The present invention relates generally to condensate management systems and methods and, more particularly, to systems and methods for protecting an air conditioning system from condensate flooding or overflow.
A common and well documented problem within the heating, ventilation, and air conditioning industry is the growth of a bacterial slime substance known as zooglea. As well known to one of ordinary skill in the art, zooglea may grow on walls of an air conditioning system's condensate drain pipes and narrow the drainage flowpath. Similarly, other debris or contaminants such as rust particles, hair, dirt, and other items may also build up in the condensate drain pipes. In time, zooglea or the other debris and contaminants can partially or fully obstruct condensate flow from the condensate drain pipes and cause condensate backup or flooding of the air conditioning system. These obstructions may occur in the air conditioning unit or downstream in the condensate drain pipes. Many solutions have been attempted, such as chemical treatments, manual cleanings, and drain line purging systems, but none have had great effect clearing obstructions along the entire condensate drain system flow path.
For example, clogs which form within the drain pan or upstream of a purging system are particularly difficult to remove using conventional drain line purging systems. Conventional drain line purging systems only push obstructions downstream of the purging system by creating a positive pressure. However, these conventional purging systems did little or nothing for clogs upstream of the purging system.
According to an embodiment, an intelligent condensate management system is disclosed for purging and cleaning an air conditioning condensate drainage system, the intelligent condensate management system comprises a housing, the housing having an inlet and an outlet; a primary condensate flow line providing a flow path between the housing inlet and outlet, the primary condensate flow line having a check valve; a flush line providing a flow path between the housing inlet and outlet parallel to the primary condensate flow line, the flush line having a pump, wherein an inlet to the flush line is connected to a lower portion of the housing inlet; a logic panel for actuating the pump between a standby mode and a flushing mode; wherein the check valve is configured to allow flow from the housing inlet to the housing outlet; wherein actuating the pump to a flushing mode causes the check valve to close.
According to another embodiment, a method for purging a condensate drainage system for an air conditioning system is disclosed, wherein the air conditioning system comprises a compressor, an evaporator, a condenser, and a fan, the method comprising providing the condensate drainage system with a check valve in a primary condensate flow line and a pump in a flush line; wherein the flush line and primary condensate flow line are parallel to each other and an inlet to the flush line is connected to a lower portion of the primary condensate flow line; providing a check valve in the primary condensate flow line; providing a pump in the flush line; alerting a logic panel to a condition for flushing the condensate drainage system; energizing the pump, wherein the pressure differential caused by the pump causes the check valve to close; de-energizing the pump after a predetermined period of time; determining whether the condition for flushing the condensate drainage system is resolved.
Further aspects, objectives, and advantages, as well as the structure and function of embodiments, will become apparent from a consideration of the description, drawings, and examples.
The features and advantages of the embodiments will be apparent from the following drawings wherein like reference numbers generally indicate identical, functionally similar, and/or structurally similar elements.
Embodiments of the invention are discussed in detail below. In describing embodiments, specific terminology is employed for the sake of clarity. However, the invention is not intended to be limited to the specific terminology so selected. A person skilled in the relevant art will recognize that other equivalent parts can be employed and other methods developed without departing from the spirit and scope of the invention.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Still referring to
Referring now to
Referring now to
Referring now to
The check valve 55 is configured to normally allow condensate to flow from the ICM inlet 51 to the ICM outlet 53. According to some embodiments, the check valve 55 may be a swing or flapper-type check valve. For example, during normal condensate draining conditions, the flow of condensate from the ICM inlet 51 to the ICM outlet 53 urges the check valve 55 to the open position to allow the condensate to flow to a drainage location. Upon a backflow condition where condensate begins flowing from the ICM outlet 53 to the ICM inlet 51, the backflow of condensate urges the check valve to a closed position thereby protecting condensate from flooding into the drain pan 15 and air handler 5. Thus, the check valve 55 may protect the air conditioning unit 3 from damage due to condensate backflow. Because the check valve 55 is actuated from the hydraulic process flow of the condensate, no externally powered actuator is required to actuate the check valve 55. Thus, even upon loss of power to the air conditioning unit 1 and associated equipment, protection from backflow from the drainage system 17 is maintained. According to other embodiments, other check valves may be used such as, for example, a ball check valve, a diaphragm check valve, a stop-check valve, an in-line check valve, or other check valves as known to one of ordinary skill in the art.
According to an embodiment, the angle of the flapper of the flapper-type check valve may be adjusted in order to adjust the response time of the check valve during back flow conditions. For example, a substantially horizontal flapper may be adjusted to a ½ inch pitch in order to increase the response time of the check valve during back flow conditions to 1.5 seconds to 3.5 seconds to fully close the check valve.
The pump 59 may be a water, air, or hybrid water/air pump. According to other embodiments, other types of pumps may be used such as, for example, a diaphragm pump or other types of pumps as known to one of ordinary skill in the art. According to an embodiment, the pump 59 may be capable of pumping air, water, chemicals and/or gases, liquids, and debris. The pump 59 in the ICM flush line 61 may be connected to the ICM inlet 51 and ICM outlet 53 with flexible hoses 63 thereby allowing compact assembly of the ICM 1. Alternatively, the pump 59 may be connected with rigid piping or tubing to provide structural integrity to the assembly of the ICM 1. Additionally, the inlet of the pump 59 may be provided with a check valve 61 to prevent back flow through the pump 59. For example, the check valve 61 may be a ball check valve, a diaphragm check valve, a stop-check valve, an in-line check valve, or other check valves as known to one of ordinary skill in the art. Alternatively, according to another embodiment, no check valve may be provided at the inlet of the pump 59.
According to some embodiments, as explained above, the check valve 55 may be isolated from negative pressure from the fan blower 7 in a negative pressure-type air conditioning unit in order to avoid negative pressure from closing the check valve 55. In a flow profile of the upstream drainage portion 23 having a condensate level and an air gap thereabove, negative pressure may urge the check valve 55 to the closed position even while condensate is flowing through the drainage system 17. Isolating the check valve 55 from the negative pressure at the system inlet 19 with, for example, the upstream trap 35, prevents such negative pressure from affecting operation of the check valve 55.
Similarly, the check valve 55 may be isolated from the positive pressure from a positive pressure-type air conditioning unit. In a flow profile of the upstream drainage portion 23 having a condensate level and an air gap thereabove, positive pressure may urge the check valve 55 to the open position even while, for example, condensate is back flowing through the check valve 55. Isolating the check valve 55 from the positive pressure at the system inlet 19 with, for example, the upstream trap 35, prevents such positive pressure from affecting operation of the check valve 55.
Referring again to
Referring now to
The negative pressure created by the pump 59 in the drain pan 15 and upstream drainage portion 23 of the drainage system 17, causes obstructions to become dislodged and be pumped through the drainage system 17. In the downstream drainage portion 25 of the drainage system 17, the positive pressure created by the pump 59 will force obstructions to become dislodged and be pumped through the drainage system 17 by forcing condensate against the obstruction. Therefore, actuation of pump 59 to an ON configuration applies negative and positive pressure to the upstream drainage portion 23 and downstream drainage portion 25, respectively, to clear the entire drainage system 17 of obstructions. When the pump 59 is de-energized or actuated to the OFF or standby mode, the check valve 55 will return to normal operation. Advantageously, any backflow of liquid immediately after the pump 59 is de-energized will be contained in the downstream drainage portion 25 by closure of the check valve 55.
According to other embodiments, a person of skill in the art will recognize that although condensate is referred to in the exemplary embodiments, any liquid may be in the system. Additionally, one of ordinary skill in the art will recognize from the present disclosure, that the pump 59 may pump air or other gases to obtain the described pressure differential across check valve 55. However, due to the generally incompressible nature of liquids, submerging the ICM 1 in condensate or liquid, including the pump 59 and check valve 55, may achieve a faster check valve 55 response time when the pump 59 is actuated to the ON position or flushing mode. Thus, the ICM 1 protects the air conditioning unit 3 from backflow conditions and flushes the entire drainage system 17 through use of the single check valve 55, as explained above. Integrating these functions into a single check valve allows for fewer parts, lighter weight, and simpler installation of the ICM 1 over the prior art installations.
The pump 59, and, therefore the ICM 1, is actuated or energized through an ICM logic panel 71 and associated electrical components. Referring now to
Referring again to
Referring now to
Similarly, water sensors (not shown) may be provided in the air handler 5, drain pan 15, or external to the air conditioning unit 3 to alert the ICM logic panel 71 of the presence of water or liquid.
Referring now to
Referring now to
Upon a user manually pushing a button on the ICM 1 or remotely activating the ICM 1, the logic panel 71 activates the pump 59 to the ON position or flushing mode. As explained above, the pump 59 creates a negative pressure or vacuum at the ICM inlet 51 and a positive pressure at the ICM outlet 53 thereby flushing the drainage system 17. The ICM 1 continues flushing the drainage system 17 for approximately one minute, or any other predetermined time period, to clean the drainage system 17 of zooglea, buildup, or other debris while the air conditioning unit 3 operates normally. Thereafter, the logic panel 71 deactivates the pump 59 and returns it to the standby mode.
Referring now to
If the float switch 91 indicates that the condensate level in the drain pan 15 is at a normal level, the logic panel 71 determines that the clog or obstruction in the drainage system 17 is cleared. Next, the logic panel 71 re-energizes the compressor to return the air conditioning unit 3 to normal operations and returns the ICM 1 to standby mode.
If the float switch 91 indicates that the condensate level in the drain pan 15 remains at an elevated level, the logic panel 71 determines that the clog or obstruction in the drainage system 17 is not cleared. According to an embodiment, the logic panel 71 may re-activate or energize the pump 59 to the ON position or flushing mode to attempt to clear the clog or obstruction in the drainage system. After each attempt the logic panel 71 may check the float switch 91 to determine the condensate level in the drain pan 15. If the float switch 91 indicates that the condensate level in the drain pan 15 is at a normal level after any subsequent attempt, the logic panel 71 determines that the clog or obstruction in the drainage system 17 is cleared. Next, the logic panel 71 reactivates the compressor to return the air conditioning unit 3 to normal operations and returns the ICM 1 to standby mode. However, after a predetermined number of attempts, or after only one attempt, to clear the clog or obstruction, the logic panel 71 may alert the user, homeowner, and/or monitoring company of the high condensate level in the drain pan 15. In order to prevent damage to the air conditioning unit 3, the logic panel 71 may keep the compressor de-energized. The logic panel 71 may additionally alert the user, homeowner, and/or monitoring company according to various alarm codes such as, for example, low battery, high condensate level, presence of water sensed by a water sensor (not shown), or a stuck float switch. According to an embodiment, the logic panel 91 may lock out the compressor from being re-energized.
According to an embodiment, the float switch 91 alerts the logic panel 71 of a high condensate level on a first motion of being elevated to a predetermined condensate level. Once the logic panel 71 is alerted of the high condensate level, the logic panel 71 operates as described above according to the sequence of
Referring now to
The wire Y may be wired from the logic panel 71 to a compressor relay 101 to deliver 24-volt alternating current from the furnace 103 or air handler transformer (not shown) via wire BLK through the logic panel 71 to the compressor. Under normal operating conditions, the wire Y sends control current to operate the compressor. However, if the logic panel 71 is alerted to an abnormal operating condition, such as a flooding or overflow condition, the logic board 71 will lock out the control current to de-energize the compressor.
The wire B may be wired from the ICM logic panel 71 to the common terminal C of the furnace 103 or air handler 5. The wire B supplies the neutral or common side of the 24-volt alternating current circuit to the compressor relay 101. The wire B is also used to power the logic panel 71, charge the battery 77, and supply current to operate electronics within the logic panel 71.
The wire RED may be wired from the ICM logic panel 71 to the R terminal on the furnace 103 or air handler 5. The wire RED supplies the hot or low 24-volt alternating current supply from a transformer (not shown) within the furnace 103 or air handler 5. The wire RED completes the circuit with the wire B, described above, to power the logic panel 71, charge the battery 77, and supply current to operate electronics within the logic panel 71.
The wire W connects the furnace 101 or air handler 5 to thermostat 105 to call for heat at the furnace 101 or air handler 5.
The wire G connects the furnace 101 or air handler 5 to thermostat 105 to call for fan operation at the furnace 101 or air handler 5.
The wire Y connected to terminal Y of the furnace 101 or air handler 5 and terminal Y of thermostat 105 may be energized when the thermostat 105 closes the circuit within the thermostat 105 to call for air conditioning when temperature rises to above a predetermined level. The hot or low 24-volt alternating current flow via wire Y to a wire BR of the logic panel 71 and float switch 91. The wires BR and YL between the terminals Y of the thermostat 105 and furnace 103 or air handler 5 are normally closed under normal operating conditions. Therefore, under normal operating conditions when the float switch 91 is below a predetermined level, current flows through the float and other wire BR leaving the float switch 91. Current then flows into the wire YL and the wire BR to the logic panel 71. The wire YL passes current through the logic panel 71 and back to the wire YL to the compressor relay 101 to complete the control circuit. However, if the logic panel 71 is alerted to an abnormal operating condition, such as a flooding or overflow condition, the logic panel 71 will open the circuit to de-energize the compressor. Similarly, as the float switch 91 rises above a predetermined level, the float switch 91 will open the circuit to the logic panel 71 and break the 24-volt alternating current to the logic board 71. Additionally, the logic board 71 energizes the pump 59 to flush the drainage system 17, as described above.
Referring now to
Referring now to
The pump inlet 111 to the ICM flush line 61 may be arranged at a lower portion of the ICM inlet 51 such that the pump inlet 111 is below a condensate or fluid level in the ICM inlet 51. According to an embodiment, the pump inlet 111 may be a port or a bull opening on a tee from the ICM inlet 51 in order to create a space under the ICM inlet 51 to collect a reservoir of condensate or fluid from the drainage system 17. According to an embodiment, the pump inlet 111 may be arranged at the lowermost portion of the ICM inlet 51. As condensate or fluid gravity drains away from the drain pan 15 and into the drainage system 17, a reservoir of condensate or fluid may be formed at the ICM inlet 51 and in the pump inlet 111 of the ICM flush line 61. According to an embodiment, the pump inlet 111 is always submerged in condensate or fluid when fluid is in the drainage system 17.
The pump outlet 113 of the ICM flush line 61 may be arranged at an upper portion of the ICM outlet 53. According to an embodiment, the pump outlet 113 may be arranged at the uppermost portion of the ICM outlet 53. According to an embodiment, the condensate or fluid level may be below the pump outlet 113 in order to reduce backpressure on or backflow to the pump 59.
When the pump 59 is activated, such as by an operating sequence, as explained above, the pump 59 may immediately draw in water from the pump inlet 111 submerged in condensate or fluid. The immediate draw of condensate or fluid may quickly and efficiently prime the pump and more quickly create a pressure differential to seal the check valve 55.
The embodiments illustrated and discussed in this specification are intended only to teach those skilled in the art the best way known to the inventors to make and use the invention. Nothing in this specification should be considered as limiting the scope of the present invention. All examples presented are representative and non-limiting. The above-described embodiments of the invention may be modified or varied, without departing from the invention, as appreciated by those skilled in the art in light of the above teachings. It is therefore to be understood that, within the scope of the claims and their equivalents, the invention may be practiced otherwise than as specifically described.
This application claims priority to U.S. Provisional Application Ser. No. 61/725,828, filed on Nov. 13, 2012, U.S. Provisional Application Ser. No. 61/752,364, filed on Jan. 14, 2013, and U.S. Provisional Application Ser. No. 61/792,640, filed on Mar. 15, 2013, the disclosures of which are incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
61725828 | Nov 2012 | US | |
61752364 | Jan 2013 | US | |
61792640 | Mar 2013 | US |