information source that defines (or includes information sufficient to determine) a set of preferences or other criteria for performing information management operations. Storage policies can include one or more of the following: (1) what data will be associated with the storage policy, e.g., subclient; (2) a destination to which the data will be stored; (3) datapath information specifying how the data will be communicated to the destination; (4) the type of secondary copy operation to be performed; and (5) retention information specifying how long the data will be retained at the destination (see, e.g.,
A storage policy can define where data is stored by specifying a target or destination storage device (or group of storage devices). For instance, where the secondary storage device 108 includes a group of disk libraries, the storage policy may specify a particular disk library for storing the subclients associated with the policy. As another example, where the secondary storage devices 108 include one or more tape libraries, the storage policy may specify a particular tape library for storing the subclients associated with the storage policy, and may also specify a drive pool and a tape pool defining a group of tape drives and a group of tapes, respectively, for use in storing the subclient data. While information in the storage policy can be statically assigned in some cases, some or all of the information in the storage policy can also be dynamically determined based on criteria set forth in the storage policy. For instance, based on such criteria, a particular destination storage device(s) or other parameter of the storage policy may be determined based on characteristics associated with the data involved in a particular secondary copy operation, device availability (e.g., availability of a secondary storage device 108 or a media agent 144), network status and conditions (e.g., identified bottlenecks), user credentials, and the like.
Datapath information can also be included in the storage policy. For instance, the storage policy may specify network pathways and components to utilize when moving the data to the destination storage device(s). In some embodiments, the storage policy specifies one or more media agents 144 for conveying data associated with the storage policy between the source and destination. A storage policy can also specify the type(s) of associated operations, such as backup, archive, snapshot, auxiliary copy, or the like. Furthermore, retention parameters can specify how long the resulting secondary copies 116 will be kept (e.g., a number of days, months, years, etc.), perhaps depending on organizational needs and/or compliance criteria.
When adding a new client computing device 102, administrators can manually configure information management policies 148 and/or other settings, e.g., via user interface 158. However, this can be an involved process resulting in delays, and it may be desirable to begin data protection operations quickly, without awaiting human intervention. Thus, in some embodiments, system 100 automatically applies a default configuration to client computing device 102. As one example, when one or more data agent(s) 142 are installed on a client computing device 102, the installation script may register the client computing device 102 with storage manager 140, which in turn applies the default configuration to the new client computing device 102. In this manner, data protection operations can begin substantially immediately. The default configuration can include a default storage policy, for example, and can specify any appropriate information sufficient to begin data protection operations. This can include a type of data protection operation, scheduling information, a target secondary storage device 108, data path information (e.g., a particular media agent 144), and the like.
Another type of information management policy 148 is a “scheduling policy,” which specifies when and how often to perform operations. Scheduling parameters may specify with what frequency (e.g., hourly, weekly, daily, event-based, etc.) or under what triggering conditions secondary copy or other information management operations are to take place. Scheduling policies in some cases are associated with particular components, such as a subclient, client computing device 102, and the like.
Another type of information management policy 148 is an “audit policy” (or “security policy”), which comprises preferences, rules and/or criteria that protect sensitive data in system 100. For example, an audit policy may define “sensitive objects” which are files or data objects that contain particular keywords (e.g., “confidential,” or “privileged”) and/or are associated with particular keywords (e.g., in metadata) or particular flags (e.g., in metadata identifying a document or email as personal, confidential, etc.). An audit policy may further specify rules for handling sensitive objects. As an example, an audit policy may require that a reviewer approve the transfer of any sensitive objects to a cloud storage site, and that if approval is denied for a particular sensitive object, the sensitive object should be transferred to a local primary storage device 104 instead. To facilitate this approval, the audit policy may further specify how a secondary storage computing device 106 or other system component should notify a reviewer that a sensitive object is slated for transfer.
Another type of information management policy 148 is a “provisioning policy,” which can include preferences, priorities, rules, and/or criteria that specify how client computing devices 102 (or groups thereof) may utilize system resources, such as available storage on cloud storage and/or network bandwidth. A provisioning policy specifies, for example, data quotas for particular client computing devices 102 (e.g., a number of gigabytes that can be stored monthly, quarterly or annually). Storage manager 140 or other components may enforce the provisioning policy. For instance, media agents 144 may enforce the policy when transferring data to secondary storage devices 108. If a client computing device 102 exceeds a quota, a budget for the client computing device 102 (or associated department) may be adjusted accordingly or an alert may trigger.
While the above types of information management policies 148 are described as separate policies, one or more of these can be generally combined into a single information management policy 148. For instance, a storage policy may also include or otherwise be associated with one or more scheduling, audit, or provisioning policies or operational parameters thereof. Moreover, while storage policies are typically associated with moving and storing data, other policies may be associated with other types of information management operations. The following is a non-exhaustive list of items that information management policies 148 may specify:
Information management policies 148 can additionally specify or depend on historical or current criteria that may be used to determine which rules to apply to a particular data object, system component, or information management operation, such as:
Exemplary Storage Policy and Secondary Copy Operations
As indicated by the dashed box, the second media agent 144B and tape library 1088 are “off-site,” and may be remotely located from the other components in system 100 (e.g., in a different city, office building, etc.). Indeed, “off-site” may refer to a magnetic tape located in remote storage, which must be manually retrieved and loaded into a tape drive to be read. In this manner, information stored on the tape library 108B may provide protection in the event of a disaster or other failure at the main site(s) where data is stored.
The file system subclient 112A in certain embodiments generally comprises information generated by the file system and/or operating system of client computing device 102, and can include, for example, file system data (e.g., regular files, file tables, mount points, etc.), operating system data (e.g., registries, event logs, etc.), and the like. The e-mail subclient 1128 can include data generated by an e-mail application operating on client computing device 102, e.g., mailbox information, folder information, emails, attachments, associated database information, and the like. As described above, the subclients can be logical containers, and the data included in the corresponding primary data 112A and 112B may or may not be stored contiguously.
The exemplary storage policy 148A includes backup copy preferences or rule set 160, disaster recovery copy preferences or rule set 162, and compliance copy preferences or rule set 164. Backup copy rule set 160 specifies that it is associated with file system subclient 166 and email subclient 168. Each of subclients 166 and 168 are associated with the particular client computing device 102. Backup copy rule set 160 further specifies that the backup operation will be written to disk library 108A and designates a particular media agent 144A to convey the data to disk library 108A. Finally, backup copy rule set 160 specifies that backup copies created according to rule set 160 are scheduled to be generated hourly and are to be retained for 30 days. In some other embodiments, scheduling information is not included in storage policy 148A and is instead specified by a separate scheduling policy.
Disaster recovery copy rule set 162 is associated with the same two subclients 166 and 168. However, disaster recovery copy rule set 162 is associated with tape library 108B, unlike backup copy rule set 160. Moreover, disaster recovery copy rule set 162 specifies that a different media agent, namely 144B, will convey data to tape library 108B. Disaster recovery copies created according to rule set 162 will be retained for 60 days and will be generated daily. Disaster recovery copies generated according to disaster recovery copy rule set 162 can provide protection in the event of a disaster or other catastrophic data loss that would affect the backup copy 116A maintained on disk library 108A.
Compliance copy rule set 164 is only associated with the email subclient 168, and not the file system subclient 166. Compliance copies generated according to compliance copy rule set 164 will therefore not include primary data 112A from the file system subclient 166. For instance, the organization may be under an obligation to store and maintain copies of email data for a particular period of time (e.g., 10 years) to comply with state or federal regulations, while similar regulations do not apply to file system data. Compliance copy rule set 164 is associated with the same tape library 108B and media agent 144B as disaster recovery copy rule set 162, although a different storage device or media agent could be used in other embodiments. Finally, compliance copy rule set 164 specifies that the copies it governs will be generated quarterly and retained for 10 years.
Secondary Copy Jobs
A logical grouping of secondary copy operations governed by a rule set and being initiated at a point in time may be referred to as a “secondary copy job” (and sometimes may be called a “backup job,” even though it is not necessarily limited to creating only backup copies). Secondary copy jobs may be initiated on demand as well. Steps 1-9 below illustrate three secondary copy jobs based on storage policy 148A.
Referring to
At step 2, file system data agent 142A and email data agent 142B on client computing device 102 respond to instructions from storage manager 140 by accessing and processing the respective subclient primary data 112A and 112B involved in the backup copy operation, which can be found in primary storage device 104. Because the secondary copy operation is a backup copy operation, the data agent(s) 142A, 142B may format the data into a backup format or otherwise process the data suitable for a backup copy.
At step 3, client computing device 102 communicates the processed file system data (e.g., using file system data agent 142A) and the processed email data (e.g., using email data agent 142B) to the first media agent 144A according to backup copy rule set 160, as directed by storage manager 140. Storage manager 140 may further keep a record in management database 146 of the association between media agent 144A and one or more of: client computing device 102, file system subclient 112A, file system data agent 142A, email subclient 112B, email data agent 142B, and/or backup copy 116A.
The target media agent 144A receives the data-agent-processed data from client computing device 102, and at step 4 generates and conveys backup copy 116A to disk library 108A to be stored as backup copy 116A, again at the direction of storage manager 140 and according to backup copy rule set 160. Media agent 144A can also update its index 153 to include data and/or metadata related to backup copy 116A, such as information indicating where the backup copy 116A resides on disk library 108A, where the email copy resides, where the file system copy resides, data and metadata for cache retrieval, etc. Storage manager 140 may similarly update its index 150 to include information relating to the secondary copy operation, such as information relating to the type of operation, a physical location associated with one or more copies created by the operation, the time the operation was performed, status information relating to the operation, the components involved in the operation, and the like. In some cases, storage manager 140 may update its index 150 to include some or all of the information stored in index 153 of media agent 144A. At this point, the backup job may be considered complete. After the 30-day retention period expires, storage manager 140 instructs media agent 144A to delete backup copy 116A from disk library 108A and indexes 150 and/or 153 are updated accordingly.
At step 5, storage manager 140 initiates another backup job for a disaster recovery copy according to the disaster recovery rule set 162. Illustratively this includes steps 5-7 occurring daily for creating disaster recovery copy 1168. Illustratively, and by way of illustrating the scalable aspects and off-loading principles embedded in system 100, disaster recovery copy 1168 is based on backup copy 116A and not on primary data 112A and 1128.
At step 6, illustratively based on instructions received from storage manager 140 at step 5, the specified media agent 1448 retrieves the most recent backup copy 116A from disk library 108A.
At step 7, again at the direction of storage manager 140 and as specified in disaster recovery copy rule set 162, media agent 144B uses the retrieved data to create a disaster recovery copy 1168 and store it to tape library 1088. In some cases, disaster recovery copy 1168 is a direct, mirror copy of backup copy 116A, and remains in the backup format. In other embodiments, disaster recovery copy 1168 may be further compressed or encrypted, or may be generated in some other manner, such as by using primary data 112A and 1128 from primary storage device 104 as sources. The disaster recovery copy operation is initiated once a day and disaster recovery copies 1168 are deleted after 60 days; indexes 153 and/or 150 are updated accordingly when/after each information management operation is executed and/or completed. The present backup job may be considered completed.
At step 8, storage manager 140 initiates another backup job according to compliance rule set 164, which performs steps 8-9 quarterly to create compliance copy 116C. For instance, storage manager 140 instructs media agent 144B to create compliance copy 116C on tape library 1088, as specified in the compliance copy rule set 164.
At step 9 in the example, compliance copy 116C is generated using disaster recovery copy 1168 as the source. This is efficient, because disaster recovery copy resides on the same secondary storage device and thus no network resources are required to move the data. In other embodiments, compliance copy 116C is instead generated using primary data 1128 corresponding to the email subclient or using backup copy 116A from disk library 108A as source data. As specified in the illustrated example, compliance copies 116C are created quarterly, and are deleted after ten years, and indexes 153 and/or 150 are kept up-to-date accordingly.
Exemplary Applications of Storage Policies—Information Governance Policies and Classification
Again referring to
Information governance policies allow administrators to obtain different perspectives on an organization's online and offline data, without the need for a dedicated data silo created solely for each different viewpoint. As described previously, the data storage systems herein build an index that reflects the contents of a distributed data set that spans numerous clients and storage devices, including both primary data and secondary copies, and online and offline copies. An organization may apply multiple information governance policies in a top-down manner over that unified data set and indexing schema in order to view and manipulate the data set through different lenses, each of which is adapted to a particular compliance or business goal. Thus, for example, by applying an e-discovery policy and a Sarbanes-Oxley policy, two different groups of users in an organization can conduct two very different analyses of the same underlying physical set of data/copies, which may be distributed throughout the information management system.
An information governance policy may comprise a classification policy, which defines a taxonomy of classification terms or tags relevant to a compliance task and/or business objective. A classification policy may also associate a defined tag with a classification rule. A classification rule defines a particular combination of criteria, such as users who have created, accessed or modified a document or data object; file or application types; content or metadata keywords; clients or storage locations; dates of data creation and/or access; review status or other status within a workflow (e.g., reviewed or un-reviewed); modification times or types of modifications; and/or any other data attributes in any combination, without limitation. A classification rule may also be defined using other classification tags in the taxonomy. The various criteria used to define a classification rule may be combined in any suitable fashion, for example, via Boolean operators, to define a complex classification rule. As an example, an e-discovery classification policy might define a classification tag “privileged” that is associated with documents or data objects that (1) were created or modified by legal department staff, or (2) were sent to or received from outside counsel via email, or (3) contain one of the following keywords: “privileged” or “attorney” or “counsel,” or other like terms. Accordingly, all these documents or data objects will be classified as “privileged.”
One specific type of classification tag, which may be added to an index at the time of indexing, is an “entity tag.” An entity tag may be, for example, any content that matches a defined data mask format. Examples of entity tags might include, e.g., social security numbers (e.g., any numerical content matching the formatting mask XXX-XX-XXXX), credit card numbers (e.g., content having a 13-16 digit string of numbers), SKU numbers, product numbers, etc. A user may define a classification policy by indicating criteria, parameters or descriptors of the policy via a graphical user interface, such as a form or page with fields to be filled in, pull-down menus or entries allowing one or more of several options to be selected, buttons, sliders, hypertext links or other known user interface tools for receiving user input, etc. For example, a user may define certain entity tags, such as a particular product number or project ID. In some implementations, the classification policy can be implemented using cloud-based techniques. For example, the storage devices may be cloud storage devices, and the storage manager 140 may execute cloud service provider API over a network to classify data stored on cloud storage devices.
Restore Operations from Secondary Copies
While not shown in
As one example, a user may manually initiate a restore of backup copy 116A, e.g., by interacting with user interface 158 of storage manager 140 or with a web-based console with access to system 100. Storage manager 140 may accesses data in its index 150 and/or management database 146 (and/or the respective storage policy 148A) associated with the selected backup copy 116A to identify the appropriate media agent 144A and/or secondary storage device 108A where the secondary copy resides. The user may be presented with a representation (e.g., stub, thumbnail, listing, etc.) and metadata about the selected secondary copy, in order to determine whether this is the appropriate copy to be restored, e.g., date that the original primary data was created. Storage manager 140 will then instruct media agent 144A and an appropriate data agent 142 on the target client computing device 102 to restore secondary copy 116A to primary storage device 104. A media agent may be selected for use in the restore operation based on a load balancing algorithm, an availability based algorithm, or other criteria. The selected media agent, e.g., 144A, retrieves secondary copy 116A from disk library 108A. For instance, media agent 144A may access its index 153 to identify a location of backup copy 116A on disk library 108A, or may access location information residing on disk library 108A itself.
In some cases a backup copy 116A that was recently created or accessed, may be cached to speed up the restore operation. In such a case, media agent 144A accesses a cached version of backup copy 116A residing in index 153, without having to access disk library 108A for some or all of the data. Once it has retrieved backup copy 116A, the media agent 144A communicates the data to the requesting client computing device 102. Upon receipt, file system data agent 142A and email data agent 142B may unpack (e.g., restore from a backup format to the native application format) the data in backup copy 116A and restore the unpackaged data to primary storage device 104. In general, secondary copies 116 may be restored to the same volume or folder in primary storage device 104 from which the secondary copy was derived; to another storage location or client computing device 102; to shared storage, etc. In some cases, the data may be restored so that it may be used by an application 110 of a different version/vintage from the application that created the original primary data 112.
The formatting and structure of secondary copies 116 can vary depending on the embodiment. In some cases, secondary copies 116 are formatted as a series of logical data units or “chunks” (e.g., 512 MB, 1 GB, 2 GB, 4 GB, or 8 GB chunks). This can facilitate efficient communication and writing to secondary storage devices 108, e.g., according to resource availability. For example, a single secondary copy 116 may be written on a chunk-by-chunk basis to one or more secondary storage devices 108. In some cases, users can select different chunk sizes, e.g., to improve throughput to tape storage devices. Generally, each chunk can include a header and a payload. The payload can include files (or other data units) or subsets thereof included in the chunk, whereas the chunk header generally includes metadata relating to the chunk, some or all of which may be derived from the payload. For example, during a secondary copy operation, media agent 144, storage manager 140, or other component may divide files into chunks and generate headers for each chunk by processing the files. Headers can include a variety of information such as file and/or volume identifier(s), offset(s), and/or other information associated with the payload data items, a chunk sequence number, etc. Importantly, in addition to being stored with secondary copy 116 on secondary storage device 108, chunk headers can also be stored to index 153 of the associated media agent(s) 144 and/or to index 150 associated with storage manager 140. This can be useful for providing faster processing of secondary copies 116 during browsing, restores, or other operations. In some cases, once a chunk is successfully transferred to a secondary storage device 108, the secondary storage device 108 returns an indication of receipt, e.g., to media agent 144 and/or storage manager 140, which may update their respective indexes 153, 150 accordingly. During restore, chunks may be processed (e.g., by media agent 144) according to the information in the chunk header to reassemble the files.
Data can also be communicated within system 100 in data channels that connect client computing devices 102 to secondary storage devices 108. These data channels can be referred to as “data streams,” and multiple data streams can be employed to parallelize an information management operation, improving data transfer rate, among other advantages. Example data formatting techniques including techniques involving data streaming, chunking, and the use of other data structures in creating secondary copies are described in U.S. Pat. Nos. 7,315,923, 8,156,086, and 8,578,120.
Referring to
As an example, data structures 180 illustrated in
If the operating system of the secondary storage computing device 106 on which media agent 144 operates supports sparse files, then when media agent 144 creates container files 190/191/193, it can create them as sparse files. A sparse file is a type of file that may include empty space (e.g., a sparse file may have real data within it, such as at the beginning of the file and/or at the end of the file, but may also have empty space in it that is not storing actual data, such as a contiguous range of bytes all having a value of zero). Having container files 190/191/193 be sparse files allows media agent 144 to free up space in container files 190/191/193 when blocks of data in container files 190/191/193 no longer need to be stored on the storage devices. In some examples, media agent 144 creates a new container file 190/191/193 when a container file 190/191/193 either includes 100 blocks of data or when the size of the container file 190 exceeds 50 MB. In other examples, media agent 144 creates a new container file 190/191/193 when a container file 190/191/193 satisfies other criteria (e.g., it contains from approx. 100 to approx. 1000 blocks or when its size exceeds approximately 50 MB to 1 GB). In some cases, a file on which a secondary copy operation is performed may comprise a large number of data blocks. For example, a 100 MB file may comprise 400 data blocks of size 256 KB. If such a file is to be stored, its data blocks may span more than one container file, or even more than one chunk folder. As another example, a database file of 20 GB may comprise over 40,000 data blocks of size 512 KB. If such a database file is to be stored, its data blocks will likely span multiple container files, multiple chunk folders, and potentially multiple volume folders. Restoring such files may require accessing multiple container files, chunk folders, and/or volume folders to obtain the requisite data blocks.
There is an increased demand to off-load resource intensive information management tasks (e.g., data replication tasks) away from production devices (e.g., physical or virtual client computing devices) in order to maximize production efficiency. At the same time, enterprises expect access to readily-available up-to-date recovery copies in the event of failure, with little or no production downtime.
The synchronization can be achieved by generally applying an ongoing stream of incremental backups from the source subsystem 201 to the destination subsystem 203, such as according to what can be referred to as an “incremental forever” approach.
As shown, the data can be copied from source to destination in an incremental fashion, such that only changed blocks are transmitted, and in some cases multiple incremental backups are consolidated at the source so that only the most current changed blocks are transmitted to and applied at the destination. An example of live synchronization of virtual machines using the “incremental forever” approach is found in U.S. Patent Application No. 62/265,339 entitled “Live Synchronization and Management of Virtual Machines across Computing and Virtualization Platforms and Using Live Synchronization to Support Disaster Recovery.” Moreover, a deduplicated copy can be employed to further reduce network traffic from source to destination. For instance, the system can utilize the deduplicated copy techniques described in U.S. Pat. No. 9,239,687, entitled “Systems and Methods for Retaining and Using Data Block Signatures in Data Protection Operations.”
At step 4, destination media agent(s) 244b write the received backup/secondary copy data to the destination secondary storage device(s) 208b. At step 5, the synchronization is completed when the destination media agent(s) and destination data agent(s) 242b restore the backup/secondary copy data to the destination client computing device(s) 202b. The destination client computing device(s) 202b may be kept “warm” awaiting activation in case failure is detected at the source. This synchronization/replication process can incorporate the techniques described in U.S. patent application Ser. No. 14/721,971, entitled “Replication Using Deduplicated Secondary Copy Data.”
Where the incremental backups are applied on a frequent, on-going basis, the synchronized copies can be viewed as mirror or replication copies. Moreover, by applying the incremental backups to the destination site 203 using backup or other secondary copy data, the production site 201 is not burdened with the synchronization operations. Because the destination site 203 can be maintained in a synchronized “warm” state, the downtime for switching over from the production site 201 to the destination site 203 is substantially less than with a typical restore from secondary storage. Thus, the production site 201 may flexibly and efficiently fail over, with minimal downtime and with relatively up-to-date data, to a destination site 203, such as a cloud-based failover site. The destination site 203 can later be reverse synchronized back to the production site 201, such as after repairs have been implemented or after the failure has passed.
Integrating with the Cloud Using File System Protocols
Given the ubiquity of cloud computing, it can be increasingly useful to provide data protection and other information management services in a scalable, transparent, and highly plug-able fashion.
Where NFS is used, for example, secondary storage subsystem 218 allocates an NFS network path to the client computing device 202 or to one or more target applications 210 running on client computing device 202. During a backup or other secondary copy operation, the client computing device 202 mounts the designated NFS path and writes data to that NFS path. The NFS path may be obtained from NFS path data 215 stored locally at the client computing device 202, and which may be a copy of or otherwise derived from NFS path data 219 stored in the secondary storage subsystem 218.
Write requests issued by client computing device(s) 202 are received by data agent 242 in secondary storage subsystem 218, which translates the requests and works in conjunction with media agent 244 to process and write data to a secondary storage device(s) 208, thereby creating a backup or other secondary copy. Storage manager 240 can include a pseudo-client manager 217, which coordinates the process by, among other things, communicating information relating to client computing device 202 and application 210 (e.g., application type, client computing device identifier, etc.) to data agent 242, obtaining appropriate NFS path data from the data agent 242 (e.g., NFS path information), and delivering such data to client computing device 202.
Conversely, during a restore or recovery operation client computing device 202 reads from the designated NFS network path, and the read request is translated by data agent 242. The data agent 242 then works with media agent 244 to retrieve, re-process (e.g., re-hydrate, decompress, decrypt), and forward the requested data to client computing device 202 using NFS.
By moving specialized software associated with system 200 such as data agent 242 off the client computing devices 202, the illustrative architecture effectively decouples the client computing devices 202 from the installed components of system 200, improving both scalability and plug-ability of system 200. Indeed, the secondary storage subsystem 218 in such environments can be treated simply as a read/write NFS target for primary storage subsystem 217, without the need for information management software to be installed on client computing devices 202. As one example, an enterprise implementing a cloud production computing environment can add VM client computing devices 202 without installing and configuring specialized information management software on these VMs. Rather, backups and restores are achieved transparently, where the new VMs simply write to and read from the designated NFS path. An example of integrating with the cloud using file system protocols or so-called “infinite backup” using NFS share is found in U.S. Patent Application No. 62/294,920, entitled “Data Protection Operations Based on Network Path Information.” Examples of improved data restoration scenarios based on network-path information, including using stored backups effectively as primary data sources, may be found in U.S. Patent Application No. 62/297,057, entitled “Data Restoration Operations Based on Network Path Information.”
Enterprises are seeing explosive data growth in recent years, often from various applications running in geographically distributed locations.
The illustrated system 200 includes a grid 245 of media agents 244 logically organized into a control tier 231 and a secondary or storage tier 233. Media agents assigned to the storage tier 233 can be configured to manage a secondary storage pool 208 as a deduplication store, and be configured to receive client write and read requests from the primary storage subsystem 217, and direct those requests to the secondary tier 233 for servicing. For instance, media agents CMA1-CMA3 in the control tier 231 maintain and consult one or more deduplication databases 247, which can include deduplication information (e.g., data block hashes, data block links, file containers for deduplicated files, etc.) sufficient to read deduplicated files from secondary storage pool 208 and write deduplicated files to secondary storage pool 208. For instance, system 200 can incorporate any of the deduplication systems and methods shown and described in U.S. Pat. No. 9,020,900, entitled “Distributed Deduplicated Storage System,” and U.S. Pat. Pub. No. 2014/0201170, entitled “High Availability Distributed Deduplicated Storage System.”
Media agents SMA1-SMA6 assigned to the secondary tier 233 receive write and read requests from media agents CMA1-CMA3 in control tier 231, and access secondary storage pool 208 to service those requests. Media agents CMA1-CMA3 in control tier 231 can also communicate with secondary storage pool 208, and may execute read and write requests themselves (e.g., in response to requests from other control media agents CMA1-CMA3) in addition to issuing requests to media agents in secondary tier 233. Moreover, while shown as separate from the secondary storage pool 208, deduplication database(s) 247 can in some cases reside in storage devices in secondary storage pool 208.
As shown, each of the media agents 244 (e.g., CMA1-CMA3, SMA1-SMA6, etc.) in grid 245 can be allocated a corresponding dedicated partition 251A-2511, respectively, in secondary storage pool 208. Each partition 251 can include a first portion 253 containing data associated with (e.g., stored by) media agent 244 corresponding to the respective partition 251. System 200 can also implement a desired level of replication, thereby providing redundancy in the event of a failure of a media agent 244 in grid 245. Along these lines, each partition 251 can further include a second portion 255 storing one or more replication copies of the data associated with one or more other media agents 244 in the grid.
System 200 can also be configured to allow for seamless addition of media agents 244 to grid 245 via automatic configuration. As one illustrative example, a storage manager (not shown) or other appropriate component may determine that it is appropriate to add an additional node to control tier 231, and perform some or all of the following: (i) assess the capabilities of a newly added or otherwise available computing device as satisfying a minimum criteria to be configured as or hosting a media agent in control tier 231; (ii) confirm that a sufficient amount of the appropriate type of storage exists to support an additional node in control tier 231 (e.g., enough disk drive capacity exists in storage pool 208 to support an additional deduplication database 247); (iii) install appropriate media agent software on the computing device and configure the computing device according to a pre-determined template; (iv) establish a partition 251 in the storage pool 208 dedicated to the newly established media agent 244; and (v) build any appropriate data structures (e.g., an instance of deduplication database 247). An example of highly scalable managed data pool architecture or so-called web-scale architecture for storage and data management is found in U.S. Patent Application No. 62/273,286 entitled “Redundant and Robust Distributed Deduplication Data Storage System.”
The embodiments and components thereof disclosed in
The worker nodes 304A-C and/or the coordinating worker node 318 may be implemented as one or more secondary storage computing devices. For example, the worker nodes 304A-C and/or the coordinating worker node 318 may be implemented as a secondary storage computing device 106 and may be configured to perform the various functionalities previously discussed with regard to the secondary storage computing device 106.
Furthermore, the coordinating worker node 318 may be configured to coordinate the storage and/or transfer operations for each of the worker nodes 304A-C. In one embodiment, the coordinating worker node 318 is configured to respond to messages and/or communications from the worker nodes 304A-C as to whether extents of the client computing device 310 have been successfully backed up, and to instruct the client computing device 310 which of the worker nodes 304A-C are to receive which extents. In the event that one or more extents have not been successfully backed up, the coordinator 320 is configured to instruct the client computing device 310 how to handle the failed backup, and configured to instruct the worker nodes 304A-C to remove extents associated with the failed backup of the extent (e.g., to prevent incomplete backups). The coordinator 320 may be an application or software written in one or more computing programming and/or scripting languages, and execute via one or more processors of the coordinating worker node 318.
In addition, the coordinating worker node 318 includes distribution logic 322 that instructs or informs the client computing device 310 which of the worker nodes 304A-C are to receive which extents and/or which files of the primary data source 314. Where the information management system 302 includes multiple client computing devices (not shown), the distribution logic 322 may assign specific worker nodes to specific client computing devices. The distribution logic 322 may reside on one or more computer-readable mediums in communication with the coordinating worker node 318, and may be written in one or more computer programming and/or scripting languages including, but not limited to, C, C++, Java, Perl, Python, or any other such computer programming and/or scripting language now known or later developed.
Each of the worker nodes 304A-C are configured to receive and/or store one or more extents sent by the client computing device 310. Accordingly, each of the worker nodes 304A-C may be in communication with a secondary storage device (not shown in
To manage the secondary storage device(s), each worker node 304A-304C may include a media agent 306A-306C. The media agents 306A-C may be implemented similarly to the media agent 144 as illustrated in
After the worker nodes 304B-304C store the one or more extents in the associated secondary storage device 506-508, the worker nodes 304B-304C may communicate their respective log files 324B-324C to the indexing media agent node 304A for indexing the metadata contained in the log files 324B-324C into the media agent index 308A. The indexing media agent node 304A may then index the metadata contained within the log files 324B-324C into the media agent index 308A. The indexing media agent node 304A may also index its own log file 324A into the media agent index 308A. The nodes 304A-304C may then delete their respective log files 324A-324C or may keep the log files 324A-324C until a predetermined condition has been met (e.g., the log files 324A-324C meet or exceed a predetermined size, a predetermined age, have a predetermined number of entries, and so forth). As discussed below, the indexing media agent node 304A may then use the metadata indexed into the media agent index 308A to restore one or more files from the secondary storage devices 504-508.
Although the worker node 304A may be designated as the indexing media agent node 304A, the worker nodes 304B-304C may be designated or assigned as the indexing media agent. For example, if the worker node 304A should experience a failure or outage, the storage manager 140, or other administrator, may designate the worker node 304B or the worker node 304C as the indexing media agent, where the designated node assumes the duties of the prior indexing media agent node. When the prior indexing media agent node 304A resumes normal functions or is placed back into active duty, the information stored in the designated node may be synchronized with the media agent index 308A, and the indexing media agent node 304A may resume its normal duties.
The storage manager 140, the coordinating worker node 318, and/or the worker nodes 304A-C are in communication with a client computing device 310, where the client computing device 310 includes a data agent 312 and a primary data source 314. The storage manager 140, the coordinating worker node 318, and/or the worker nodes 304A-C may communicate with the client computing device 310 via a network 316. The network 316 may include one or more types of networks including, but not limited to, the Internet, a WAN, a LAN, a SAN, a virtual private network (VPN), a token ring or TCP/IP based network, an intranet network, a point-to-point link, a cellular network, a wireless data transmission system, a two-way cable system, an interactive kiosk network, a satellite network, a broadband network, a baseband network, a neural network, a mesh network, an ad hoc network, other appropriate computer or telecommunications networks, combinations of the same or the like.
In one embodiment, the client computing device 310 is implemented similarly to the client computing device 102. That is, the client computing device 310 may be a workstation, personal computer, desktop computer, or another type of generally fixed computing system such as a mainframe computer, server, or minicomputer. The client computing device 310 may further be implemented as a mobile or portable computing device, such as a laptop, tablet computer, personal data assistant, mobile phone (such as a smartphone), or other mobile or portable computing devices such as an embedded computer, set top box, vehicle-mounted device, wearable computer, etc.
The client computing device 310 also includes a data agent 312 and a primary data source 314. The data agent 312 may be implemented similarly to the data agent 142 and may include similar functionalities to the data agent 142. In addition, the data agent 312 may be configured to perform one or more functions or operations in support of concurrently transferring one or more extents of one or more extent-eligible files. As discussed below, the data agent 312 may be configured to perform scanning of the primary data source 314 for extent-eligible files, determining the extents for identified extent-eligible files, backing-up the extent-eligible files to one or more of the worker nodes 304A-C, and performing a restoration operation from one or more of the worker nodes 304A-C in response to an instruction from the storage manager 140.
The primary data source 314 is configured to store and/or include primary data of the client computing device 310. The primary data source 314 may be implemented similarly as the primary storage device 104 and may include, but is not limited to, non-volatile memory storage devices, such as a hard disk, magnetic tape, optical disc, a sold-state drive, a flash-drive, and other such non-volatile memory storage devices.
Initially, the data agent 312 may scan for files to identify files for backup. For example, the data agent 312 may identify files for backup based on one or more criterion, such as where a file has changed since its last backup, where a file has not been backed up previously, where the last backup date of a particular file is older than a time threshold (e.g., a file has not been backed up in the last 24 hours, last two days, last week, etc.), and other such criterion or combinations thereof. For each file that the data agent 312 has identified for backup, the data agent 312 may determine which of those files are extent-eligible.
Identifying files as being extent-eligible improves upon prior backup methodologies because it ensures that the data agent 312 determines extents for those files that meet certain criteria. Having to determine extents for all of the files in the primary data source 314 may use too many computer resources, and may result in decreased performance of the client computing device 310 during the backup phase of backing up the primary data source 314. Thus, by implementing a scanning phase prior to the backup phase, the disclosed systems and methods ensure that only certain files are identified as being extent eligible, which results in improved performance by the client computing device 310 during the backup phase of backing up the primary data source 314.
In identifying whether a file is extent-eligible, the primary data source 314, the data agent 312 may be configured to scan production or live data of the primary data source 314. Where the primary data source 314 is a disk, the data agent 312 may be configured to scan one or more volumes of the disk to identify extent eligible files. In one embodiment, the data agent 312 determines whether a file is extent eligible by comparing a file size of the file with a predetermined file size threshold. The predetermined file size threshold may be measured in megabytes (MBs), gigabytes (GBs), terabytes (TBs), and so forth. Examples of the predetermined file size threshold include, but are not limited to, one GB, two GBs, 50 GBs, 1 TB, and so forth.
The client computing device 310 may maintain a backup list 404 of files to be backed-up to one or more of the worker nodes 304A-C. In one embodiment, the backup list 404 includes files to be backed-up that are not extent-eligible and those that are extent-eligible. Where a file size of a file of the primary data source 314 meets or exceeds the predetermined file size threshold, the data agent 312 may add a flag or other identifier to the extent-eligible file in the backup list 404. In another embodiment, the backup list 404 only includes those files that are extent-eligible. In yet a further embodiment, the client computing device 310 may maintain two separate lists for files to be backed-up, such as a first list (not shown) that identifies those files that are not extent-eligible and a second list (not shown) that identifies those files that are extent-eligible. Regardless of the implementation (e.g., one list, two lists, multiple lists, etc.), the client computing device 310 tracks which of the files of the primary data source 314 are extent-eligible.
For purposes of the example shown in
The list 404 of files to be backed-up may be stored in a computer-readable medium (not shown) of the client computing device 310. The list 404 may be implemented as a table within a database, a flat file, a spreadsheet file, or as any other data structure. Furthermore, the list 404 may be written in a markup language, such as the Extensible Markup Language (XML). In some embodiments, the list 404 may be communicated to the storage manager 140, or stored externally from the client computing device 310, and then later retrieved and/or referenced by the data agent 312. The list 404 may also be communicated to the coordinating worker node 318, where the coordinating worker node 318 may reference the list to determine which files have been segmented into extents and stored at one or more of the worker nodes 304A-C.
The list 404 may include one or more entries, where each entry corresponds to a file that is to be backed-up. Furthermore, one or more of the entries may be flagged or identified as a file that is extent-eligible. Each entry may include a path to the file, where the path identifies the disk on which the file resides, a volume within the disk where the file is located, a directory in which the file is stored, and a file name for the file. Furthermore, the list 404 is mutable, where the data agent 312 may add a new file to the list 404 when the data agent 312 determines that the file is to be backed-up, and the data agent 312 may remove a file from the list 404 when the data agent 312 determines that a previously added file does not need to be backed up. Furthermore, the data agent 312 may modify an entry in the list 404 to identify that a file that was not previously extent-eligible is extent-eligible (e.g., the file increased in size). Similarly, the data agent 312 may modify an entry in the list 404 to remove the extent-eligible flag or identifier from an entry where a file is no longer extent-eligible (e.g., the file decreased in size). Modifications to the list 404 may occur during the scanning phase of the client computing device 310 and before a backup operation is performed on the client computing device 310.
After the scanning phase is completed and the extent-eligible files have been identified, the data agent 312 may then wait for an instruction or command from the storage manager 140 to perform a backup of the primary data source 314 of the client computing device 310. During the backup operation of the client computing device 310, the data agent 312 determines the number of extents for each extent-eligible file, and communicates the extents to one or more of the worker nodes 304A-304C in communication with the client computing device 310.
As briefly mentioned previously, an extent is a data structure that includes a portion of an extent-eligible file, and includes data from the extent-eligible file but is less than the entire file. An extent may be a predetermined size that is smaller than the extent-eligible file. For example, an extent may be measured in megabytes, such as four megabytes. Furthermore, the size of an extent may be configurable, and may be configured using the storage manager 140, which then communicates the predetermined size of the extent to the data agent 312. Furthermore, where an information management system 302 includes multiple data agents 312, each data agent 312 may be configured to have the same extent size, or data agents 312 may be configured to have extents of different sizes.
In performing a backup operation on the client computing device 310, the data agent 312 may perform the backup operation on a volume snapshot 408 of a volume of the primary data source 314 or on live data (e.g., not a snapshot) of the primary data source 314. Accordingly, in one embodiment, prior to starting the backup operation, the data agent 312 may instruct whether the operating system or other component of the client computing device 310 can obtain a volume snapshot 408 of the primary data source 314. Where the data agent 312 receives an affirmative response that the client computing device 310 can obtain the volume snapshot 408, the data agent 312 may then instruct the client computing device 310 to obtain the volume snapshot 408. Where the primary data source 314 includes multiple volumes, the client computing device 310 may obtain a volume snapshot for each volume.
Where the client computing device 310 obtains a volume snapshot 408 of a volume of the primary data source 314, the data agent 312 may perform various backup operations on the volume snapshot 408 including determining the number of extents of each extent-eligible file and determining whether an extent-eligible file has changed or has been modified during a transfer of one or more extents. However, there may be instances where the client computing device 310 is unable to obtain a volume snapshot 408 of a volume of the primary data source 314. For example, the client computing device 310 may not support the creation of volume snapshots of the primary data source 314. Where the client computing device 310 is unable to obtain a volume snapshot 408, the data agent 312 may perform one or more of the backup operations on live or production data of the volume of the primary data source 314. Accordingly, the following descriptions may apply to the volume snapshot 408 or the live production data of the primary data source 314, depending on whether the client computing device 310 was able to obtain the volume snapshot 408.
In determining the number of extents for each extent-eligible file, the data agent 312 may create a container file 406 that includes a listing of the extents for the associated extent-eligible file. As with the list 404, the container file 406 may be stored in a computer-readable medium (not shown) of the client computing device 310, or may be stored externally from the client computing device 310. The container file 406 may be implemented as a table within a database, a flat file, a spreadsheet file, or as any other data structure. The container file 406 may also be written in a markup language, such as XML.
The container file 406 may include a plurality of extent entries, where each extent entry corresponds to an extent of an extent-eligible file. An entry in the container file 406 may include a relative or file offset within the extent-eligible file that identifies a starting location for the extent, and then a size of the extent. The relative or file offset identifies the location within the extent-eligible file where data for the extent is obtained. The size of the offset identifies the number of bytes that are included in the extent. In some instances, an entry in the container file 406 includes additional or different information, such as only including the relative or file offset.
Using the examples of the first file 410 and the second file 412, the data agent 312 creates or adds an entry in the list 404 corresponding to the second file 412. In addition, the data agent 312 creates a container file 406 corresponding to the second file 412, where the container file 406 includes a listing of the extents for the second file 412. Where the predetermined file size threshold is 1 GB, the minimum number of extent entries in the container file 406 may be 250. The five segments of the second file 412 in
After determining the extents for each extent-eligible file, the data agent 312 may obtain distribution logic 322 from the coordinating worker node 318. In one embodiment, the distribution logic 322 instructs the data agent 312 where to send the determined extents of the extent-eligible files. The distribution logic 322 may specify which of the worker nodes 304A-C are to receive the determined extents of the extent-eligible files. For distribution logic 322 may specify network paths, secondary storage devices, particular worker nodes 304A-C, or other locations to where the data agent 312 is to send the determined extents of the extent-eligible files. The distribution logic 322 may also specify where the client computing device 310 is to back up files that are not extent-eligible.
The data agent 312 may then back up each of the files identified in the list 404, including extent-eligible files and files that are not extent-eligible. Where the client computing device 310 was able to obtain the volume snapshot 408 of the volume to be backed up, the data agent 312 may perform the backup of the files from the volume snapshot 408. Where the client computing device 310 was unable to obtain the volume snapshot 408, the data agent 312 may perform the backup of the files from a live or production volume of the primary data source 314.
In some instances, an extent-eligible file may change during the backup process. In particular, the extent-eligible file may change in the live or production volume of the primary data source 314. For example, where the extent-eligible file is a large database, changes may be made to the large database during the backup process. Accordingly, the data agent 312 may perform various operations to confirm whether the extent-eligible file has changed during the backup process and, if the data agent 312 determines that the extent-eligible file has changed, the data agent 312 may record the backup for that particular extent-eligible file as having “failed.” The failed extent-eligible file may then be added to a failed file list, which may be processed during the next backup of the client computing device 310, even if the extent-eligible file would not be typically scheduled for backup. Determining whether an extent-eligible file has changed or has been modified may occur regardless of whether the data agent 312 is using the volume snapshot 408 or the live production version of the primary data source 314 for its backup operation.
To expedite the backup operation, the data agent 312 may create a predetermined number of process threads that read data from the extent-eligible file, whether the extent-eligible file is read from the volume snapshot 408 or the live production version of the primary data source 314. For example, the data agent 312 may create four process threads, where each process thread reads from a different portion of the extent-eligible file. The data agent 312 may assign a relative or file offset and a size to read (e.g., measured in bytes) to each process thread. For example, the data agent 312 may read through the container file 406 for a particular extent-eligible file, and assign file offsets to the process threads based on the entries included in the container file 406.
Prior to transferring one or more extents of an extent-eligible file (e.g., the second file 412), the data agent 312 may obtain an identifier that indicates when the extent-eligible file was last modified. For example, the data agent 312 may query the operating system being executed by the client computing device 310 to obtain the last modification time of the particular extent-eligible file. The last modification time of the particular extent-eligible file can inform the data agent 312 whether the particular extent-eligible file changes during the backup process. The initial last modification time that the data agent 312 obtains for a particular extent-eligible file being backed up may be a baseline modification time that the data agent 312 then compares against subsequent modification times that the data agent 312 requests. Where the data agent 312 is backing up the volume of the primary data source 314 from the volume snapshot 408, the data agent 312 may obtain the baseline modification time of the extent-eligible file from the volume snapshot 408, and then compare the baseline modification time against modification times of the extent-eligible file stored in the production or live volume of the primary data source 314. Where the volume snapshot 408 is unavailable or the client computing device 310 is unable to obtain the volume snapshot 408, the baseline modification time may be obtained from the production or live version of the primary data source 314.
Having obtained the last modification time of the particular extent-eligible file, the data agent 312 may begin the backup operation for that particular extent-eligible file. The data agent 312 may first communicate the container file 406 to the coordinating worker node 318 and/or one or more of the worker nodes 304A-C. The coordinator 320 of the coordinating worker node 318 may use the container file 406 to determine whether the assigned worker nodes 304A-C have successfully received all of the extents for the particular extent-eligible file. Similarly, a worker node receiving the extents from the data agent 312 may compare the entries in the container file 406 with the received extents to determine whether the worker node has received all of the extents for an extent-eligible file.
The below example references worker node 304A, but one of ordinary skill in the art will appreciate that the below example may be employed in a distributed computing environment, where different worker nodes (e.g., worker node 304B and/or worker node 304C) receive different extents for the same extent-eligible file. Where a distributed model is employed, the coordinator 320 is configured to maintain a record of which worker nodes 304A-C have stored which extents of a particular extent-eligible file, and may then reference this record during a restore operation of the particular extent-eligible file.
Starting with the first extent, the data agent 312 transmits the first extent to a particular worker node (e.g., worker node 304A). Upon receipt of the extent, the media agent 306A stores the data of the extent in a secondary storage device and updates the media agent index 308A of the worker node 304A with extent metadata. The media agent 306A may index the received extent with extent metadata for later retrieving the extent from the secondary storage device. The extent metadata may include the name of the extent-eligible file associated with the extent, a size of the extent, a logical offset within the extent-eligible file from which the extent was obtained, and a hash value of the extent corresponding to the data of the extent. The extent metadata may also include a hash value for the entirety of the extent-eligible file being backed up. The data agent 312 may obtain various hash values using one or more hashing algorithms, such as SHA-2 hashing algorithms.
Upon receipt of an extent, a worker node may validate that the extent data of the extent was properly received. Accordingly, in one embodiment, the worker node may also hash the extent data of the received data within the extent, and compare the hash value that it obtains with the hash value included in the extent metadata. If the hash values are equal, this indicates that the extent data was not corrupted in the transfer from the client computing device 310 to the worker node. If there is a difference in hash value, this indicates that there is a corruption in the extent data, and that the worker node should not index the extent.
In one embodiment, where the worker node is unable to validate the received the extent, the worker node may communicate a message to the data agent 312 that the data agent 312 should re-send the extent. Accordingly, the data agent 312 may be configured with a predetermined amount of retries for backing-up an extent (e.g., three retries). Where the data agent 312 exceeds the number of retries, the data agent 312 may communicate a message to the worker node that the backup of the extent has failed. In turn, the worker node may communicate a failure message to the coordinating worker node 318, which may then communicate to other worker nodes that are backing up other extents of the extent-eligible file that the extent-eligible file is a “failed” file. In response to the failure message, the worker node and/or other worker nodes may delete or remove extents of the failed extent-eligible file to prevent partial backups of the extent-eligible file. The coordinator may then update a failure database 512 (discussed further below) that the extent-eligible file is a failed file.
As each extent is transferred to their respective worker nodes, the data agent 312 may query the operating system for the last modification time of the extent-eligible file being backed up. The data agent 312 may then compare the most recent last modification time with the baseline modification time to determine whether the two times are different. Where there is a difference in time, this difference indicates that the extent-eligible file has changed since the backup operation started. To ensure that the extent-eligible file is properly backed up without partial or incomplete changes, the data agent 312 may terminate the process threads reading from the extent-eligible file, and terminate the backup process for that particular file. The data agent 312 may then information the coordinator 320 that the backup operation for that particular file failed, and that the particular file should be backed up at the next backup operation. The coordinator 320 may then identify the extent-eligible file as a failed file in the failure database 512. As discussed with regard to
In addition, the data agent 312 may communicate the same extent to multiple worker nodes according to the distribution logic. For example, the coordinator 320 may be configured such that multiple copies of the same extent are distributed to multiple nodes in the information management system 302. Thus, a first extent may be communicated to a first and second worker node, a second extent may be communicated to the first worker node and a third worker node, a third extent may be communicated to the second worker node and a fourth worker node, and so forth. By distributed the same extents across multiple worker nodes, the coordinator 320 ensures that the failure of one worker node does not result in the complete loss of the extent.
Each of the secondary storage devices 504-508 may store extent data and/or extent metadata and may be managed by their respective media agents 306A-306C. The secondary storage devices 504-508 may be implemented similarly to the secondary storage device 108 shown in
In one embodiment, the coordinating worker node 318 is in communication with an extents database 510 and the failure database 512. The databases 510-512 may be implemented as one or more flat files, hierarchical databases, relational databases, data structures (e.g., a linked list and/or an array), an object-oriented database, or any other kind of database or data management structure now known or later developed.
The extents database 510 is configured to store information about which of the worker nodes 304A-C has stored an extent and its associated extent metadata. When an extent is validated as being successfully transferred from the client computing device 310 to a worker node, the worker node and/or the data agent 312 communicates the successful transfer to the coordinating worker node 318. The coordinating worker node 318 may then create an entry in the extents database 510 with extent metadata about the transferred extent. As explained previously, the extent metadata may include, but is not limited to, the name of the extent-eligible file associated with the extent, a size of the extent, a logical offset within the extent-eligible file from which the extent was obtained, and a hash value of the extent corresponding to the data of the extent. In addition, the extent metadata in the extents database 510 may also identify the worker node that is storing the extent. In an alternative embodiment, the coordinator 320 may wait until it has received success messages from each of the worker nodes for every extent of the extent-eligible file, and then update the extents database 510 once the success messages have been received. For example, the coordinator 320 may maintain a temporary table (e.g., a table stored in volatile memory) that indicates whether each of the extents for the extent-eligible files were successfully transferred to one or more of the worker nodes 304A-C. In one embodiment, where a single extent fails in the transfer from the client computing device 310 to a worker node, the entire extent-eligible file may be marked as a “failed” file. An extent-eligible file may also be marked as a failed file based on a message received from the data agent 312 and/or one or more of the worker nodes 304A-C.
To track which of the extent-eligible files have failed, the coordinating worker node 318 may be in communication with the failure database 512 that is configured to store information about which of the extent-eligible files experienced a failure in the backup process. The failure database 512 may include a plurality of entries, where each entry corresponds to a failed extent-eligible file of the client computing device 310. Information for each entry may include the extent-eligible file that failed, the number of attempts at backing up the extent-eligible file, the client computing device 310 of the extent-eligible file, and the date and/or time of the failure. The coordinator 320 may record the number of attempts at backing up the extent-eligible file because an excessive number of failures may require an administrator or other operator of the client computing device 310 to intervene and address a potential problem being experienced by the client computing device 310. Accordingly, the coordinator 320 may be configured with a failure or attempt threshold that indicates the number of times an extent-eligible file can fail in the backup operation. Where the failure or attempt threshold is met or exceeded, the coordinator 320 may send a message to an administrator or operator of the client computing device 310 that the client computing device 310 is experiencing a problem in the backup operation.
Additionally and/or alternatively to messaging the administrator or operator, the coordinator 320 may instruct the data agent 312 to change the manner in which extent-eligible files are being backed-up from the client computing device 310. As mentioned previously, the data agent 312 may reference a volume snapshot 408 for performing a backup of one or more extent-eligible files of the primary data source 314. However, where the failure or attempt threshold has been met or exceeded, the coordinator 320 may instruct the data agent 312 that the data agent 312 is to use a live or production version of the primary data source 314 in backing up the one or more extent-eligible files. In one embodiment, where the data agent 312 and/or one or more of the worker nodes informs the coordinator 320 that the backing up of a previously failed extent-eligible file has again failed after changing modalities (e.g., from the volume snapshot 408 to the live or production version of the primary data source 314), the coordinator 320 may send a priority message to an administrator or other operator of the client computing device 310 that his or her attention is needed to resolve the failure.
In addition to concurrently transferring multiple extents to one or more of the worker nodes 304A-C during a backup operation, the information management system 302 also supports restoring these extents from one or more of the worker nodes 304A-C. To support the restoration operation, the coordinator 318 may reference the extents database 510 and use the extent metadata to perform the restoration.
In one embodiment, the storage manager 140 instructs the coordinator 320 to perform the restoration operation for one or more extent-eligible files of the client computing device 310. For example, the storage manager 140 may receive a message or instruction from the client computing device 310 that one or more extent-eligible files are to be restored to it.
The coordinator 320 may initially reference the extents database 510 to identify the extents that correspond to the extent-eligible file to be restored. As discussed above, the extent metadata in the extents database 510 may identify the worker nodes 304A-C responsible for storing and/or managing the extents corresponding to the extent-eligible file to be restored. As explained previously, the extent metadata in the extents database 510 may also identify the worker nodes 304A-C that are storing extents associated with an extent-eligible file to be restored.
The coordinator 320 may instruct the data agent 312 to initially create a sparse file with sufficient space for writing the data of the extents of the extent-eligible file. The coordinator 320 may determine the amount of space required for the sparse file in various ways. In one embodiment, the coordinator 320 computes a sum of the sizes of the extents based on the extent metadata. The sum yields the size of the sparse file. In another embodiment, the extent metadata may also include the size of the extent-eligible file that was backed up. In this manner, rather than compute a sum of the extents, the coordinator 320 may reference the extent-eligible file size in the extent metadata, and request that the data agent 312 create a sparse file having a file size matching the size of the extent-eligible file size in the extent metadata.
The data agent 312 may create a sparse file at a location where the extent-eligible file is to be restored, such as a location within the primary data source 314. Once created, the data agent 312 may communicate a message to the coordinator 320 that the sparse file is available for having data written to it. The coordinator 320 may then communicate with each of the worker nodes 304A-C associated with the extents of the extent-eligible file, and instruct each of the worker nodes 304A-C to write extent data to the sparse file. In one embodiment, for each extent, the coordinator 320 communicates a message comprising a file or relative offset and an extent identifier to a corresponding worker node (e.g., worker node 304A). The worker node retrieves the extent corresponding to the extent identifier from the secondary storage device, and then communicates a write instruction to the data agent 312 to write the extent data at the file or relative offset. In one embodiment, the data agent 312 may instantiate a predetermined number of process threads (e.g., write threads) for writing data to the sparse file. In this embodiment, the data agent 312 may be configured with a write thread threshold that specifies a number of write threads to instantiate. For example, the data agent 312 may instantiate four write threads, and each write thread may handle writing extent data to the sparse file at different relative or file offsets. Furthermore, the write threads may execute concurrently, such that four write threads are writing data at four different file or relative offsets within the sparse file simultaneously. In another embodiment, the data agent 312 may make the sparse file available to the worker nodes 304A-C via a networking protocol, and each worker node 304A-C may instantiate one or more write threads for writing extent data at the file or relative offsets provided by the coordinator 320.
In yet a further embodiment, the coordinator 320 may communicate a start instruction that each worker node associated with the extent-eligible file is to begin writing extent data at the sparse file allocated by the data agent 312. In this embodiment, each worker node references their media agent indices to retrieve extent metadata to determine the file or relative offset where extents are to be written. As each write thread completes the writing of the extent data, the data agent 312 may instantiate a new write thread.
After writing an extent to the identified offset within the sparse file, the data agent 312 and/or the worker nodes 304A-C may validate the written data. In one embodiment, the data agent 312 instantiates a process thread (e.g., a read thread) that reads the data written data of the extent, and then determines a hash value from the written data (e.g., using a hashing algorithm). The data agent 312 may then request that the worker node that provided the extent communicate the hash value of the extent that was just written (e.g., a hash value of the written extent stored in extent metadata of the media agent index and/or secondary storage device), and the data agent 312 may then compare the provided hash value with the determined hash value. Where the hash values are different, this difference may indicate that the extent data was not properly written, and the data agent 312 may request that the worker node re-send the extent data for re-writing or, where the worker node is responsible for writing the extent data, that the worker node re-write the extent data.
In another embodiment, the data agent 312 may validate the extent-eligible file to be restored after all of the extents have be written to the sparse file. In this embodiment, the data agent 312 may determine a hash value for the entire, newly-restored extent-eligible file, and compare this determined hash value with a previously determined hash value (e.g., a hash value previously determined by the data agent 312) for the extent-eligible file. As with single extent validation, the data agent 312 may compare the determined hash value of the newly-restored, extent-eligible file with the previously determined hash value of the extent-eligible file. A difference in the hash values may indicate that the newly-restored, extent-eligible file was not properly written.
Further still, the data agent 312 may be configured with a predetermined restoration retry threshold, where the predetermined restoration retry threshold indicates the number of times that the data agent 312 can retry to restore the extent-eligible file. Where the restoration retry threshold is met or exceeded, the data agent 312 may communicate a message to the coordinator 320 that the restoration of the extent-eligible file has failed, and the coordinator 320 may communicate a message to the storage manager 140 that an administrator and/or operator of the client computing device 310 should intervene to resolve a problem in restoring the extent-eligible file. The coordinator 320 may then proceed to restore the next extent-eligible file selected for restoration.
Upon a successful validation of the extent-eligible file, the data agent 312 may inform the coordinator 320 that the validation was successful, and that the data agent 312 is ready to restore another extent-eligible file. Where the coordinator 320 receives the success message, the coordinator 320 may instruct one or more of the worker nodes 304A-C to restore the next extent-eligible. The coordinator 320 may proceed in the foregoing manner of the restoration operation until one or more extent-eligible files have been restored.
As discussed above with reference to
For each file added to the list 404, the data agent 312 determines whether the file is extent eligible. In one embodiment, the data agent 312 compares a file size of the file to a predetermined file size threshold (Operation 610). As discussed previously, the data agent 312 may identify a file of the primary data source 314 as being extent-eligible file where the data agent 312 determines that a file size of the file meets or exceeds the predetermined file size threshold, which may be, one GB, two GBs, 50 GBs, 1 TB, and so forth. Where the file size of the file meets or exceeds the predetermined file size (e.g., the “YES” branch of Operation 610), the data agent 312 flags the file as being extent-eligible. In one embodiment, the data agent 312 may flag the file as being extent-eligible by adding an identifier to an entry in the list 404 corresponding to the file. Where the data agent 312 determines that the file is not extent eligible (e.g., the “NO” branch of Operation 610), the method 602 may proceed to Operation 614. At Operation 614, the data agent 312 determines whether there are remaining files in be considered for extent eligibility. Where there are remaining files (e.g., the “YES” branch of Operation 614), the method 602 returns to Operation 610. Where are no remaining files to consider for extent eligibility (e.g., the “NO” branch of Operation 614), the method 602 proceeds to end.
Referring initially to
The backup operation performed by the data agent 312 may be performed on a live or production volume of the primary data source 314 or a volume snapshot 408 of the primary data source 314. Where the client computing device 310 is configured to create volume snapshots, the data agent 312 may perform the backup operation on the primary data source 314 from the volume snapshot 408. Additionally and/or alternatively, the data agent 312 may perform the backup operation on the primary data source 314 from a live or production volume where the client computing device 310 is unable to create the volume snapshot 408 or where the coordinator 320 and/or storage manager 140 has instructed the data agent 312 to perform the backup operation on the live or production volume (e.g., where a failure or attempt threshold has been met or exceeded).
Although the data agent 312 may back up all of the files listed in the file list 404, method 702 focuses on those files that have been identified as extent-eligible. Accordingly, the data agent 312 may first read the file list 404 to identify those files that have been previously flagged as being extent-eligible (Operation 706). For each extent-eligible file, the data agent 312 may create a container file (e.g., one or more container file(s) 406), where a container filer 406 lists the extents for a corresponding extent-eligible file (Operation 708). The data agent 312 may then determine a number of extents for each extent-eligible file, and list the extents in the corresponding container file 406 for the extent-eligible file. In one embodiment, the data agent 312 determines the plurality of extents based on a file size of the extent-eligible file and a predetermined extent size. As explained previously, each entry in the container file 406. may include a relative or file offset within the extent-eligible file that identifies a starting location for the extent, and then a size of the extent.
After determining the extents for each extent-eligible file, the data agent 312 may then obtain distribution logic 322 from the coordinating worker node 318 (Operation 712). As discussed above, the distribution logic 322 instructs the data agent 312 where to send the determined extents of the extent-eligible files.
Referring next to
Although Operation 720 is discussed with reference to an extent-eligible file, it should be understood that the data agent 312 performs back up operations with regard to files that are not extent-eligible. At Operation 720, the data agent 312 may communicate a container file 406 to one or more of the worker nodes 304A-C based on the distribution logic 322. Additionally and/or alternatively, the data agent 312 may communicate the container file 406 to the coordinating worker node 318. The data agent 312 may then initiate or create a plurality of process threads for reading the extent-eligible file to be backed up (Operation 722). As discussed previously, each process thread may read from a different portion of the extent-eligible file to be backed up based on the entries in the container file 406 associated with the extent-eligible file. The process threads may reach concurrently read from the extent-eligible file such that multiple extents are concurrently sent to one or more of the worker nodes 304A-C.
In backing up the extent-eligible file, the data agent 312 may determine whether the extent-eligible file has changed with each extent to be sent. As explained previously, the data agent 312 may leverage the volume snapshot 408 to perform the backup of the extent-eligible file, but the live or production version of the extent-eligible file may change during the backup. A changing extent-eligible file may indicate that write operations are still being performed to the extent-eligible file, and that the extent-eligible file is not yet ready to be backed up.
Accordingly, in one embodiment, prior to the backup of the extent-eligible file, the data agent 312 may record a baseline last modification time of the extent-eligible file (Operation 724). The baseline (or initial) last modification time of the extent-eligible file may be obtained by using a command to the operating system of the client computing device 310. For each extent, and prior to the transfer of the extent, the data agent 312 may request the last modification time (e.g., the current last modification time) for the extent-eligible file (Operation 726). The data agent 312 may then compare the baseline last modification time with the current last modification time (Operation 728). Where there is a difference in the last modification times (e.g., the “YES” branch of Operation 728), the method 702 proceeds to Operation 730 on
Referring to
Referring to Operation 734, where there is no difference in the baseline last modification time and the current last modification time, the data agent 312 may compute one or more hash values for the extents being read by the read threads (Operation 734). In this regard, the data agent 312 may use a hashing algorithm, such as a SHA-2 hashing algorithm, to determine the one or more hash values. The data agent 312 may then transmit the extents and the hash values to one or more of the worker nodes 304A-C according to the distribution logic 322 received from the coordinating worker node 318 (Operation 736). As explained previously, the data agent 312 may transmit the extents along with extent metadata, which may include, but is not limited to, extent metadata may include the name of the extent-eligible file associated with the extent, a size of the extent, a logical offset within the extent-eligible file from which the extent was obtained, and a hash value of the extent corresponding to the data of the extent. The extent metadata may also include a hash value for the entirety of the extent-eligible file being backed up. As explained previously, the hash values of the extents and/or the entire extent-eligible file may be referenced during a restore operation to ensure that the extents and/or entire entire-eligible file has been properly restored.
The data agent 312 then determines whether there are remaining extents to transmit for the extent-eligible file being backed up (Operation 738). Where there are no extents remaining (e.g., the “NO” branch of Operation 738), the method 702 proceeds to Operation 742, where the data agent 312 determines whether there are remaining files to back up. Where there are extents remaining to be backed up (e.g., the “YES” branch of Operation 738), the method 702 proceeds to Operation 740, where the data agent 312 performs the foregoing operations on the next extent and/or set of extents. In this regard, a set of extents may be based on the number of process reads that the data agent 312 instantiates for reading from the extent-eligible file. Where there are additional extents to back up, the method 702 then returns to Operation 726 of
Where there are files remaining to be backed up (e.g., the “YES” branch of Operation 742), extent-eligible or not, the method 702 proceeds to Operation 718 of
Referring first to
The coordinator 320 may then instruct the indexing media agent node 304A to retrieve metadata information for the extents associated with the requested one or more files to be restored (Operation 806). The metadata information for the associated extents may identify where the extents are stored, offset information for the extents, size information for the extents, ACL and/or security descriptors associated with the file(s) corresponding to the extents, ownership information for the extents, and other such extent metadata information or combination thereof. The indexing media agent node 304A may communicate the retrieved extent metadata information to the data agent 312 of the client computing device 310 (Operation 808).
The data agent 312 may then create one or more sparse files having sufficient space for data of the extent-eligible file(s) to be written (Operation 810). In one embodiment, the data agent 312 determines the amount of space required for the sparse file by referencing the extent metadata received from the indexing media agent node 304A. In another embodiment, the data agent 312 determines the amount of space required by computing a file size from the extent metadata information received from the indexing media agent node 304A.
The data agent 312 may then send extent information to one or more of the worker nodes 304A-304C associated with the extent metadata information received from the indexing media agent node 304A. For example, the received extent metadata information may identify that worker nodes 304B-304C store the relevant extents for restoring the requested one or more files. Accordingly, the data agent 312 may send the extent information to the worker nodes 304B-304C, which may be processed by their respective media agents 306B-306C. The media agents 306B-306C may retrieve the requested extents from the secondary storage devices 506-508 using the extent information.
The restoration operation then proceeds to the writing of the extent data from the one or more worker nodes 304A-C. In one embodiment, the extents database 510 includes a location or file offset for each extent stored by the one or more worker nodes 304A-C. In this embodiment, the one or more worker nodes 304A-304C may request that the coordinator 320 communicate the file or location offset to the worker nodes 304A-C instructing the location or file offset within the sparse file where a worker node is to write the extent data for a corresponding extent (Operation 812). In another embodiment, the indexing media agent node 304A maintains the file or location offset for each extent indexed in the media agent index 308A, and retrieves the file or location offset at the time of writing the extent data.
At Operation 814, the data agent 312 may determine whether there are predetermined number of process threads (e.g., write threads) for writing the extent data from the worker nodes 304A-C. Like the backup operation, the disclosed information management system 302 may also support concurrently writing multiple extents for a single extent-eligible file. As explained above, the data agent 312 may instantiate a predetermined number of write threads for writing the extent data from the one or more worker nodes 304A-C. In one embodiment, the data agent 312 compares the number of process threads for writing with a predetermined write thread threshold. Where the number of write threads is less than the predetermined write thread threshold (e.g., the “YES” branch of Operation 814), the data agent 312 instantiates another write thread for writing extent data within the sparse file (Operation 816). Where the number of write threads is greater than or equal to the predetermined write thread threshold (e.g., the “NO” branch of Operation 814), the data agent 312 waits for another write thread to finish or terminate (Operation 818) before instantiating another write thread.
In one embodiment, the data agent 312 grants write access to a worker node (e.g., worker node 304A), and the worker node proceeds to write the extent data at an offset location within the sparse file. In another embodiment, the data agent 312 receives the extent data and offset location from a worker node, and the data agent 312 instructs a process thread to write the extent data at the offset location within the sparse file.
Each write thread may write extent data at a specified relative or file offset within the sparse file (Operation 820). Once the write thread has finished writing its data, the data agent 312 may then terminate that specific write thread (Operation 822).
Referring next to
In another embodiment, the data agent 312 may verify the entirety of the written sparse file after each of the extents have been written to the sparse file. In this embodiment, the data agent 312 may determine whether all of the data has been written to the sparse file (Operation 826). The data agent 312 may perform this determination in any number of ways. As one example, the data agent 312 may track the number of extents written and request the total number of extents to be written from the coordinator 320 and then compare these two numbers. As another example, the data agent 312 may track the amount of data written and request the amount of extent data to write from the coordinator 320 and compare these two values. As yet a third example, the data agent 312 may query one or more of the worker nodes 304A-C as to whether there are remaining extents to write. Of course, the foregoing examples are not exhaustive and one of ordinary skill in the art will understand that Operation 326 may be implemented in multiple ways.
Where the data agent 312 determines that there are remaining extents to write (e.g., the “YES” branch of Operation 826), the method 802 may proceed back to Operation 812 of
At Operation 828, the data agent 312 validates all of the extent data written to the sparse file (Operation 828). The data agent 312 may validate the extent data in any number of ways. As one example, the data agent 312 may determine a hash value for the entirety of the written extent data, request a hash value for the extent-eligible file being restored from the coordinator 320, and then compare the determined hash value with the requested value. As another example, the data agent 312 may determine a hash value for the entirety of the written extent data, and then request the hash value from the storage manager 140 and/or one or more of the worker nodes 304A-C, where the storage manager 140 and/or the worker nodes 304A-C retrieves the hash value for the extent-eligible file being restored from the media agent index 308A. A difference in the hash values may indicate that the extent data was not properly written, and the data agent 312 may instruct the coordinator 320 to restart the restoration process for that particular extent-eligible file being restored. Accordingly, where the data agent 312 determines that the extent data is not validated (e.g., the “NO” branch of Operation 828), the method 802 may proceed to Operation 832, where the data agent 312 instructs the coordinator 320 to restart the restoration process. In the event that the restoration of the extent-eligible files fails a predetermined number of times, the coordinator 320 may communicate a message to an operator or administrator of the client computing device 310 that human intervention is required to resolve a problem. Where the data agent 312 determines that the extent data is validated (e.g., the “YES” branch of Operation 828), the method 802 may proceed to Operation 830, where the data agent 312 and/or the coordinator 320 restores the next file (an extent-eligible file or other type of file) in the restoration process.
In this manner, the foregoing description provides a backup and restoration architecture whereby a client computing device is configured to backup multiple extents of an extent-eligible file concurrently, and also perform a restoration of those extents concurrently. This feature results in a technological improvement of prior backup methodologies because it allows for the backup of large files residing on a client computing device to other nodes or devices in communication with the client computing device, where the client computing device may have intermittent or poor network service. In addition, the extents of an extent-eligible file can be distributed across multiple nodes, such that the data of the extent-eligible file can be preserved and not subject to the failure of any one node. Thus, the disclosed systems and methods results in improvements in the field of computer backup and restoration.
Some example enumerated embodiments of the present invention are recited in this section in the form of methods, systems, and non-transitory computer-readable media, without limitation.
In one embodiment, this disclosure provides a method for backing up file system data as a plurality of extents, where the method includes receiving, at a data agent being executed on a client computing device, an instruction to perform a backup of file system data of the client computing device, wherein the file system data is stored in a plurality of files, and determining whether a file from the plurality of files meets or exceeds a predetermined file size threshold. The method may also include determining a plurality of extents for the file based on a determination that the file meets or exceeds the predetermined file threshold, wherein each extent includes a portion of the data for the file and less than all of the data for the file and transmitting a list of the plurality of extents for the file to a coordinating worker node selected from a plurality of worker nodes, wherein the coordinating worker node coordinates backup and restoration operations among the plurality of worker nodes in communication with the client computing device. The method may further include receiving an instruction from the storage manager to transmit the plurality of extents to the plurality of worker nodes, and transmitting the plurality of extents to the plurality of worker nodes, wherein at least a first extent of the plurality of extents is transmitted to a first worker node and at least a second extent of the plurality of extents is transmitted to a second worker node.
In another embodiment of the method, the method includes creating a volume snapshot of a primary data storage device of the client computing device, and the determination of the plurality of extents of the file is performed on the file created from the volume snapshot.
In a further embodiment of the method, the method includes determining whether the file has changed during the transmission of the plurality of extents of the file, and, in response to a determination that the file has changed, stopping the transmission of the plurality of extents and identifying that the file is to be backed up when a subsequent request is received to perform a backup of the file system data.
In yet another embodiment of the method, the determination of the whether the file has changed is performed by comparing a first time at which the file changed with a second time at which the file changed, and determining that the file has changed based on a difference in the first time with the second time.
In yet a further embodiment of the method, the method includes receiving a failure message that at least one extent of the plurality of extents has failed, and identifying that the file is to be backed up when a subsequent request is received to perform a backup of the file system data in response to the received failure message.
In another embodiment of the method, the method includes receiving the plurality of extents from the plurality of worker nodes during a restore operation, wherein the first extent is received from the first worker node and the second extent is received from the second worker node, and reconstructing the file from the plurality of extents.
In a further embodiment of the method, a size of each extent from the plurality of extents is less than the predetermined file size threshold.
In yet another embodiment of the method, the plurality of extents is transmitted substantially concurrent to corresponding worker nodes of the plurality of worker nodes.
In yet a further embodiment of the method, at least one worker node of the plurality of worker nodes comprises a media agent configured to update a media agent index based on a corresponding extent of the plurality of extents, wherein the media agent index comprises information for restoring the corresponding extent from a secondary storage device in communication with the media agent.
In another embodiment of the method, the same extent selected from the plurality of extents is transmitted to at least two different worker nodes selected from the plurality of worker nodes.
This disclosure also provides for a system for backing up file system data as a plurality of extents, where the system comprises one or more non-transitory, computer-readable medium having computer-executable instructions stored thereon, and one or more processors that, having executed the computer-executable instructions, configure the system to perform a plurality of operations comprising receiving, at a data agent being executed on a client computing device, an instruction to perform a backup of file system data of the client computing device, wherein the file system data is stored in a plurality of files, and determining whether a file from the plurality of files meets or exceeds a predetermined file size threshold. The plurality of operations also include determining a plurality of extents for the file based on a determination that the file meets or exceeds the predetermined file threshold, wherein each extent includes a portion of the data for the file and less than all of the data for the file, and transmitting a list of the plurality of extents for the file to a coordinating worker node selected from a plurality of worker nodes, wherein the coordinating worker node coordinates backup and restoration operations among the plurality of worker nodes in communication with the client computing device. The plurality of operations further includes receiving an instruction from the storage manager to transmit the plurality of extents to the plurality of worker nodes; and transmitting the plurality of extents to the plurality of worker nodes, wherein at least a first extent of the plurality of extents is transmitted to a first worker node and at least a second extent of the plurality of extents is transmitted to a second worker node.
In another embodiment of the system, the plurality of operations further comprises creating a volume snapshot of a primary data storage device of the client computing device, and the determination of the plurality of extents of the file is performed on the file created from the volume snapshot.
In a further embodiment of the system, the plurality of operations further comprises determining whether the file has changed during the transmission of the plurality of extents of the file, and in response to a determination that the file has changed, stopping the transmission of the plurality of extents, and identifying that the file is to be backed up when a subsequent request is received to perform a backup of the file system data.
In yet another embodiment of the system, the determination of the whether the file has changed is performed by comparing a first time at which the file changed with a second time at which the file changed, and determining that the file has changed based on a difference in the first time with the second time.
In yet a further embodiment of the system, the plurality of operations further comprises receiving a failure message that at least one extent of the plurality of extents has failed, and identifying that the file is to be backed up when a subsequent request is received to perform a backup of the file system data in response to the received failure message.
In another embodiment of the system, the plurality of operations further comprises receiving the plurality of extents from the plurality of worker nodes during a restore operation, wherein the first extent is received from the first worker node and the second extent is received from the second worker node, and reconstructing the file from the plurality of extents.
In a further embodiment of the system, a size of each extent from the plurality of extents is less than the predetermined file size threshold.
In yet another embodiment of the system, the plurality of extents is transmitted substantially concurrent to corresponding worker nodes of the plurality of worker nodes.
In yet a further embodiment of the system, at least one worker node of the plurality of worker nodes comprises a media agent configured to update a media agent index based on a corresponding extent of the plurality of extents, wherein the media agent index comprises information for restoring the corresponding extent from a secondary storage device in communication with the media agent.
In another embodiment of the system, the same extent selected from the plurality of extents is transmitted to at least two different worker nodes selected from the plurality of worker nodes.
In other embodiments according to the present invention, a system or systems operates according to one or more of the methods and/or computer-readable media recited in the preceding paragraphs. In yet other embodiments, a method or methods operates according to one or more of the systems and/or computer-readable media recited in the preceding paragraphs. In yet more embodiments, a non-transitory computer-readable medium or media causes one or more computing devices having one or more processors and computer-readable memory to operate according to one or more of the systems and/or methods recited in the preceding paragraphs.
Conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense, i.e., in the sense of “including, but not limited to.” As used herein, the terms “connected,” “coupled,” or any variant thereof means any connection or coupling, either direct or indirect, between two or more elements; the coupling or connection between the elements can be physical, logical, or a combination thereof. Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, refer to this application as a whole and not to any particular portions of this application. Where the context permits, words using the singular or plural number may also include the plural or singular number respectively. The word “or” in reference to a list of two or more items, covers all of the following interpretations of the word: any one of the items in the list, all of the items in the list, and any combination of the items in the list. Likewise the term “and/or” in reference to a list of two or more items, covers all of the following interpretations of the word: any one of the items in the list, all of the items in the list, and any combination of the items in the list.
In some embodiments, certain operations, acts, events, or functions of any of the algorithms described herein can be performed in a different sequence, can be added, merged, or left out altogether (e.g., not all are necessary for the practice of the algorithms). In certain embodiments, operations, acts, functions, or events can be performed concurrently, e.g., through multi-threaded processing, interrupt processing, or multiple processors or processor cores or on other parallel architectures, rather than sequentially.
Systems and modules described herein may comprise software, firmware, hardware, or any combination(s) of software, firmware, or hardware suitable for the purposes described. Software and other modules may reside and execute on servers, workstations, personal computers, computerized tablets, PDAs, and other computing devices suitable for the purposes described herein. Software and other modules may be accessible via local computer memory, via a network, via a browser, or via other means suitable for the purposes described herein. Data structures described herein may comprise computer files, variables, programming arrays, programming structures, or any electronic information storage schemes or methods, or any combinations thereof, suitable for the purposes described herein. User interface elements described herein may comprise elements from graphical user interfaces, interactive voice response, command line interfaces, and other suitable interfaces.
Further, processing of the various components of the illustrated systems can be distributed across multiple machines, networks, and other computing resources. Two or more components of a system can be combined into fewer components. Various components of the illustrated systems can be implemented in one or more virtual machines, rather than in dedicated computer hardware systems and/or computing devices. Likewise, the data repositories shown can represent physical and/or logical data storage, including, e.g., storage area networks or other distributed storage systems. Moreover, in some embodiments the connections between the components shown represent possible paths of data flow, rather than actual connections between hardware. While some examples of possible connections are shown, any of the subset of the components shown can communicate with any other subset of components in various implementations.
Embodiments are also described above with reference to flow chart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products. Each block of the flow chart illustrations and/or block diagrams, and combinations of blocks in the flow chart illustrations and/or block diagrams, may be implemented by computer program instructions. Such instructions may be provided to a processor of a general purpose computer, special purpose computer, specially-equipped computer (e.g., comprising a high-performance database server, a graphics subsystem, etc.) or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor(s) of the computer or other programmable data processing apparatus, create means for implementing the acts specified in the flow chart and/or block diagram block or blocks. These computer program instructions may also be stored in a non-transitory computer-readable memory that can direct a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including instruction means which implement the acts specified in the flow chart and/or block diagram block or blocks. The computer program instructions may also be loaded to a computing device or other programmable data processing apparatus to cause operations to be performed on the computing device or other programmable apparatus to produce a computer implemented process such that the instructions which execute on the computing device or other programmable apparatus provide steps for implementing the acts specified in the flow chart and/or block diagram block or blocks.
Any patents and applications and other references noted above, including any that may be listed in accompanying filing papers, are incorporated herein by reference. Aspects of the invention can be modified, if necessary, to employ the systems, functions, and concepts of the various references described above to provide yet further implementations of the invention. These and other changes can be made to the invention in light of the above Detailed Description. While the above description describes certain examples of the invention, and describes the best mode contemplated, no matter how detailed the above appears in text, the invention can be practiced in many ways. Details of the system may vary considerably in its specific implementation, while still being encompassed by the invention disclosed herein. As noted above, particular terminology used when describing certain features or aspects of the invention should not be taken to imply that the terminology is being redefined herein to be restricted to any specific characteristics, features, or aspects of the invention with which that terminology is associated. In general, the terms used in the following claims should not be construed to limit the invention to the specific examples disclosed in the specification, unless the above Detailed Description section explicitly defines such terms. Accordingly, the actual scope of the invention encompasses not only the disclosed examples, but also all equivalent ways of practicing or implementing the invention under the claims.
To reduce the number of claims, certain aspects of the invention are presented below in certain claim forms, but the applicant contemplates other aspects of the invention in any number of claim forms. For example, while only one aspect of the invention is recited as a means-plus-function claim under 35 U.S.C sec. 112(f) (AIA), other aspects may likewise be embodied as a means-plus-function claim, or in other forms, such as being embodied in a computer-readable medium. Any claims intended to be treated under 35 U.S.C. § 112(f) will begin with the words “means for,” but use of the term “for” in any other context is not intended to invoke treatment under 35 U.S.C. § 112(f). Accordingly, the applicant reserves the right to pursue additional claims after filing this application, in either this application or in a continuing application.
This application is a continuation of PCT App. No. PCT/CN2021/073301, titled “CONCURRENT TRANSMISSION OF MULTIPLE EXTENTS DURING BACKUP OF EXTENT-ELIGIBLE FILES” and filed Jan. 22, 2021, the entire disclosure of which is hereby incorporated by reference in its entirety. Any and all applications, if any, for which a foreign or domestic priority claim is identified in the Application Data Sheet of the present application are hereby incorporated by reference in their entireties under 37 CFR 1.57.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2021/073301 | Jan 2021 | US |
Child | 17177094 | US |