The presently disclosed embodiments generally relate to condensate drain pans and, more particularly, to condensate drain pan ports.
In a conventional heating, ventilation, and air conditioning or refrigeration (HVAC/R) cycle, a compressor compresses a refrigerant and delivers the compressed refrigerant to a downstream condenser. From the condenser, the refrigerant passes through an expansion device, and subsequently, to an evaporator. The refrigerant from the evaporator is returned to the compressor. In a split system heating and/or cooling system, the condenser may be known as an outdoor heat exchanger and the evaporator as an indoor heat exchanger, when the system operates in a cooling mode. In a heating mode, their functions are reversed.
During a cooling mode operation, a blower circulates air through the casing of the fan coil assembly, where the air cools as it passes over the evaporator coil. The blower then circulates the air to a space to be cooled. Typically, a refrigerant is enclosed in piping that is used to form the evaporator coil. If the temperature of the evaporator coil surface is lower than the dew point of air passing over it, the evaporator coil removes moisture from the air. Specifically, as air passes over the evaporator coil, water vapor condenses on the evaporator coil. The condensate drain pan of the evaporator assembly collects the condensed water as it drips off of the evaporator coil. The collected condensation may then drain out of the condensate drain pan through at least one drain hole or port in the condensate drain pan.
However, during some conditions, such as the exemplary condition where positive static air pressure exists in the evaporator, the flow of collected condensation is blocked or significantly impeded by airflow at the condensate drain pan port. Such impedance may elevate the amount of collected condensation in the condensate drain pan and cause the condensation to flow over the top edge of the condensate drain pan and onto blower, furnace, and/or other HVAC/R equipment. Therefore, there exists a need in the art for a condensate drain pan port that allows proper drainage of condensate drain pans.
In one aspect, an HVAC/R unit is provided. The HVAC/R unit includes an evaporator coil, and a port configured to remove condensate away from the evaporator coil. The port includes a port housing having an upper end and a lower end, a condensate wall extending upward from the lower end, and an air wall extending downward from the upper end and being configured to limit an airflow through the port housing.
The condensate wall may include an upper edge and the air wall includes a lower edge. The upper edge may be substantially radially aligned with the lower edge. The upper edge may be radially offset a predetermined radial distance from the lower edge. The upper edge and the lower edge may be straight. The condensate wall may be axially spaced a predetermined axial distance from the air wall. The HVAC/R unit may further include a drainage opening in the condensate wall.
In one aspect, a condensate drain pan port insert is provided. The insert includes a condensate wall extending to an upper edge along a first plane, and an air wall extending to a lower edge along a second plane spaced axially from the first plane and being configured to limit an airflow through the port housing.
The insert may further include at least one connecting member extending between the condensate wall and the air wall. The insert may further include a drainage opening in the condensate wall. The insert may further include an air wall support extending from the lower edge along the second plane.
In one aspect, a condensate drain pan is provided. The pan includes an outer wall having a condensate drain pan port. The condensate drain pan port has a port housing having an upper end and a lower end, a condensate wall extending upward from the lower end, and an air wall extending downward from the upper end and configured to limit an airflow through the port housing.
The condensate wall may include an upper edge and the air wall may include a lower edge. The upper edge may be substantially radially aligned with the lower edge. The upper edge may be radially offset a predetermined radial distance from the lower edge. The upper edge and the lower edge may be straight. The condensate wall may be axially spaced a predetermined axial distance from the air wall. The pan may further include a drainage opening in the condensate wall.
The embodiments and other features, advantages and disclosures contained herein, and the manner of attaining them, will become apparent and the present disclosure will be better understood by reference to the following description of various exemplary embodiments of the present disclosure taken in conjunction with the accompanying drawings, wherein:
For the purposes of promoting an understanding of the principles of the present disclosure, reference will now be made to the embodiments illustrated in the drawings, and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of this disclosure is thereby intended.
Referring now to
Referring now to
The drain pan port 16 includes a condensate wall 28 extending upward from the lower end 26. The condensate wall 28 is configured to at least partially impede the flow of collected condensate in the drain pan 10 through the drain pan port 16. The condensate wall 28 includes an upper edge 36. In the illustrated embodiment, the upper edge 36 is straight. In one or more embodiments not illustrated, the upper edge 36 is curved, includes multiple edges, or is otherwise not straight. As best illustrated in
The drain pan port 16 further includes an air wall 30 extending downward from the upper end 24. The air wall 30 is configured to limit an airflow through the port housing 22. The air wall 30 includes a lower edge 32. In the illustrated embodiment, the lower edge 32 is straight. In one or more embodiments not illustrated, the lower edge 32 is curved, includes multiple edges, or is otherwise not straight. As best illustrated in
The upper edge 36 is substantially radially aligned with the lower edge 32 in one or more embodiments. As best illustrated in
As further illustrated in
Referring now to
The insert 48 includes a drainage opening 52 in the condensate wall 28 in the illustrated embodiment. Although not illustrated, one or more of the embodiments of the drain pan port 16 described above also include the drainage opening 52. The drainage opening 52 is configured as a slot extending vertically in the illustrated embodiment. The drainage opening 52 is configured as another shape and/or size in additional embodiments not illustrated. The drainage opening 52 is sized and shaped to allow a remainder of collected condensate to flow through the insert 48 while significantly restricting the flow of air through the drainage opening 52. Therefore, a condensate drain pan coupled to the insert 48 may drain more completely by allowing the collected condensate to be removed through the drain opening 52. Although not illustrated, in one embodiment, the area of the opening of the drainage opening 52 is less than an area of the opening between the condensate wall 28 and the air wall 30.
As further illustrated in
One will appreciate that the embodiments described in the present disclosure provide the condensate drain pan 10, condensate drain pan port 16, and condensate drain pan port insert 48 to improve flow of collected condensate through the condensate drain pan port 16 during one or more conditions. Such conditions may exist where flow of collected condensate through the drain pan port 16 is impeded by airflow from the area above condensate drain pan 10, a high pressure condition present within the HVAC/R equipment, and/or another condition impeding flow through the drain pan port 16.
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only certain embodiments have been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.
The present application is a nonprovisional patent application, and claims the priority benefit of U.S. Application Ser. No. 62/447,762, filed Jan. 18, 2017, the text and drawings of which are hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4693091 | O'Mara et al. | Sep 1987 | A |
4835984 | Vyavaharkar et al. | Jun 1989 | A |
6931882 | Yang | Aug 2005 | B1 |
7003972 | Eom et al. | Feb 2006 | B2 |
7284388 | Yoshida | Oct 2007 | B2 |
7430877 | Davenport et al. | Oct 2008 | B2 |
7878019 | Cantolino | Feb 2011 | B2 |
20090084127 | Nakata et al. | Apr 2009 | A1 |
20100212347 | Kim | Aug 2010 | A1 |
20110179818 | Hast | Jul 2011 | A1 |
20130312432 | Hodges | Nov 2013 | A1 |
20150089969 | Nakamura | Apr 2015 | A1 |
20150245721 | Nugroho | Sep 2015 | A1 |
20160001637 | Kume et al. | Jan 2016 | A1 |
20180195790 | Fushimi | Jul 2018 | A1 |
Number | Date | Country |
---|---|---|
100339659 | Sep 2007 | CN |
102954009 | Mar 2013 | CN |
H04347424 | Dec 1992 | JP |
2005283057 | Oct 2005 | JP |
4347424 | Oct 2009 | JP |
Number | Date | Country | |
---|---|---|---|
20180202704 A1 | Jul 2018 | US |
Number | Date | Country | |
---|---|---|---|
62447762 | Jan 2017 | US |