This application is based upon and claims the benefit of priority from the prior Japanese Patent Application NO. 2011-037435 filed on Feb. 23, 2011, the entire contents of which are incorporated herein by reference.
The embodiments disclosed hereafter are related to a condensation sensing device that detects water droplets produced by condensation to sense the condensation.
When the temperature of a component of an electronic apparatus decreases below the dew point of the surrounding atmosphere, condensation occurs on the component of the electronic apparatus. Moisture produced by the condensation could cause corrosion of a metal part in the electronic apparatus, short circuit between electrodes in an electric circuit in the electronic apparatus, and other faults resulting from the condensation.
In general, the temperature and humidity of the environment in which a liquid-cooled electronic apparatus is installed and the temperature of the coolant are controlled so as to avoid condensation. However, if an air conditioner malfunctions or a coolant output device experiences an abnormal temperature, the temperature of the coolant decreases below the dew point at the electronic apparatus, and condensation may occur inside the electronic apparatus. Even under such a condition, the electronic apparatus may be turned on or kept operating. In that case, when the amount of water produced by the condensation in the electronic apparatus exceeds a certain limit, short circuit could occur between electrodes in an electric circuit in the electronic apparatus, and the short circuit may cause malfunction of the electric circuit, burnout of the electric circuit, or other failures.
To prevent such faults resulting from condensation, it has been proposed to provide a condensation sensor in an electronic apparatus to sense condensation, have been proposed. In this proposal, when the condensation sensor senses condensation, the electronic apparatus may be prevented from turning on, or the inside of the electronic apparatus may be dried.
There are a variety of types of condensation sensors. One type of known condensed water sensor senses condensation by sensing that water droplets produced by the condensation flow out and reach a sensing portion. A condensed water sensor of this type typically includes a measurement plate made of metal or any other material on which condensation tends to occur and a water droplet sensor (liquid sensor) provided in part of the measurement plate. That is, the measurement plate has a structure in which water droplets produced by condensation flow to the water droplet sensor, which detects the water droplets having flowed thereto to sense the condensation.
The light guide 3 is a prismatic member and has an inclined surface 3a that reflects the light from the light source 4 and another inclined surface 3b that further reflects the reflected light toward the receiver 5. Specifically, the light emitted from the light source 4 is reflected off the inclined surface 3a, further reflected off the inclined surface 3b, and incident on the receiver 5. The receiver 5 detects the intensity of the light incident thereon and outputs a detection result.
When no condensation has occurred on the measurement plate 1 or the amount of condensation is small, there is an air gap between the inclined surface 3a of the light guide 3 and the surface of the measurement plate 1, as depicted in
On the other hand, when condensation occurs on the measurement plate 1, and water droplets are produced and flow down, the water droplets having flowed down are accumulated between the inclined surface 3a of the light guide 3 and the surface of the measurement plate 1, as depicted in
As described above, detecting any decrease in the intensity of the light incident on the receiver 5 allows the sensor to sense that water droplets have attached to the inclined surface 3a and hence sense the condensation.
As an example of the method for detecting that water droplets have attached based on the light transmittance that changes when the water droplets have attached as described above, a method for detecting water droplets on the windshield of an automobile has been proposed. The method for detecting water droplets disclosed in Japanese Laid-Open Patent Publication No. 10-311786, however, is a method for detecting water droplets that attach to the windshield of an automobile, such as raindrops, and is not a method for detecting water droplets produced by condensation.
Japanese Laid-Open Patent Publication No. 10-311786
In the method for detecting water droplets produced by condensation on the measurement plate 1, condensation may be detected only after large water droplets are formed by the condensation, as depicted in
It may take time, typically several minutes to several tens of minutes, for water droplets produced by condensation to start flowing and to be detected by the water droplet sensor in a certain amount, although the period depends on the temperature and humidity of the environment in which the water droplet sensor is installed. Further, only a limited area may be available for collecting water droplets produced by condensation in an electronic apparatus having densely packed components; in such a case, even all collected water droplets produced in an initial stage of condensation may not produce enough amount of water to be detectable to the water droplet sensor. In this case, it is requested to keep collecting the water droplets produced by the condensation, and it could take a long period to collect a sufficient amount of water.
According to one aspect of the embodiments, there is provided a condensation sensing device that detects water droplets produced by condensation to sense the condensation. The condensation sensing device includes a condensation producing section having a surface on which condensation occurs, recesses and protrusions formed on the surface of the condensation producing section, and a water droplet detecting section that detects water droplets produced by the condensation that occurs in the condensation producing section. The condensation sensing device is installed so that the surface of the condensation producing section extends in a direction that intersects a horizontal direction, and that the recesses and protrusions are disposed above the water droplet detecting section.
Another aspect of the embodiments, there is provided a condensation sensing method for sensing condensation in an electronic apparatus. The method includes causing condensation to occur on a surface of a condensation producing section, causing water droplets produced by the condensation to move along recesses and protrusions formed on the surface of the condensation producing section so that the water droplets are introduced into a water droplet detecting section, and detecting the water droplets by using the water droplet detecting section and outputting a condensation detection signal.
The object and advantages of the embodiments will be realized and attained by means of the elements and combinations particularly pointed out in the claims.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are not restrictive of the embodiments, as claimed.
Embodiments will next be described with reference to the drawings.
An electronic apparatus 10 depicted in
When the cooled water flows through the cooling water path, heat-generating parts and other components inside the water-cooled electronic device 12 are cooled. The cooled water heated in the water-cooled electronic device 12 into high-temperature water (hereinafter referred to as heated water) flows through a cooling water flow-out conduit 18 back to the cooled water supplier 14, where the heated water is cooled into cooled water again and supplied to the water-cooled electronic device 12.
The cooled water supplier 14, which is a device that cools the heated water into cooled water by using a known cooling mechanism, is not described in detail. The water-cooled electronic device 12 is a server, a computer, or an electronic apparatus including a known water-based cooling mechanism, and the internal structure of the water-cooled electronic device 12 is not described in detail.
In the present embodiment, a condensation sensing device 20 that senses condensation in the water-cooled electronic device 12 is provided. The condensation sensing device 20 is disposed between the cooled water flow-in conduit 16, through which cooled water from the cooled water supplier 14 is supplied, and the water-cooled electronic device 12. The condensation sensing device 20 includes a condensed water collector plate 22 and a water droplet sensor (water droplet detecting section) 24 provided in a lower portion of the condensed water collector plate 22.
The condensed water collector plate 22 is a plate-shaped member made of stainless steel, aluminum, or a material on the surface of which condensation tends to occur, and a cooled water path 22a (see
Cooled water supplied from the cooled water supplier 14 through the cooled water flow-in conduit 16 therefore first enters the cooled water path 22a in the condensed water collector plate 22, flows inside the condensed water collector plate 22, and then is supplied to the cooling water path in the water-cooled electronic device 12 via the connection conduit 26. The condensed water collector plate 22 is therefore cooled with the cooled water supplied from the cooled water supplier 14 so that the temperature of the condensed water collector plate 22 approaches the temperature of the cooled water.
The condensed water collector plate 22 is disposed in the vicinity of an air intake opening of the water-cooled electronic device 12, and the environment (temperature, humidity) around the condensed water collector plate 22 is therefore the same as or similar to the environment (temperature, humidity) in the water-cooled electronic device 12. In this configuration, when condensation occurs in the water-cooled electronic device 12, so does on the surface of the condensed water collector plate 22. The condensed water collector plate 22 is an example of a condensation producing section that allows condensation to occur.
When condensation occurs on the surface of the condensed water collector plate 22 and proceeds, water droplets are produced. The water droplets grow as the condensation proceeds and eventually flow down along the surface of the condensed water collector plate 22 because surface tension may not hold large water droplets. The flowing water droplets are guided to and accumulated on the water droplet sensor 24 provided in a lower portion of the condensed water collector plate 22. When the amount of accumulated water droplet reaches a predetermined value, the water droplet sensor 24 responds, senses the water droplets, and outputs a signal representing that water droplets have been sensed.
To guide water droplets produced by condensation to the water droplet sensor 24 in the lower portion as described above, it is preferable to orient the condensed water collector plate 22 in such a way that the surface where condensation occurs vertically extends. The condensed water collector plate 22, however, does not necessarily vertically extend but need only not horizontally extend, which does not allow water droplets to flow. That is, the surface of the condensed water collector plate 22 may extend in a direction that intersects the horizontal direction.
When the width of each of the recesses of the recesses and protrusions is too small, water droplets are left in the recesses and do not tend to flow downward along the recesses and protrusions. It is therefore preferable to set the width of each of the recesses to be greater than the diameter of each flowing water droplet.
The cross-sectional shape of the recesses and protrusions is not limited to those depicted in
A condensation sensing method for sensing condensation by using the condensation sensing device will be described with reference to
After the condensation sensing procedure starts, a controller of the electronic apparatus 10 first acquires a signal from the condensation sensing device 20 (step S1). The controller of the electronic apparatus 10 then judges whether or not the signal from the condensation sensing device 20 represents that water droplets have been detected (step S2). When the judgment result in step S2 shows that the signal from the condensation sensing device 20 does not represent that water droplets have been detected, the control returns to step S1 and the controller acquires a signal from the condensation sensing device 20 again.
On the other hand, when the judgment result in step S2 shows that the signal from the condensation sensing device 20 represents that water droplets have been detected, the control proceeds to step S3. In step S3, the controller shuts off (turns off) the electronic apparatus 10. At this point, a display device may notify an operator or an alarm may be issued to notify the operator that condensation has occurred. Alternatively, instead of turning off the electronic apparatus 10, the inside of the water-cooled electronic device 12 may be dried so that the amount of condensation decreases.
According to the condensation sensing method described above, since the condensation sensing device 20 described above is used to sense condensation, condensation may be sensed quickly after the condensation occurs. That is, condensation is quickly sensed by using the condensed water collector plate 22, on which recesses and protrusions are provided, to collect water droplets produced by the condensation. As a result, before the amount of condensation in the water-cooled electronic device 12 (the amount of water produced by condensation) reaches a value that causes a problem, the water-cooled electronic device 12 may be turned off or any other suitable measures may be taken. Faults resulting from the condensation may therefore be reliably prevented.
Environment in which electronic apparatus is installed:
When an air conditioner normally operates, the room temperature is 25° C. and the humidity is 50% (dew point: 13.9° C.).
When the air conditioner malfunctions, the room temperature is 28° C. and the humidity is 70% (dew point: 22.0° C.).
The line connecting the symbols “white diamond” in
The line connecting the symbols x in
The line connecting the symbols “white triangle” in
The calculation results depicted in
1) When the temperature of the condensed water collector plate (16° C.) decreases below the dew point of 22.0° C., condensation occurs and the amount of water produced by the condensation increases in proportion to the time after the condensation occurs.
2) The water layers on the three types of surfaces, “flat surface,” “recesses and protrusions in FIG. 4,” and “recesses and protrusions in FIG. 5” have the same thickness and increase to 0.2 mm five minutes after the condensation occurs, and the water droplets start flowing down. Since the water droplets flowing along the three types of surfaces have the same surface density, water droplets flowing along a surface having a greater area result in a greater amount of water that reaches the water droplet sensor.
3) In the case of “narrow groove width” (groove width=0.2 mm), water droplets do not flow down due to a capillary action until part of the water droplets attaches to the grooves and fills them (nine minutes), and the water droplets start flowing after nine minutes.
A total period ta from the point when condensation starts to the point when the water droplet sensor responds is ta=t0+t1. In the expression, t0 represents the period from the point when condensation starts to the point when water droplets start flowing, and t1 represents the period from the point when the water droplets start flowing to the point when the water droplet sensor responds. The following table summarizes calculation results for the three types of surfaces, “flat surface,” “recesses and protrusions in FIG. 4,” and “recesses and protrusions in FIG. 5.” It is noted that the period t0, which is the period from the point when condensation starts to the point when water droplets start flowing, is five minutes.
As described above, using the condensed water collector plate having recesses and protrusions according to the present embodiment allows the condensation sensing period to shorten by three to six minutes as compared with the case where a condensed water collector plate having a flat surface of related art is used. It is, however, noted that the period to be shortened depends on a variety of conditions and is presented by way of example under the calculation conditions described above. The electronic apparatus may be turned off earlier by the shortened condensation sensing period, whereby faults resulting from condensation may be reliably prevented. After the electronic apparatus is turned off, the inside of the electronic apparatus may be dried and the electronic apparatus may then resume normal operation.
The recesses and protrusions or the grooves depicted in
Further, in
A second embodiment will next be described. An electronic apparatus according to the second embodiment is substantially the same as the electronic apparatus according to the first embodiment but differs therefrom only in terms of the recesses and protrusions of the condensed water collector plate. No description of the same portions will therefore be made.
That is, the size of the projections 40 is set to be approximately equal to or slightly smaller than the size of a water droplet produced by condensation on the surface of the condensed water collector plate 22B and flowing down by gravity. In this way, a water droplet produced by condensation flows down along the surface before the water droplet grows and falls under its own weight. A water droplet produced by condensation and growing on each of the projections 40 hangs from the projection 40, which projects from the surface of the condensed water collector plate 22B. In this case, the strength at which the water droplet attaches to the projection is smaller than the strength at which a water droplet attaches to a flat surface. The water droplet that hangs from each of the projections 40 falls under its own weight before it grows large, whereby the period from the point when condensation starts to the point when the water droplet flows down is shorter than the period for a flat surface. The water droplet sensor 24 may therefore detect water droplets and sense the condensation more quickly.
As described above, forming a plurality of particulate projections 40 on the surface of the condensed water collector plate 22B, which is an example of the condensation producing section, not only allows the area of the surface where condensation occurs to increase but also allows the number of nuclei that form water droplets to increase. In this way, the surface density of water droplets that start flowing may be increased, and as a result, the period from the point when water droplets start flowing to the point when the water droplets flow out and are accumulated to a detectable amount may be shortened.
The shape of each of the projections 40 is not limited to hemispherical but may be any shape that projects from the surface and has the size described above. Further, a method for forming the projections 40 may be forging based on a die, casting in which a molten metal is injected into a mold, machining, or any other suitable method.
Adding the projections according to the second embodiment to the recesses and protrusions according to the first embodiment allows the period from the point when condensation starts to the point when the condensation is sensed may be further shortened.
All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the invention and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions, nor does the organization of such examples in the specification relate to a depicting of the superiority and inferiority of the invention. Although the embodiments of the present invention have been described in detail, it should be understood that the various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2011-037435 | Feb 2011 | JP | national |