The invention relates to a condensation plant having the features set forth in claim 1.
Condensation plants are utilized for cooling turbines or process exhaust steam and in use in very large sizes for many years in the energy field. The efficiency of a power plant depends to a not insignificant degree on the condensation capacity of the condensation plant. Local weather conditions and accompanying wind speeds and wind directions have a significant impact on the condensation capacity. Current constructions of condensation plants have wind shielding walls which fully surround the heat exchanger elements to prevent a direct recirculation of the heated cooling air. The wind shielding walls are normally arranged vertically or sometimes even slantingly inclined to the outside, depending on prescribed structural regulations.
It has been found that winds that impact from the side and forced underneath the fans cause a local pressure drop beneath the fans, when the wind speeds are high. The presence of a pressure below atmospheric renders the fans incapable to convey sufficient cooling air, thereby reducing the condensation capacity. As a result, accumulating steam cannot be condensed quickly enough so that the output of a turbine connected to the steam circulation must be reduced in some circumstances.
This problem has been known for some time and has been addressed for example by mounting barriers, so called wind crosses, in the suction space beneath the fans. Wind crosses divide the suction space beneath the fans into single zones. It is to be taken into account hereby that the fans are mounted sometimes at a height of up to 50 m. The wind crosses are normally built to a height of about 30% of this free space so that wind coming from the side cannot flow unimpeded beneath the fans but rather is upwardly deflected, when impacting the wind crosses, and directed to the fans. Even though the wind crosses cause an improvement in efficiency and a reduction of the pressure drop of peripheral fans, the flow against the peripheral fans is oftentimes unsatisfactory.
The invention is based on the object to reduce the adverse effects of winds that flow from the side against a condensation plant mounted to a support structure.
This object is attained by a condensation plant having the features set forth in claim 1.
Advantageous improvements of the invention are the subject matter of the sub-claims.
The object is essentially attained by a wind shielding wall which is arranged at an inclination with respect to the wind direction and has a bottom edge which projects further outwards than the top edge thereof. Model calculations confirmed a reduction of added pressure drops as induced by the wind in the order of at least 10%, regardless whether an additional wind cross is arranged beneath the fans. The advantages are especially brought to bear on the fans arranged on the perimeter of the condensation plant, where the pressure drop could be reduced by about 20%.
The entire wind shielding wall or also only a section of its height may be configured at an inclination. An angle of inclination from 5° to 35°, in particular from 15° to 30°, in relation to a vertical has been considered appropriate. The angle of inclination, however, may not be so great as to cause a significant cross sectional narrowing that hinders an unobstructed flow of the heated cooling air upwards because this would adversely affect the efficiency. For example, a wind shielding wall of a height of about 10 m may be shifted on its top edge by 1 m to 3 m in the direction of the heat exchanger element. As a result, the cross section is decreased only to an insignificant extent. When a respective installation space is made available, the bottom edge of the wind shielding wall may in principle also be shifted to the outside. In this way, the inclination can even be increased, without reducing the flow off cross section. When the wind shielding wall has a height of about 10 m, a maximum lateral offset of 3 m+3 m=6 m would then be possible for example.
In addition, or as an option, the wind shielding wall may be curved concavely in the direction of the heat exchanger elements. Also in this way, a greater portion of the laterally impacting wind is upwardly deflected so that the pressure drop beneath the peripheral fans is smaller. As the volume flow of the upwardly deflected wind increases, an additional barrier of cold air is created which also advantageously counteracts a warm air circulation. The inclination of the wind shielding walls has also advantages in respect to the warm air circulation on the side of the condensation plant that faces away from the wind because the warm air does not flow vertically at the perimeter but flows off further inwards in accordance with the inclination of the wind shielding wall. As a result, the flow path of the recirculating warm air is longer.
In addition, the wind shielding wall may be provided with a horizontal profiling at least in a height zone adjacent to the bottom edge. Wind shielding walls having trapezoidal profiles are typically erected, whereby the profiling extends in vertical direction, i.e. from bottom to top. This alignment of the profiling has a positive effect on the flow behavior insofar as the wind is deflected downwardly or upwardly. However, especially the downward deflection is unwanted. Therefore, at least the height zone adjacent to the bottom edge may have a profiling which provides a flow barrier. The upper height zone of the wind shielding wall may conversely have a vertical profiling so that the upward flow of wind is not impeded.
Exemplary embodiments of the invention will now be described in greater detail with reference to the drawings, in which:
This problem is addressed by arranging the wind shielding walls at an inclination, as depicted in
Essential in this embodiment of a condensation plant is the configuration of the wind shielding wall 13 which is inclined in relation to the vertical V in the exemplary embodiment of
The same effect is realized also when the wind shielding wall is not straight but concavely curved, as shown in the embodiment of
Number | Date | Country | Kind |
---|---|---|---|
10 2005 024 156.5 | May 2005 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE2006/000878 | 5/22/2006 | WO | 00 | 11/21/2007 |