CONDENSED CYCLIC COMPOUND AND ORGANIC LIGHT-EMITTING DEVICE COMPRISING THE SAME

Information

  • Patent Application
  • 20160308144
  • Publication Number
    20160308144
  • Date Filed
    November 13, 2015
    8 years ago
  • Date Published
    October 20, 2016
    7 years ago
Abstract
An organic light-emitting device includes: a first electrode; a second electrode facing the first electrode; and an organic layer between the first electrode and the second electrode, the organic layer including an emission layer, and further including at least one condensed cyclic compound of Formula 1. The organic light-emitting device may have high efficiency and a long lifespan.
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority to and the benefit of Korean Patent Application No. 10-2015-0053770, filed on Apr. 16, 2015, in the Korean Intellectual Property Office, the entire content of which is incorporated herein by reference.


BACKGROUND

1. Field


One or more aspects of example embodiments of the present disclosure relate to a condensed cyclic compound and an organic light-emitting device including the same.


2. Description of the Related Art


Organic light-emitting device is a self-emission device that has a wide viewing angle, a high contrast ratio, a fast response rate, and excellent brightness, driving voltage, and response speed characteristics, and can produce full-color images.


An organic light-emitting device may have a structure in which a first electrode is positioned on a substrate, and a hole transport region, an emission layer, an electron transport region, and a second electrode are sequentially formed on the first electrode. Holes provided from the first electrode may move toward the emission layer through the hole transport region, and electrons provided from the second electrode may move toward the emission layer through the electron transport region. Carriers such as the holes and the electrons are then recombined in the emission layer to produce excitons. These excitons change from an excited state to a ground state, thereby generating light.


SUMMARY

One or more aspects of example embodiments of the present disclosure are directed toward a condensed cyclic compound and an organic light-emitting device including the same.


Additional aspects will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the presented example embodiments.


According to one or more example embodiments, there is provided a condensed cyclic compound represented by Formula 1:




embedded image


In Formula 1,


C1 to C4 may each independently represent chemically distinct carbon atoms,


ring A1 may be represented by one selected from Formulae 2A and 2B,


ring A2 may be represented by one selected from Formulae 2C and 2D,


X1 may be selected from N-(L1)a1-(Ar1)b1, O, and S, and X2 may be selected from N-(L2)a2-(Ar2)b2, O, and S,


L1, L2, L21, and L22 may be each independently selected from a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group,


a1, a2, a21, and a22 may be each independently selected from 0, 1, 2, and 3, when a1 is 2 or more, two or more L1(s) may be identical to or different from each other, when a2 is 2 or more, two or more L2(s) may be identical to or different from each other, when a21 is 2 or more, two or more L21(s) may be identical to or different from each other, and when a22 is 2 or more, two or more L22(s) may be identical to or different from each other,


Ar1 and Ar2 may be each independently selected from a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group,


and when X1 is N-(L1)a1-(Ar1)b1 and X2 is N-(L2)a2-(Ar2)b2, at least one of Ar1 and Ar2 is selected from a substituted or unsubstituted C1-C60 heteroaryl group and a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group,


b1 and b2 may be each independently selected from 1, 2, and 3, when b1 is 2 or more, two or more Ar1(s) may be identical to or different from each other, and when b2 is 2 or more, two or more Ar2(s) may be identical to or different from each other,


R21 and R22 may be each independently selected from hydrogen, deuterium, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q1)(Q2)(Q3), —B(Q4)(Q5), and N(Q6)(Q7),


b21 and b22 may be each independently selected from 0, 1, 2, and 3, when b21 is 2 or more, two or more R21(s) may be identical to or different from each other, and when b22 is 2 or more, two or more R22(s) may be identical to or different from each other,


c21 and c22 may be each independently selected from 0, 1, 2, 3, 4, 5, and 6, when c21 is 2 or more, two or more *-[(L21)a21-(R21)b21](s) may be identical to or different from each other, and when c22 is 2 or more, two or more *-[(L22)a22-(R22)b22](s) may be identical to or different from each other, and


at least one substituent of the substituted C1-C60 alkyl group, substituted C2-C60 alkenyl group, substituted C2-C60 alkynyl group, substituted C1-C60 alkoxy group, substituted C3-C10 cycloalkyl group, substituted C1-C10 heterocycloalkyl group, substituted C3-C10 cycloalkenyl group, substituted C1-C10 heterocycloalkenyl group, substituted C6-C60 aryl group, substituted C6-C60 aryloxy group, substituted C6-C60 arylthio group, substituted C1-C60 heteroaryl group, substituted monovalent non-aromatic condensed polycyclic group, and substituted monovalent non-aromatic condensed heteropolycyclic group may be selected from:


deuterium, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group;


a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group, each substituted with at least one selected from deuterium, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —Si(Q11)(Q12)(Q13), —B(Q14)(Q15), and —N(Q16)(Q17);


a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group;


a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, each substituted with at least one selected from deuterium, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —Si(Q21)(Q22)(Q23), —B(Q24)(Q25), and —N(Q26)(Q27); and


—Si(Q31)(Q32)(Q33), —B(Q34)(Q35), and —N(Q36)(Q37),


wherein Q1 to Q7, Q11 to Q17, Q21 to Q27, and Q31 to Q37 may be each independently selected from hydrogen, deuterium, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group.


According to one or more example embodiments, an organic light-emitting device includes a first electrode, a second electrode facing the first electrode, and an organic layer between the first electrode and the second electrode, the organic layer including an emission layer, wherein the organic layer includes at least one condensed cyclic compound as described above.


BRIEF DESCRIPTION OF THE DRAWINGS

These and/or other aspects will become apparent and more readily appreciated from the following description of the example embodiments, taken in conjunction with the drawing, which schematically illustrates a structure of an organic light-emitting device according to example embodiments of the present disclosure.







DETAILED DESCRIPTION

Reference will now be made in detail to example embodiments, an example of which is illustrated in the accompanying drawing. In this regard, the present example embodiments may have different forms and should not be construed as being limited to the descriptions set forth herein. Accordingly, the example embodiments are merely described below, by referring to the drawing, to explain aspects of the present description. The term “and/or” used herein includes any and all combinations of one or more of the associated listed items. Expressions such as “at least one of,” “one of,” “at least one selected from,” and “one selected from,” when preceding a list of elements, modify the entire list of elements and do not modify the individual elements of the list. Further, the use of “may” when describing embodiments of the present invention may refer to “one or more embodiments of the present invention.”


A condensed cyclic compound according to one or more example embodiments of the present disclosure is represented by Formula 1:




embedded image


In Formula 1,


C1 to C4 may each independently represent chemically distinct carbon atoms,


ring A1 may be represented by one selected from Formulae 2A and 2B, and


ring A2 may be represented by one selected from Formulae 2C and 2D.


According to an example embodiment, ring A1 may be represented by one selected from Formulae 2A-1 and 2B-1, and


ring A2 may be represented by one selected from Formulae 2C-1 and 2D-1:




embedded image


L21, L22, R21, R22, a21, a22, b21, and b22 in Formulae 2A-1 to 2D-1 may be each independently understood by referring to descriptions thereof provided herein.


In Formula 1, X1 may be selected from N-(L1)a1-(Ar1)b1, O, and S, and X2 may be selected from N-(L2)a2-(Ar2)b2, O, and S. For example, when X1 is N-(L1)a1-(Ar1)b1, X2 may be selected from N-(L2)a2-(Ar2)b2, O, and S.


L1, L2, L21, and L22 in Formulae 1 and 2A to 2D may be each independently selected from a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group.


For example, L1, L2, L21, and L22 in Formulae 1 and 2A to 2D may be each independently selected from:


a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an indacenylene group, an acenaphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a rubicenylene group, a coronenylene group, an ovalenylene group, a pyrrolylene group, a thiophenylene group, a furanylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, an isoindolylene group, an indolylene group, an indazolylene group, a purinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a carbazolylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzoimidazolylene group, a benzofuranylene group, a benzothiophenylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an oxadiazolylene group, a triazinylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a thiadiazolylene group, an imidazopyridinylene group, and an imidazopyrimidinylene group; and


a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an indacenylene group, an acenaphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a rubicenylene group, a coronenylene group, an ovalenylene group, a pyrrolylene group, a thiophenylene group, a furanylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, an isoindolylene group, an indolylene group, an indazolylene group, a purinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a carbazolylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzoimidazolylene group, a benzofuranylene group, a benzothiophenylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an oxadiazolylene group, a triazinylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a thiadiazolylene group, an imidazopyridinylene group, and an imidazopyrimidinylene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group.


For example, L1, L2, L21, and L22 in Formulae 1 and 2A to 2D may be each independently selected from groups represented by Formulae 3-1 to 3-38:




embedded image


embedded image


embedded image


embedded image


In Formulae 3-1 to 3-38,


Y11 may be selected from O, S, C(Z13)(Z14), N(Z15), and Si(Z16)(Z17)


Z11 to Z17 may be each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group,


d1 may be an integer selected from 1, 2, 3, and 4, d2 may be an integer selected from 1, 2, and 3, d3 may be an integer selected from 1, 2, 3, 4, 5, and 6, d4 may be an integer selected from 1, 2, 3, 4, 5, 6, 7, and 8, d5 may be 1 or 2, d6 may be an integer selected from 1, 2, 3, 4, and 5, and each of * and *′ indicates a binding site to a neighboring atom.


In some embodiments, L1, L2, L21, and L22 in Formula 1 and 2A to 2D may be each independently selected from:


a phenylene group, a naphthylene group, a pyridinylene group, a dibenzofuranylene group, and a dibenzothiophenylene group; and


a phenylene group, a naphthylene group, a pyridinylene group, a dibenzofuranylene group, and a dibenzothiophenylene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C10 alkyl group, a phenyl group, a naphthyl group, a pyridinyl group, a pyrimidinyl group, and a triazinyl group, but embodiments of the present disclosure are not limited thereto.


According to example embodiments, L1, L2, L21, and L22 in Formulae 1 and 2A to 2D may be each independently selected from groups represented by Formulae 4-1 to 4-25, but are not limited thereto:




embedded image


embedded image


embedded image


Each of * and *′ in Formulae 4-1 to 4-25 indicates a binding site to a neighboring atom.


a1, a2, a21, and a22 in Formula 1 and 2A to 2D may be each independently selected from 0, 1, 2, and 3. a1 indicates the number of L1 in Formula 1, and when a1 is 2 or more, two or more L1(s) may be identical to or different from each other. When a1 is 0, -(L1)a1- is a single bond. a2 indicates the number of L2 in Formula 1, and when a2 is 2 or more, two or more L2(s) may be identical to or different from each other. When a2 is 0, -(L2)a2- is a single bond. According to an example embodiment, a21 may be 0, 1, or 2. a21 indicates the number of L21 in Formulae 2A to 2D, and when a21 is 2 or more, two or more L21(s) may be identical to or different from each other. When a21 is 0, -(L21)a21- is a single bond. According to an example embodiment, a22 may be 0, 1, or 2. a22 indicates the number of L22 in Formulae 2A to 2D, and when a22 is 2 or more, two or more L22(s) may be identical to or different from each other. When a22 is 0, -(L22)a22- is a single bond. In some example embodiments, a22 may be 0 or 1. For example, a21 and a22 in Formula 1 may be both 0.


Ar1 and Ar2 in Formula 1 may be each independently selected from a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group.


For example, Ar1 and Ar2 in Formula 1 may be each independently selected from:


a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a thiadiazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group; and


a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a thiadiazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, and —Si(Q31)(Q32)(Q33),


where Q31 to Q33 may be each independently selected from a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a thiadiazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group.


In some embodiments, Ar1 and Ar2 in Formula 1 may be each independently selected from:


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group; and


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, and —Si(Q31)(Q32)(Q33),


where Q31 to Q33 may be each independently selected from a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, and a naphthyl group, but embodiments of the present disclosure are not limited thereto.


According to an example embodiment, Ar1 and Ar2 in Formula 1 may be each independently selected from:


a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, a pyridinyl group, a pyrimidinyl group, a triazinyl group, a dibenzofuranyl group, and a dibenzothiophenyl group; and


a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, a pyridinyl group, a pyrimidinyl group, a triazinyl group, a dibenzofuranyl group, and a dibenzothiophenyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, a pyridinyl group, a pyrimidinyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, and —Si(Q31)(Q32)(Q33),


where Q31 to Q33 may be each independently selected from a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, and a naphthyl group.


In some example embodiments, Ar1 and Ar2 may be each independently selected from groups represented by Formulae 5-1 to 5-43, but are not limited thereto:




embedded image


embedded image


embedded image


embedded image


embedded image


In Formulae 5-1 to 5-43,


Y21 may be O, S, C(Z23)(Z24), N(Z25), or Si(Z26)(Z27),


Z21 to Z27 may be each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group,


e2 may be an integer selected from 1 and 2, e3 may be an integer selected from 1, 2, and 3, e4 may be an integer selected from 1, 2, 3, and 4, e5 may be an integer selected from 1, 2, 3, 4, and 5, e6 may be an integer selected from 1, 2, 3, 4, 5, and 6, e7 may be an integer selected from 1, 2, 3, 4, 5, 6, and 7, e9 may be an integer selected from 1, 2, 3, 4, 5, 6, 7, 8, and 9, and * indicates a binding site to a neighboring atom.


In some example embodiments, Ar1 and Ar2 in Formula 1 may be each independently selected from groups represented by Formulae 6-1 to 6-44, but are not limited thereto:




embedded image


embedded image


embedded image


embedded image


embedded image


* in Formulae 6-1 to 6-44 indicates a binding site to a neighboring atom, and “D” may refer to deuterium.


In Formula 1, when X1 is N-(L1)a1-(Ar1)b1 and X2 is N-(L2)a2-(Ar2)b2, at least one of Ar1 and Ar2 may be selected from a substituted or unsubstituted C1-C60 heteroaryl group and a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group. That is, when X1 is N-(L1)a1-(Ar1)b1 and X2 is N-(L2)a2-(Ar2)b2, the condensed cyclic compound represented by Formula 1 may have at least one substituent including a heteroatom (for example, N, O, or S).


For example, in Formula 1, when X1 is N-(L1)a1-(Ar1)b1 and X2 is N-(L2)a2-(Ar2)b2, at least one of Ar1 and Ar2 may be selected from:


a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group; and


a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group, each substituted with at least one selected from deuterium, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a phenanthrenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, and a benzoxazolyl group, but embodiments of the present disclosure are not limited thereto.


b1 in Formula 1 may be selected from 1, 2, and 3. b1 indicates the number of Ar1 in Formula 1, and when b1 is 2 or more, two or more Ar1(s) may be identical to or different from each other. According to an example embodiment, b1 may be 1 or 2. For example, b1 in Formula 1 may be 1. b2 in Formula 1 may be selected from 1, 2, and 3. b2 indicates the number of Ar2 in Formula 1, and when b2 is 2 or more, two or more Ar2(s) may be identical to or different from each other. According to an example embodiment, b2 may be 1 or 2. For example, b2 in Formula 1 may be 1.


R21 and R22 in Formula 1 (e.g., in Formulae 1 and 2A to 2D) may be each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q1)(Q2)(Q3), —B(Q4)(Q5), and N(Q6)(Q7), where Q1 to Q7 may be each independently understood by referring to descriptions thereof provided herein.


For example, R21 and R22 in Formula 1 may be each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C1-C20 alkoxy group, a substituted or unsubstituted C6-C20 aryl group, a substituted or unsubstituted C1-C20 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q1)(Q2)(Q3), —B(Q4)(Q5), and N(Q6)(Q7).


In some embodiments, R21 and R22 in Formula 1 may be each independently selected from:


hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, and a C1-C20 alkoxy group;


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group;


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, and —Si(Q31)(Q32)(Q33); and


—Si(Q1)(Q2)(Q3),


where Q1 to Q3 and Q31 to Q33 may be each independently selected from a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, and a naphthyl group.


According to an example embodiment, R21 and R22 in Formula 1 may be each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, —Si(Q1)(Q2)(Q3), and groups represented by Formulae 7-1 to 7-18, where Q1 to Q3 may be each independently selected from a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, and a naphthyl group, but embodiments of the present disclosure are not limited thereto:




embedded image


embedded image


In Formulae 7-1 to 7-18,


Y31 may be O, S, C(Z33)(Z34), N(Z35), or Si(Z36)(Z37),


Z31 to Z37 may be each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group,


f1 may be an integer selected from 1, 2, 3, 4, and 5, f2 may be an integer selected from 1, 2, 3, 4, 5, 6, and 7, f3 may be an integer selected from 1, 2, and 3, f4 may be an integer selected from 1, 2, 3, and 4, f5 may be 1 or 2, and


* indicates a binding site to a neighboring atom.


In some example embodiments, R21 and R22 in Formula 1 may be each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, —Si(Q1)(Q2)(Q3), and groups represented by Formulae 8-1 to 8-28, where Q1 to Q3 may be each independently selected from a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, and a naphthyl group, but embodiments of the present disclosure are not limited thereto:




embedded image


embedded image


embedded image


* in Formulae 8-1 to 8-28 indicates a binding site to a neighboring atom.


In some example embodiments, R21 and R22 in Formula 1 may be each independently hydrogen or a phenyl group.


b21 and b22 in Formula 1 (e.g., in Formulae 1 and 2A to 2D) may be each independently selected from 0, 1, 2, and 3. b21 indicates the number of R21, and when b21 is 2 or more, two or more R21(s) may be identical to or different from each other. For example, b21 may be 0 or 1. b22 indicates the number of R22, and when b22 is 2 or more, two or more R22(s) may be identical to or different from each other. For example, b22 may be 0 or 1.


c21 and c22 in Formula 1 (e.g., in Formulae 1 and 2A to 2D) may be each independently selected from 0, 1, 2, 3, 4, 5, and 6. c21 indicates the number of *-[(L21)a21-(R21)b21], and when c21 is 2 or more, two or more *-[(L21)a21-(R21)b21](s) may be identical to or different from each other. c22 indicates the number of *-[(L22)a22-(R22)b22], and when c22 is 2 or more, two or more *-[(L22)a22-(R22)b22](s) may be identical to or different from each other.


For example, the condensed cyclic compound represented by Formula 1 may be represented by one selected from Formulae 1A to 1 D:




embedded image


X1, X2, L1, L2, Ar1, Ar2, a1, a2, b1, b2, R21, R22, b21, and b22 in Formulae 1A to 1D may be each independently understood by referring to descriptions thereof provided herein.


In some example embodiments, the condensed cyclic compound represented by Formula 1 may be represented by one selected from Formulae 1A-1 to 1A-4, but is not limited thereto:




embedded image


In Formulae 1A-1 to 1A-4,


X1 may be selected from N(Ar1), O, and S, and X2 may be selected from N(Ar2), O, and S,


Ar1 and Ar2 may be each independently selected from groups represented by Formulae 6-1 to 6-44,


and when X1 is N(Ar1) and X2 is N(Ar2), at least one of Ar1 and Ar2 is selected from groups represented by Formulae 6-22 to 6-43, and


R21 and R22 may be each independently selected from:


deuterium, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group.


For example, the condensed cyclic compound represented by Formula 1 may be one of Compounds 1 to 64, but is not limited thereto:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


The condensed cyclic compound of embodiments of the present disclosure may include the compound represented by Formula 1, where X1 may be N-(L1)a1-(Ar1)b1, O (oxygen atom), or S (sulfur atom), and X2 may be N-(L2)a2-(Ar2)b2, O, or S, provided that, when X1 is N-(L1)a1-(Ar1)b1 and X2 is N-(L2)a2-(Ar2)b2, at least one of Ar1 and Ar2 may be selected from a substituted or unsubstituted C1-C60 heteroaryl group and a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group. Accordingly, the condensed cyclic compound represented by Formula 1 may reliably hold the injected holes and electrons in a molecular structure. An organic light-emitting device including the condensed cyclic compound represented by Formula 1 may have excellent efficiency characteristics and a long lifespan.


The condensed cyclic compound represented by Formula 1 may be synthesized by using one or more suitable organic synthetic methods. A synthesis method of the condensed cyclic compound should be apparent to those of ordinary skill in the art in view of example embodiments described below.


The condensed cyclic compound represented by Formula 1 may be used between a pair of electrodes of an organic light-emitting device. For example, the condensed cyclic compound may be included in an emission layer. Accordingly, an organic light-emitting device according to an example embodiment of the present disclosure may include a first electrode, a second electrode facing the first electrode, and an organic layer between the first electrode and the second electrode and including an emission layer, where the organic layer includes at least one condensed cyclic compound represented by Formula 1.


The expression, “(the organic layer) includes at least one condensed cyclic compound” used herein may be interpreted as “(the organic layer) includes one condensed cyclic compound of Formula 1 or at least two different condensed cyclic compounds of Formula 1.”


For example, the organic layer may include only Compound 1 as the condensed cyclic compound. For example, Compound 1 may be present in the emission layer of the organic light-emitting device. Alternatively, the organic layer may include Compound 1 and Compound 2 as the condensed cyclic compounds. Compound 1 and Compound 2 may be present in the same layer (for example, Compound 1 and Compound 2 may both be present in the emission layer).


A weight ratio of Compound 1 to Compound 2 may be from 1:9 to 9:1. In some example embodiments, the weight ratio of Compound 1 to Compound 2 may be from 5:5 to 7:3, but it is not limited thereto.


The organic layer may further include i) a hole transport region between the first electrode (e.g., an anode) and the emission layer, the hole transport region including at least one selected from a hole injection layer, a hole transport layer, a buffer layer, and an electron blocking layer, and ii) an electron transport region between the emission layer and the second electrode (e.g., a cathode), the electron transport region including at least one selected from a hole blocking layer, an electron transport layer, and an electron injection layer. The condensed cyclic compound represented by Formula 1 may be included in the emission layer.


For example, the emission layer may include at least one condensed cyclic compound represented by Formula 1. In another example, the emission layer may include at least one condensed cyclic compound represented by Formula 1, and may further include a dopant. The condensed cyclic compound may serve as a host in the emission layer, and an amount of the condensed cyclic compound in the emission layer may be greater than that of the dopant in the emission layer.


The term “organic layer” used herein may refer to a single layer and/or a plurality of layers positioned between the first electrode and the second electrode of the organic light-emitting device. A material included in the “organic layer” is not limited to an organic material.


The drawing is a schematic cross-sectional view of an organic light-emitting device 10 according to one or more example embodiments of the present disclosure.


The organic light-emitting device 10 includes a first electrode 110, an organic layer 150, and a second electrode 190.


Hereinafter, the structure of an organic light-emitting device according to an example embodiment and a method of manufacturing an organic light-emitting device according to an example embodiment will be described with reference to the drawing.


In the drawing, a substrate may be additionally positioned under the first electrode 110 or on the second electrode 190. The substrate may be a glass or transparent plastic substrate with excellent mechanical strength, thermal stability, transparency, surface smoothness, ease of handling, and/or water-resistance.


For example, the first electrode 110 may be formed by depositing or sputtering a material for forming a first electrode on the substrate. When the first electrode 110 is an anode, the material for forming a first electrode may be selected from materials having a high work function so as to facilitate hole injection. The first electrode 110 may be a reflective electrode, a semi-transmissive electrode, or a transmissive electrode. The material for forming a first electrode may be a transparent and highly conductive material, non-limiting examples of which include indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO2), and zinc oxide (ZnO). Alternatively, in order to form the first electrode 110 that is a semi-transmissive electrode or a reflective electrode, at least one selected from magnesium (Mg), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), and magnesium-silver (Mg—Ag) may be used as the material for forming a first electrode.


The first electrode 110 may have a single-layer structure, or a multi-layer structure including two or more layers. For example, the first electrode 110 may have a three-layered structure of ITO/Ag/ITO, but the structure of the first electrode 110 is not limited thereto.


The organic layer 150 is positioned on the first electrode 110. The organic layer 150 may include an emission layer.


The organic layer 150 may further include a hole transport region positioned between the first electrode 110 and the emission layer, and an electron transport region positioned between the emission layer and the second electrode 190.


The hole transport region may include at least one selected from a hole injection layer (HIL), a hole transport layer (HTL), a buffer layer, and an electron blocking layer (EBL), and the electron transport region may include at least one selected from a hole blocking layer (HBL), an electron transport layer (ETL), and an electron injection layer (EIL). However, example embodiments are not limited thereto.


The hole transport region may have a single-layer structure formed of a single material, a single-layer structure formed of a plurality of different materials, or a multi-layer structure having a plurality of layers formed of a plurality of different materials.


For example, the hole transport region may have a single-layer structure formed of a plurality of different materials or may have a structure of HIL/HTL, a structure of HIL/HTL/buffer layer, a structure of HIL/buffer layer, a structure of HTL/buffer layer, or a structure of HIL/HTL/EBL, wherein the layers of each structure are sequentially stacked from the first electrode 110 in this stated order. However, the structure of the hole transport region is not limited thereto.


When the hole transport region includes an HIL, the HIL may be formed on the first electrode 110 by using one or more suitable methods, such as vacuum deposition, spin coating, casting, an Langmuir-Blodgett (LB) method, inkjet printing, laser printing, and/or laser induced thermal imaging (LITI).


When the HIL is formed by vacuum deposition, the vacuum deposition, for example, may be performed at a deposition temperature of about 100° C. to about 500° C., at a vacuum degree of about 10−8 torr to about 10−3 torr, and at a deposition rate of about 0.01 Å/sec to about 100 Å/sec in consideration of a compound for forming the HIL to be deposited and the structure of the HIL to be formed.


When the HIL is formed by spin coating, the spin coating may be performed at a coating rate of about 2000 rpm to about 5000 rpm and at a heat treatment temperature of about 80° C. to about 200° C. in consideration of a compound for forming the HIL to be deposited and the structure of the HIL to be formed.


When the hole transport region includes an HTL, the HTL may be formed on the first electrode 110 or on the HIL by using one or more suitable methods, such as vacuum deposition, spin coating, casting, an LB method, inkjet printing, laser printing, and/or LITI. When the HTL is formed by vacuum deposition and/or spin coating, deposition and coating conditions for the HTL may be similar to the deposition and coating conditions for the HIL.


The hole transport region may include the condensed cyclic compound represented by Formula 1. For example, the hole transport region may include an HTL, and the condensed cyclic compound represented by Formula 1 may be included in the HTL.


Alternatively, the hole transport region may include at least one selected from m-MTDATA, TDATA, 2-TNATA, NPB, β-NPB, TPD, Spiro-TPD, Spiro-NPB, methylated NPB, TAPC, HMTPD, 4,4′,4″-tris(N-carbazolyl)triphenylamine (TCTA), polyaniline/dodecylbenzenesulfonic acid (Pani/DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), polyaniline/camphor sulfonicacid (Pani/CSA), (polyaniline)/poly(4-styrenesulfonate) (PANI/PSS), a compound represented by Formula 201, and a compound represented by Formula 202:




embedded image


embedded image


embedded image


In Formulae 201 and 202,


L201 to L205 may be each independently understood by referring to the description of L1 herein,


xa1 to xa4 may be each independently selected from 0, 1, 2, and 3,


xa5 may be selected from 1, 2, 3, 4, and 5, and


R201 to R204 may be each independently selected from a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group.


For example, in Formulae 201 and 202,


L201 to L205 may be each independently selected from:


a phenylene group, a naphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a pyrenylene group, a chrysenylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a quinolinylene group, an isoquinolinylene group, a quinoxalinylene group, a quinazolinylene group, a carbazolylene group, and a triazinylene group; and


a phenylene group, a naphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a pyrenylene group, a chrysenylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a quinolinylene group, an isoquinolinylene group, a quinoxalinylene group, a quinazolinylene group, a carbazolylene group, and a triazinylene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group,


xa1 to xa4 may be each independently selected from 0, 1, and 2,


xa5 may be 1, 2, or 3, and


R201 to R204 may be each independently selected from:


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group; and


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, an azulenyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group, but embodiments of the present disclosure are not limited thereto.


The compound represented by Formula 201 may be represented by Formula 201A:




embedded image


For example, the compound represented by Formula 201 may be represented by Formula 201A-1, but is not limited thereto:




embedded image


The compound represented by Formula 202 may be represented by Formula 202A, but is not limited thereto:




embedded image


In Formulae 201A, 201A-1, and 202A, L201 to L203, xa1 to xa3, xa5, and R202 to R204 may be each independently understood by referring to descriptions thereof provided herein, R211 and R212 may be each independently understood by referring to the description of R203 herein, and R213 to R216 may be each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group.


The compound represented by Formula 201 and the compound represented by Formula 202 may each independently include any of Compounds HT1 to HT20, but are not limited thereto:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


A thickness of the hole transport region may range from about 100 Å to about 10000 Å, for example, from about 100 Å to about 1000 Å. When the hole transport region includes an HIL and an HTL, a thickness of the HIL may range from about 100 Å to about 10000 Å, for example, from about 100 Å to about 1000 Å, and a thickness of the HTL may range from about 50 Å to about 2000 Å, for example, from about 100 Å to about 1500 Å. When the thicknesses of the hole transport region, the HIL, and the HTL are within any of these ranges, satisfactory hole transport characteristics may be obtained without a substantial increase in driving voltage.


The hole transport region may further include, in addition to the materials described above, a charge-generation material for the improvement of conductive properties. The charge-generation material may be homogeneously or unhomogeneously dispersed in the hole transport region.


The charge-generation material may be, for example, a p-dopant. The p-dopant may be a quinone derivative, a metal oxide, and/or a cyano group-containing compound, but is not limited thereto. Non-limiting examples of the p-dopant include quinone derivatives such as tetracyanoquinonedimethane (TCNQ) and/or 2,3,5,6-tetrafluoro-tetracyano-1,4-benzoquinonedimethane (F4-TCNQ), metal oxides such as tungsten oxide and/or a molybdenum oxide, and Compound HT-D1.




embedded image


The hole transport region may further include, in addition to an HIL and an HTL as described above, at least one selected from a buffer layer and an EBL. The buffer layer may compensate for an optical resonance distance according to a wavelength of light emitted from the emission layer, thereby improving the light-emission efficiency of a formed organic light-emitting device. For use as a material included in the buffer layer, a material that may be included in the hole transport region may be used. The EBL may prevent or reduce the injection of electrons from the electron transport region.


The emission layer may be formed on the first electrode 110 or on the hole transport region by using one or more suitable methods such as vacuum deposition, spin coating, casting, an LB method, inkjet printing, laser printing, and/or LITI. When the emission layer is formed by vacuum deposition and/or spin coating, deposition and coating conditions for the emission layer may be similar to the deposition and coating conditions for the HIL.


When the organic light-emitting device 10 is a full color organic light-emitting device, the emission layer may be patterned into a red emission layer, a green emission layer, or a blue emission layer, according to a sub pixel. Alternatively, the emission layer may have a structure in which a red emission layer, a green emission layer, and a blue emission layer are stacked on one another or a structure in which a red-light emitting material, a green-light emitting material, and a blue-light emitting material are mixed with one another in a single layer, and thus may emit white light.


The emission layer may include a host and a dopant. The host may include the condensed cyclic compound represented by Formula 1.


The dopant may include at least one selected from a fluorescent dopant and a phosphorescent dopant.


The phosphorescent dopant may include an organometallic complex represented by Formula 401:




embedded image


In Formula 401,


M may be selected from iridium (Ir), platinum (Pt), osmium (Os), titanium (Ti), zirconium (Zr), hafnium (Hf), europium (Eu), terbium (Tb), and thulium (Tm),


X401 to X404 may be each independently nitrogen (N) or carbon (C),


ring A401 and ring A402 may be each independently selected from a substituted or unsubstituted benzene, a substituted or unsubstituted naphthalene, a substituted or unsubstituted fluorene, a substituted or unsubstituted spiro-fluorene, a substituted or unsubstituted indene, a substituted or unsubstituted pyrrole, a substituted or unsubstituted thiophene, a substituted or unsubstituted furan, a substituted or unsubstituted imidazole, a substituted or unsubstituted pyrazole, a substituted or unsubstituted thiazole, a substituted or unsubstituted isothiazole, a substituted or unsubstituted oxazole, a substituted or unsubstituted isooxazole, a substituted or unsubstituted pyridine, a substituted or unsubstituted pyrazine, a substituted or unsubstituted pyrimidine, a substituted or unsubstituted pyridazine, a substituted or unsubstituted quinoline, a substituted or unsubstituted isoquinoline, a substituted or unsubstituted benzoquinoline, a substituted or unsubstituted quinoxaline, a substituted or unsubstituted quinazoline, a substituted or unsubstituted carbazole, a substituted or unsubstituted benzoimidazole, a substituted or unsubstituted benzofuran, a substituted or unsubstituted benzothiophene, a substituted or unsubstituted isobenzothiophene, a substituted or unsubstituted benzoxazole, a substituted or unsubstituted isobenzoxazole, a substituted or unsubstituted triazole, a substituted or unsubstituted oxadiazole, a substituted or unsubstituted triazine, a substituted or unsubstituted dibenzofuran, and a substituted or unsubstituted dibenzothiophene,


at least one substituent of the substituted benzene, substituted naphthalene, substituted fluorene, substituted spiro-fluorene, substituted indene, substituted pyrrole, substituted thiophene, substituted furan, substituted imidazole, substituted pyrazole, substituted thiazole, substituted isothiazole, substituted oxazole, substituted isoxazole, substituted pyridine, substituted pyrazine, substituted pyrimidine, substituted pyridazine, substituted quinoline, substituted isoquinoline, substituted benzoquinoline, substituted quinoxaline, substituted quinazoline, substituted carbazole, substituted benzoimidazole, substituted benzofuran, substituted benzothiophene, substituted isobenzothiophene, substituted benzoxazole, substituted isobenzoxazole, substituted triazole, substituted oxadiazole, substituted triazine, substituted dibenzofuran, and substituted dibenzothiophene may be selected from:


deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group;


a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —N(Q401)(Q402), —Si(Q403)(Q404)(Q405), and —B(Q406)(Q407);


a C3-C10 cycloalkyl group, a C2-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C2-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C2-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group;


a C3-C10 cycloalkyl group, a C2-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C2-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C2-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C2-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C2-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C2-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —N(Q411)(Q412), —Si(Q413)(Q414)(Q415), and —B(Q416)(Q417); and


—N(Q421)(Q422), —Si(Q423)(Q424)(Q425), and —B(Q426)(Q427),


L401 may be an organic ligand,


xc1 may be 1, 2, or 3, and


xc2 may be 0, 1, 2, or 3,


where Q401 to Q407, Q411 to Q417, and Q421 to Q427 may be each independently understood by referring to the description of Q1 herein.


L401 may be a monovalent, divalent, or trivalent organic ligand. For example, L401 may be selected from a halogen ligand (for example, Cl and/or F), a diketone ligand (for example, acetylacetonate, 1,3-diphenyl-1,3-propanedionate, 2,2,6,6-tetramethyl-3,5-heptanedionate, and/or hexafluoroacetonate), a carboxylic acid ligand (for example, picolinate, dimethyl-3-pyrazolecarboxylate, and/or benzoate), a carbon monoxide ligand, an isonitrile ligand, a cyano ligand, and a phosphorus ligand (for example, phosphine and/or phosphite), but is not limited thereto.


When A401 in Formula 401 has two or more substituents, the two or more substituents of A401 may bind to each other to form a saturated or unsaturated ring.


When A402 in Formula 401 has two or more substituents, the two or more substituents of A402 may bind to each other to form a saturated or unsaturated ring.


When xc1 in Formula 401 is two or more, a plurality of ligands in Formula 401




embedded image


may be identical to or different from each other. When xc1 in Formula 401 is two or more, A401 and/or A402 of one ligand may be respectively connected to A401 and/or A402 of other neighboring ligands directly (e.g., via a bond such as a single bond) or with a linker (for example, a C1-C5 alkylene group, —N(R′)-(where R′ may be a C1-C10 alkyl group or a C6-C20 aryl group), and/or —C(═O)—) therebetween.


In some embodiments, the phosphorescent dopant may include at least one of Compounds PD1 to PD74, but is not limited thereto. As used herein, “Me” may refer to a methyl group, “Ph” may refer to a phenyl group, and “But” may refer to a tert-butyl group.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


Alternatively, the phosphorescent dopant may include PtOEP:




embedded image


The fluorescent dopant may include at least one selected from DPVBi, DPAVBi, TBPe, DCM, DCJTB, Coumarin 6, and C545T.




embedded image


Alternatively, the fluorescent dopant may include a compound represented by Formula 501:




embedded image


In Formula 501,


Ar501 may be selected from a naphthalene, a heptalene, a fluorene, a spiro-fluorene, a benzofluorene, a dibenzofluorene, a phenalene, a phenanthrene, an anthracene, a fluoranthene, a triphenylene, a pyrene, a chrysene, a naphthacene, a picene, a perylene, a pentaphene, and an indenoanthracene; and


a naphthalene, a heptalene, a fluorene, a spiro-fluorene, a benzofluorene, a dibenzofluorene, a phenalene, a phenanthrene, an anthracene, a fluoranthene, a triphenylene, a pyrene, a chrysene, a naphthacene, a picene, a perylene, a pentaphene, and an indenoanthracene, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, and —Si(Q501)(Q502)(Q503) (where Q501 to Q503 may be each independently selected from hydrogen, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C6-C60 aryl group, and a C2-C60 heteroaryl group),


L501 to L503 may be each independently understood by referring to the description of L201 herein,


R501 and R502 may be each independently selected from:


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a triazinyl group, a dibenzofuranyl group, and a dibenzothiophenyl group; and


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a triazinyl group, a dibenzofuranyl group, and a dibenzothiophenyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a triazinyl group, a dibenzofuranyl group, and a dibenzothiophenyl group,


xd1 to xd3 may be each independently selected from 0, 1, 2, and 3, and


xd4 may be selected from 1, 2, 3, and 4.


The fluorescent dopant may be represented by at least one of Compounds FD1 to FD9:




embedded image


embedded image


embedded image


An amount of the dopant in the emission layer, may range from about 0.01 to about 15 parts by weight based on about 100 parts by weight of the host, but is not limited thereto.


A thickness of the emission layer may range from about 100 Å to about 1000 Å, for example, from about 200 Å to about 600 Å. When the thickness of the emission layer is within any of these ranges, excellent light-emission characteristics may be obtained without a substantial increase in driving voltage.


An electron transport region may be positioned on the emission layer.


The electron transport region may include at least one selected from an HBL, an ETL, and an EIL, but is not limited thereto.


For example, the electron transport region may have a structure of ETL/EIL or a structure of HBL/ETL/EIL, wherein the layers of each structure are sequentially stacked from the emission layer in this stated order. However, the structure of the electron transport region is not limited thereto.


In some example embodiments, the organic layer 150 of the organic light-emitting device 10 may include an electron transport region positioned between the emission layer and the second electrode 190.


When the electron transport region includes an HBL, the HBL may be formed on the emission layer by using one or more suitable methods such as vacuum deposition, spin coating, casting, an LB method, inkjet printing, laser printing, and/or LITI. When the HBL is formed by vacuum deposition and/or spin coating, deposition and coating conditions for the HBL may be similar to the deposition and coating conditions for the HIL.


The HBL may include, for example, at least one selected from BCP and Bphen, but is not limited thereto.




embedded image


A thickness of the HBL may range from about 20 Å to about 1000 Å, for example, from about 30 Å to about 300 Å. When the thickness of the HBL is within any of these ranges, excellent hole blocking characteristics may be obtained without a substantial increase in driving voltage.


The electron transport region may include an ETL. The ETL may be formed on the emission layer or on the HBL by using one or more various methods such as vacuum deposition, spin coating, casting, an LB method, inkjet printing, laser printing, and/or LITI. When the ETL is formed by vacuum deposition and/or spin coating, deposition and coating conditions for the ETL may be similar to the deposition and coating conditions for the HIL.


The ETL may include at least one selected from a compound represented by Formula 601 and a compound represented by Formula 602.





Ar601-[(L601)xe1-E601]xe2.  Formula 601


In Formula 601,


Ar601 may be selected from:


a naphthalene, a heptalene, a fluorene, a spiro-fluorene, a benzofluorene, a dibenzofluorene, a phenalene, a phenanthrene, an anthracene, a fluoranthene, a triphenylene, a pyrene, a chrysene, a naphthacene, a picene, a perylene, a pentaphene, and an indenoanthracene; and


a naphthalene, a heptalene, a fluorene, a spiro-fluorene, a benzofluorene, a dibenzofluorene, a phenalene, a phenanthrene, an anthracene, a fluoranthene, a triphenylene, a pyrene, a chrysene, a naphthacene, a picene, a perylene, a pentaphene, and an indenoanthracene, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, and —Si(Q301)(Q302)(Q303) (where Q301 to Q303 may be each independently hydrogen, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C6-C60 aryl group, or a C1-C60 heteroaryl group),


L601 may be understood by referring to the description of L201 herein,


E601 may be selected from:


a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group; and


a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group,


xe1 may be selected from 0, 1, 2, and 3, and


xe2 may be selected from 1, 2, 3, and 4.




embedded image


In Formula 602,


X611 may be N or C-(L611)xe611-R611, X612 may be N or C-(L612)xe612-R612, X613 may be N or C-(L613)xe613-R613, and at least one of X611 to X613 may be N,


L611 to L616 may be each independently understood by referring to the description of L1 herein,


R611 to R616 may be each independently selected from:


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group; and


a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, an azulenyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group, and


xe611 to xe616 may be each independently selected from 0, 1, 2, and 3.


The compound represented by Formula 601 and the compound represented by Formula 602 may be each independently selected from Compounds ET1 to ET15:




embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, the ETL may include at least one selected from BCP, Bphen, Alq3, Balq, TAZ, and NTAZ.




embedded image


A thickness of the ETL may range from about 100 Å to about 1000 Å, for example, from about 150 Å to about 500 Å. When the thickness of the ETL is within any of these ranges, satisfactory electron transport characteristics may be obtained without a substantial increase in driving voltage.


The ETL may further include, in addition to the materials described above, a metal-containing material.


The metal-containing material may include a Li complex. The Li complex may include, for example, Compound ET-D1 (lithium quinolate, LiQ) and/or ET-D2.




embedded image


The electron transport region may include an EIL which facilitates the injection of electrons from the second electrode 190.


The EIL may be formed on the ETL by using one or more suitable methods such as vacuum deposition, spin coating, casting, an LB method, inkjet printing, laser printing, and/or LITI. When the EIL is formed by vacuum deposition and/or spin coating, deposition and coating conditions for the EIL may be similar to the deposition and coating conditions for the HIL.


The EIL may include at least one selected from LiF, NaCl, CsF, Li2O, BaO, and LiQ.


A thickness of the EIL may range from about 1 Å to about 100 Å, for example, from about 3 Å to about 90 Å. When the thickness of the EIL is within any of these ranges, satisfactory electron injection characteristics may be obtained without a substantial increase in driving voltage.


The second electrode 190 may be positioned on the organic layer 150 having the structure according to embodiments of the present disclosure. The second electrode 190 may be a cathode that is an electron injection electrode. In this regard, a material for forming the second electrode 190 may be a material having a low work function, such as a metal, an alloy, an electrically conductive compound, or a mixture thereof. Non-limiting examples of the material for forming the second electrode 190 include lithium (Li), magnesium (Mg), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), and magnesium-silver (Mg—Ag). In some embodiments, ITO and/or IZO may be used as the material for forming the second electrode 190. The second electrode 190 may be a semi-transmissive electrode or a transmissive electrode.


Hereinabove the organic light-emitting device has been described above with reference to the drawing, but embodiments of the present disclosure are not limited thereto.


A C1-C60 alkyl group used herein may refer to a linear or branched aliphatic hydrocarbon monovalent group having 1 to 60 carbon atoms, and non-limiting examples thereof include a methyl group, an ethyl group, a propyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an iso-amyl group, and a hexyl group. A C1-C60 alkylene group used herein may refer to a divalent group having the same structure as the C1-C60 alkyl group.


A C1-C60 alkoxy group used herein may refer to a monovalent group represented by -OA101 (where A101 is the C1-C60 alkyl group), and non-limiting examples thereof include a methoxy group, an ethoxy group, and an isopropyloxy group.


A C2-C60 alkenyl group used herein may refer to a hydrocarbon group having at least one carbon double bond at one or more positions along a hydrocarbon chain of the C2-C60 alkyl group (e.g., in the middle or at either terminal end of the C2-C60 alkyl group), and non-limiting examples thereof include an ethenyl group, a propenyl group, and a butenyl group. A C2-C60 alkenylene group used herein may refer to a divalent group having the same structure as the C2-C60 alkenyl group.


A C2-C60 alkynyl group used herein may refer to a hydrocarbon group having at least one carbon triple bond at one or more positions along a hydrocarbon chain of the C2-C60 alkyl group (e.g., in the middle or at either terminal end of the C2-C60 alkyl group), and non-limiting examples thereof include an ethynyl group and a propynyl group. A C2-C60 alkynylene group used herein may refer to a divalent group having the same structure as the C2-C60 alkynyl group.


A C3-C10 cycloalkyl group used herein may refer to a monovalent saturated hydrocarbon monocyclic group having 3 to 10 carbon atoms, and non-limiting examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group. A C3-C10 cycloalkylene group used herein may refer to a divalent group having the same structure as the C3-C10 cycloalkyl group.


A C1-C10 heterocycloalkyl group used herein may refer to a monovalent monocyclic group having at least one heteroatom selected from N, O, Si, P, and S as a ring-forming atom and 1 to 10 carbon atoms, and non-limiting examples thereof include a tetrahydrofuranyl group and a tetrahydrothiophenyl group. A C1-C10 heterocycloalkylene group used herein may refer to a divalent group having the same structure as the C1-C10 heterocycloalkyl group.


A C3-C10 cycloalkenyl group used herein may refer to a monovalent monocyclic group that has 3 to 10 carbon atoms and at least one double bond in the ring thereof and does not have aromaticity, and non-limiting examples thereof include a cyclopentenyl group, a cyclohexenyl group, and a cycloheptenyl group. A C3-C10 cycloalkenylene group used herein may refer to a divalent group having the same structure as the C3-C10 cycloalkenyl group.


A C1-C10 heterocycloalkenyl group used herein may refer to a monovalent monocyclic group that has at least one heteroatom selected from N, O, Si, P, and S as a ring-forming atom, 1 to 10 carbon atoms, and at least one double bond in its ring. Non-limiting examples of the C1-C10 heterocycloalkenyl group include a 2,3-hydrofuranyl group and a 2,3-hydrothiophenyl group. A C1-C10 heterocycloalkenylene group used herein may refer to a divalent group having the same structure as the C1-C10 heterocycloalkenyl group.


A C6-C60 aryl group used herein may refer to a monovalent group having a carbocyclic aromatic system having 6 to 60 carbon atoms, and a C6-C60 arylene group used herein may refer to a divalent group having a carbocyclic aromatic system having 6 to 60 carbon atoms. Non-limiting examples of the C6-C60 aryl group include a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a pyrenyl group, and a chrysenyl group. When the C6-C60 aryl group and/or the C6-C60 arylene group include two or more rings, the rings may be respectively fused (e.g., coupled) to each other.


A C1-C60 heteroaryl group used herein may refer to a monovalent group having a carbocyclic aromatic system that has at least one heteroatom selected from N, O, Si, P, and S as a ring-forming atom and 1 to 60 carbon atoms. A C1-C60 heteroarylene group used herein may refer to a divalent group having a carbocyclic aromatic system that has at least one heteroatom selected from N, O, P, and S as a ring-forming atom and 1 to 60 carbon atoms. Non-limiting examples of the C1-C60 heteroaryl group include a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, and an isoquinolinyl group. When the C1-C60 heteroaryl group and/or the C1-C60 heteroarylene group include two or more rings, the rings may be respectively fused (e.g., coupled) to each other.


A C6-C60 aryloxy group used herein may refer to a monovalent group represented by -OA102 (where A102 is the C6-C60 aryl group), and a C6-C60 arylthio group used herein may refer to a monovalent group represented by -SA103 (where A103 is the C6-C60 aryl group).


A monovalent non-aromatic condensed polycyclic group used herein may refer to a monovalent group that has two or more rings condensed (e.g., coupled or fused) to each other, only carbon atoms as ring-forming atoms (e.g., having 8 to 60 carbon atoms), and does not have overall aromaticity in the entire molecular structure. A non-limiting example of the monovalent non-aromatic condensed polycyclic group is a fluorenyl group. A divalent non-aromatic condensed polycyclic group used herein may refer to a divalent group having the same structure as the monovalent non-aromatic condensed polycyclic group.


A monovalent non-aromatic condensed heteropolycyclic group used herein may refer to a monovalent group that has two or more rings condensed (e.g., coupled or fused) to each other, has at least one heteroatom selected from N, O, Si, P, and S as a ring-forming atom, and carbon atoms (e.g., having 1 to 60 carbon atoms) as the remaining ring-forming atoms, and does not have overall aromaticity in the entire molecular structure. A non-limiting example of the monovalent non-aromatic condensed heteropolycyclic group is a carbazolyl group. A divalent non-aromatic condensed heteropolycyclic group used herein may refer to a divalent group having the same structure as the monovalent non-aromatic condensed heteropolycyclic group.


At least one substituent of the substituted C3-C10 cycloalkylene group, substituted C1-C10 heterocycloalkylene group, substituted C3-C10 cycloalkenylene group, substituted C1-C10 heterocycloalkenylene group, substituted C6-C60 arylene group, substituted C1-C60 heteroarylene group, substituted divalent non-aromatic condensed polycyclic group, substituted divalent non-aromatic condensed heteropolycyclic group, substituted C1-C60 alkyl group, substituted C2-C60 alkenyl group, substituted C2-C60 alkynyl group, substituted C1-C60 alkoxy group, substituted C3-C10 cycloalkyl group, substituted C1-C10 heterocycloalkyl group, substituted C3-C10 cycloalkenyl group, substituted C1-C10 heterocycloalkenyl group, substituted C6-C60 aryl group, substituted C6-C60 aryloxy group, substituted C6-C60 arylthio group, substituted C1-C60 heteroaryl group, substituted monovalent non-aromatic condensed polycyclic group, and substituted monovalent non-aromatic condensed heteropolycyclic group may be selected from:


deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group;


a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, and —Si(Q11)(Q12)(Q13);


a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group;


a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, and —Si(Q21)(Q22)(Q23); and


—Si(Q31)(Q32)(Q33),


where Q11 to Q13, Q21 to Q23, and Q31 to Q33 may be each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group.


The term “Ph” used herein may refer to a phenyl group, the term “Me” used herein may refer to a methyl group, the term “Et” used herein may refer to an ethyl group, and the term “ter-Bu” or “But” used herein may refer to a tert-butyl group.


Hereinafter, an organic light-emitting device according to one or more example embodiment of the present disclosure will be described in more detail with reference to Synthesis Examples and Examples. The expression “B was used instead of A” used in describing Synthesis Examples below may refer to a molar equivalent of A being identical to a molar equivalent of B.


EXAMPLES
Synthesis Example 1
Synthesis of Compound 1
Synthesis of Intermediate 1



embedded image


5 g of Starting Material 1 was dissolved in 15 g of triethylphosphite and then reflux-stirred for 12 hours under nitrogen. After the reaction was complete, unreacted triethylphosphite was removed therefrom by vacuum distillation, and column chromatography was performed thereon using hexane and methylenechloride (MC) at a ratio of 4:1 (v/v) to obtain 3.7 g (yield of 51.1%) of Intermediate 1. The obtained compound was confirmed by Gas Chromotography-Mass Spectrometry (GC-Mass).


GC-Mass (theoretical value: 358.44 g/mol, measured value: 357 g/mol)


Synthesis of Compound 1



embedded image


10 g (0.0271 mol) of Intermediate 1, 5.08 g (1.2 eq) of 4-bromodibenzo[b,d]thiophene, 0.27 g (0.03 eq, 0.007 mmol) of Pd2(dba)3, 3.74 g (1.1 eq, 0.0517 mol) of Na(t-bu)O, and 0.84 g (0.06 eq, 0.002 mmol) of P(t-Bu)3 were added to a flask and then dissolved in 120 ml of toluene. The mixture was heat-stirred for 12 hours and then cooled to room temperature. An extraction process was performed thereon by using MC, and the result was washed with distilled water. After the mixture was dried using magnesium sulfate (MgSO4) and distilled under reduced pressure, a residue was separated therefrom by using column chromatography to obtain Compound 1. The obtained compound was confirmed by Elemental Analysis and High Resolution Mass Spectrometry (HRMS).


Elemental Analysis for C38H24N2S: calcd: C, 84.41; H, 4.47; N, 5.18; S, 5.93.


HRMS for C38H24N2S [M]+: calcd: 540.68. found: 539.


Synthesis Example 2
Synthesis of Compound 3



embedded image


Compound 3 was prepared in the same (or substantially the same) manner as used to synthesize Compound 1, except that 4-bromodibenzo[b,d]furan was used instead of 4-bromodibenzo[b,d]thiophene. The obtained compound was confirmed by Elemental Analysis and HRMS.


Elemental Analysis for C38H24N2O: calcd: C, 87.00; H, 4.61; N, 5.34; 0, 3.05.


HRMS for C38H24N2O [M]+: calcd: 524.62. found: 523.


Synthesis Example 3
Synthesis of Compound 5



embedded image


Compound 5 was prepared in the same (or substantially the same) manner as used to synthesize Compound 1, except that 3-bromo-9-phenyl-9H-carbazole was used instead of 4-bromodibenzo[b,d]thiophene. The obtained compound was confirmed by Elemental Analysis and HRMS.


Elemental Analysis for C44H29N3: calcd: C, 88.12; H, 4.87; N, 7.01.


HRMS for C44H29N3[M]+: calcd: 599.74. found: 598.


Synthesis Example 4
Synthesis of Compound 16
Synthesis of Intermediate 2



embedded image


5 g of Starting Material 2 was dissolved in 15 g of triethylphosphite and then reflux-stirred for 12 hours under nitrogen. After the reaction was complete, unreacted triethylphosphite was removed therefrom by vacuum distillation, and column chromatography was performed thereon using hexane and methylenechloride (MC) at a ratio of 4:1 (v/v) to obtain 4.1 g (yield of 71.4%) of Intermediate 2. The obtained compound was confirmed by GC-Mass.


GC-Mass (theoretical value: 299.39 g/mol, measured value: 298 g/mol)


Synthesis of Compound 16



embedded image


10 g (0.0271 mol) of Intermediate 2, 1.7 g (1.2 eq) of bromobenzene, 0.27 g (0.03 eq, 0.007 mmol) of Pd2(dba)3, 3.74 g (1.1 eq, 0.0517 mol) of Na(t-bu)O, and 0.84 g (0.06 eq, 0.002 mmol) of P(t-Bu)3 were added to a flask and then dissolved in 120 ml of toluene. The mixture was heat-stirred for 12 hours and then cooled to room temperature. An extraction process was performed thereon by using MC, and the result was washed with distilled water. After the mixture was dried using magnesium sulfate (MgSO4) and distilled under reduced pressure, a residue was separated therefrom by using column chromatography to obtain Compound 16. The obtained compound was confirmed by Elemental Analysis and HRMS.


Elemental Analysis for C26H17NS: calcd: C, 83.17; H, 4.56; N, 3.73; S, 8.54.


HRMS for C26H17NS [M]+: calcd: 375.49. found: 374.


Synthesis Example 5
Synthesis of Compound 18



embedded image


Compound 18 was prepared in the same (or substantially the same) manner as used to synthesize Compound 16, except that 2-bromonaphthalene was used instead of bromobenzene. The obtained compound was confirmed by Elemental Analysis and HRMS.


Elemental Analysis for C30H19NS: calcd: C, 84.67; H, 4.50; N, 3.29; S, 7.53.


HRMS for C30H19NS [M]+: calcd: 425.55. found: 424.


Synthesis Example 6
Synthesis of Compound 20



embedded image


Compound 20 was prepared in the same (or substantially the same) manner as used to synthesize Compound 16, except that 4-bromodibenzo[b,d]thiophene was used instead of bromobenzene. The obtained compound was confirmed by Elemental Analysis and HRMS.


Elemental Analysis for C32H19NS2: calcd: C, 79.80; H, 3.98; N, 2.91; S, 13.31.


HRMS for C32H19NS2 [M]+: calcd: 481.63. found: 480.


Synthesis Example 7
Synthesis of Compound 22



embedded image


Compound 22 was prepared in the same (or substantially the same) manner as used to synthesize Compound 16, except that 4-bromodibenzo[b,d]furan was used instead of bromobenzene. The obtained compound was confirmed by Elemental Analysis and HRMS.


Elemental Analysis for C32H19NOS: calcd: C, 82.56; H, 4.11; N, 3.01; 0, 3.44; S, 6.89.


HRMS for C32H19NOS [M]+: calcd: 465.57. found: 464.


Synthesis Example 8
Synthesis of Compound 24



embedded image


Compound 24 was prepared in the same (or substantially the same) manner as used to synthesize Compound 16, except that 3-bromo-9-phenyl-9H-carbazole was used instead of bromobenzene. The obtained compound was confirmed by Elemental Analysis and HRMS.


Elemental Analysis for C38H24N2S: calcd: C, 84.41; H, 4.47; N, 5.18; S, 5.93.


HRMS for C38H24N2S [M]+: calcd: 540.68. found: 539.


Synthesis Example 9
Synthesis of Compound 25
Synthesis of Intermediate 3



embedded image


5 g of Starting Material 3 was dissolved in 15 g of triethylphosphite and then reflux-stirred for 12 hours under nitrogen. After the reaction was complete, unreacted triethylphosphite was removed therefrom by vacuum distillation, and column chromatography was performed thereon using hexane and methylenechloride (MC) at a ratio of 4:1 (v/v) to obtain 3.7 g (yield of 62%) of Intermediate 3. The obtained compound was confirmed by GC-Mass.


GC-Mass (theoretical value: 283.33 g/mol, measured value: 282 g/mol).


Synthesis of Compound 25



embedded image


10 g (0.0271 mol) of Intermediate 3, 1.5 g (1.2 eq) of bromobenzene, 0.27 g (0.03 eq, 0.007 mmol) of Pd2(dba)3, 3.74 g (1.1 eq, 0.0517 mol) of Na(t-bu)O, and 0.84 g (0.06 eq, 0.002 mmol) of P(t-Bu)3 were added to a flask and then dissolved in 120 ml of toluene. The mixture was heat-stirred for 12 hours and then cooled to room temperature. An extraction process was performed thereon by using MC, and the result was washed with distilled water. After the mixture was dried using magnesium sulfate (MgSO4) and distilled under reduced pressure, a residue was separated therefrom by using column chromatography to obtain Compound 25. The obtained compound was confirmed by Elemental Analysis and HRMS.


Elemental Analysis for C26H17NO: calcd: C, 86.88; H, 4.77; N, 3.90; 0, 4.45.


HRMS for C26H17NO [M]+: calcd: 359.43. found: 358.


Synthesis Example 10
Synthesis of Compound 31



embedded image


Compound 31 was prepared in the same (or substantially the same) manner as used to synthesize Compound 25, except that 4-bromodibenzo[b,d]furan was used instead of bromobenzene. The obtained compound was confirmed by Elemental Analysis and HRMS.


Elemental Analysis for C32H19NO2: calcd: C, 85.50; H, 4.26; N, 3.12; 0, 7.12.


HRMS for C32H19NO2 [M]+: calcd: 449.51. found: 448.


Synthesis Example 11
Synthesis of Compound 33



embedded image


Compound 33 was prepared in the same (or substantially the same) manner as used to synthesize Compound 25, except that 3-bromo-9-phenyl-9H-carbazole was used instead of bromobenzene. The obtained compound was confirmed by Elemental Analysis and HRMS.


Elemental Analysis for C38H24N2O: calcd: C, 87.00; H, 4.61; N, 5.34; 0, 3.05.


HRMS for C38H24N2O [M]+: calcd: 524.62. found: 523.


Synthesis Example 12
Synthesis of Compound 34



embedded image


Compound 34 was prepared in the same (or substantially the same) manner as used to synthesize Compound 1, except that 2-chloro-4,6-diphenyl-1,3,5-triazine was used instead of 4-bromodibenzo[b,d]thiophene. The obtained compound was confirmed by Elemental Analysis and HRMS.


Elemental Analysis for C41H27N5: calcd: C, 83.51; H, 4.62; N, 11.88.


HRMS for C41H27N5[M]+: calcd: 589.70. found: 588.


Synthesis Example 13
Synthesis of Compound 37
Synthesis of Intermediate 4



embedded image


5 g of Starting Material 4 was dissolved in 20 g of triethylphosphite and then reflux-stirred for 12 hours under nitrogen. After the reaction was complete, unreacted triethylphosphite was removed therefrom by vacuum distillation, and column chromatography was performed thereon using hexane and methylenechloride (MC) at a ratio of 4:1 (v/v) to obtain 3.2 g (yield of 51%) of Intermediate 4. The obtained compound was confirmed by GC-Mass.


GC-Mass (theoretical value: 513.20 g/mol, measured value: 512 g/mol)


Synthesis of Compound 37



embedded image


10 g (0.0097 mol) of Intermediate 4, 4.8 g (1.2 eq) of 1-bromodibenzothiophene, 0.27 g (0.03 eq, 0.003 mmol) of Pd2(dba)3, 3.74 g (1.1 eq, 0.0106 mol) of Na(t-bu)O, and 0.84 g (0.06 eq, 0.006 mmol) of P(t-Bu)3 were added to a flask and then dissolved in 120 ml of toluene. The mixture was heat-stirred for 12 hours and then cooled to room temperature. An extraction process was performed thereon by using MC, and the result was washed with distilled water. After the mixture was dried using magnesium sulfate (MgSO4) and distilled under reduced pressure, a residue was separated therefrom by using column chromatography to obtain Compound 37. The obtained compound was confirmed by Elemental Analysis and HRMS.


Elemental Analysis for C47H29N5S calcd: C, 81.13; H, 4.20; N, 10.06; S, 4.61.


HRMS for C47H29N5S [M]+: calcd: 695.84. found: 694.


Synthesis Example 14
Synthesis of Compound 40
Synthesis of Intermediate 5



embedded image


5 g of Starting Material 5 was dissolved in 15 g of triethylphosphite and then reflux-stirred for 12 hours under nitrogen. After the reaction was complete, unreacted triethylphosphite was removed therefrom by vacuum distillation, and column chromatography was performed thereon using hexane and methylenechloride (MC) at a ratio of 4:1 (v/v) to obtain 2.2 g (yield of 43%) of Intermediate 5. The obtained compound was confirmed by GC-Mass.


GC-Mass (theoretical value: 448.53 g/mol, measured value: 447 g/mol)


Synthesis of Compound 40



embedded image


10 g (0.0271 mol) of Intermediate 5, 4.8 g (1.2 eq) of 2-bromoquinazoline, 0.27 g (0.03 eq, 0.007 mmol) of Pd2(dba)3, 3.74 g (1.1 eq, 0.0517 mol) of Na(t-bu)O, and 0.84 g (0.06 eq, 0.002 mmol) of P(t-Bu)3 were added to a flask and then dissolved in 120 ml of toluene. The mixture was heat-stirred for 12 hours and then cooled to room temperature. An extraction process was performed thereon by using MC, and the result was washed with distilled water. After the mixture was dried using magnesium sulfate (MgSO4) and distilled under reduced pressure, a residue was separated therefrom by using column chromatography to obtain Compound 40. The obtained compound was confirmed by Elemental Analysis and HRMS.


Elemental Analysis for C40H24N4O calcd: C, 83.31; H, 4.20; N, 9.72; 0, 2.77.


HRMS for C40H24N4O [M]+: calcd: 576.66. found: 575.


Synthesis Example 15
Synthesis of Compound 41
Synthesis of Intermediate 6



embedded image


5 g of Starting Material 6 was dissolved in 20 g of triethylphosphite and then reflux-stirred for 12 hours under nitrogen. After the reaction was complete, unreacted triethylphosphite was removed therefrom by vacuum distillation, and column chromatography was performed thereon using hexane and methylenechloride (MC) at a ratio of 4:1 (v/v) to obtain 2.7 g (yield of 48.7%) of Intermediate 6. The obtained compound was confirmed by GC-Mass.


GC-Mass (theoretical value: 409.49 g/mol, measured value: 408 g/mol)


Synthesis of Compound 41



embedded image


10 g (0.0122 mol) of Intermediate 6, 4.72 g (1.2 eq) of 3-bromo-9-phenyl-9H-carbazole, 0.33 g (0.03 eq, 0.0003 mol) of Pd2(dba)3, 3.21 g (1.1 eq, 0.0134 mol) of Na(t-bu)O, and 0.86 g (0.06 eq, 0.0006 mol) of P(t-Bu)3 were added to a flask and then dissolved in 100 ml of toluene. The mixture was heat-stirred for 12 hours and then cooled to room temperature. An extraction process was performed thereon by using MC, and the result was washed with distilled water. After the mixture was dried using magnesium sulfate (MgSO4) and distilled under reduced pressure, a residue was separated therefrom by using column chromatography to obtain Compound 41. The obtained compound was confirmed by Elemental Analysis and HRMS.


Elemental Analysis for C47H30N4 calcd: C, 86.74; H, 4.65; N, 8.61.


HRMS for C47H30N4[M]+: calcd: 650.25. found: 649.


Synthesis Example 16
Synthesis of Compound 42



embedded image


Compound 42 was prepared in the same (or substantially the same) manner as used to synthesize Compound 16, except that 2-chloro-4,6-diphenyl-1,3,5-triazine was used instead of bromobenzene. The obtained compound was confirmed by Elemental Analysis and HRMS.


Elemental Analysis for C35H22N4S: calcd: C, 79.22; H, 4.18; N, 10.56; S, 6.04.


HRMS for C35H22N4S [M]+: calcd: 530.16. found: 529.


Synthesis Example 17
Synthesis of Compound 45



embedded image


Compound 45 was prepared in the same (or substantially the same) manner as used to synthesize Compound 16, except that 2-bromoquinazoline was used instead of bromobenzene. The obtained compound was confirmed by Elemental Analysis and HRMS.


Elemental Analysis for C28H27N3S: calcd: C, 78.66; H, 4.01; N, 9.83; S, 7.50.


HRMS for C28H27N3S [M]+: calcd: 427.53. found: 426.


Synthesis Example 18
Synthesis of Compound 46



embedded image


Compound 46 was prepared in the same (or substantially the same) manner as used to synthesize Compound 16, except that 4-bromoisoquinoline was used instead of bromobenzene. The obtained compound was confirmed by Elemental Analysis and HRMS.


Elemental Analysis for C29H18N2S: calcd: C, 81.66; H, 4.25; N, 6.57; S, 7.52.


HRMS for C29H18N2S [M]+: calcd: 426.12. found: 425.


Synthesis Example 19
Synthesis of Compound 47



embedded image


Compound 47 was prepared in the same (or substantially the same) manner as used to synthesize Compound 25, except that 2-chloro-4,6-diphenyl-1,3,5-triazine was used instead of bromobenzene. The obtained compound was confirmed by Elemental Analysis and HRMS.


Elemental Analysis for C35H22N4O: calcd: C, 81.69; H, 4.31; N, 10.89; 0, 3.11.


HRMS for C35H22N4O [M]+: calcd: 514.18. found: 513.


Synthesis Example 20
Synthesis of Compound 50



embedded image


Compound 50 was prepared in the same (or substantially the same) manner as used to synthesize Compound 25, except that 2-bromoquinazoline was used instead of bromobenzene. The obtained compound was confirmed by Elemental Analysis and HRMS.


Elemental Analysis for C35H22N4O: calcd: C, 81.73; H, 4.16; N, 10.21; 0, 3.89.


HRMS for C35H22N4O [M]+: calcd: 411.14. found: 410.


Synthesis Example 21
Synthesis of Compound 55



embedded image


Compound 55 was prepared in the same (or substantially the same) manner as used to synthesize Compound 1, except that 5-bromo-2,2′-bipyridine was used instead of 4-bromodibenzo[b,d]thiophene. The obtained compound was confirmed by Elemental Analysis and HRMS.


Elemental Analysis for C36H24N4: calcd: C, 84.35; H, 4.72; N, 10.93.


HRMS for C36H24N4[M]+: calcd: 512.20. found: 511.


Synthesis Example 22
Synthesis of Compound 56



embedded image


Compound 56 was prepared in the same (or substantially the same) manner as used to synthesize Compound 1, except that 2-bromoquinazoline was used instead of 4-bromodibenzo[b,d]thiophene. The obtained compound was confirmed by Elemental Analysis and HRMS.


Elemental Analysis for C34H22N4: calcd: C, 83.93; H, 4.56; N, 11.51.


HRMS for C34H22N4[M]+: calcd: 486.58. found: 485.


Synthesis Example 23
Synthesis of Compound 59



embedded image


Compound 59 was prepared in the same (or substantially the same) manner as used to synthesize Compound 16, except that 5-bromo-2,2′-bipyridine was used instead of bromobenzene. The obtained compound was confirmed by Elemental Analysis and HRMS.


Elemental Analysis for C30H19N3S: calcd: C, 79.44; H, 4.22; N, 9.26; S, 7.07.


HRMS for C30H19N3S [M]+: calcd: 453.13. found: 452.


Synthesis Example 24
Synthesis of Compound 63



embedded image


Compound 63 was prepared in the same (or substantially the same) manner as used to synthesize Compound 25, except that 5-bromo-2,2′-bipyridine was used instead of bromobenzene. The obtained compound was confirmed by Elemental Analysis and HRMS.


Elemental Analysis for C30H19N3O: calcd: C, 82.36; H, 4.38; N, 9.60; 0, 3.66.


HRMS for C30H19N3O [M]+: calcd: 437.15. found: 436.


Example 1

A 15 Ω/cm2 (1200 Å) ITO glass substrate (available from Corning Co., Ltd) was cut to a size of 50 mm×50 mm×0.7 mm, sonicated in isopropyl alcohol and pure water for 5 minutes in each solvent, cleaned with ultraviolet rays for 30 minutes, and then ozone, and was mounted on a vacuum deposition apparatus.


Compound 2-TNATA was vacuum-deposited on an ITO anode of the glass substrate to form a hole injection layer (HIL) having a thickness of about 600 Å. Then, Compound NPB was vacuum-deposited on the HIL to form a hole transport layer (HTL) having a thickness of about 300 Å, thereby forming a hole transport region.


Compound 1 (as a host), and PD1 (as a dopant), were co-deposited on the hole transport region at a weight ratio of about 85:15, thereby forming an emission layer having a thickness of about 300 Å.


ET1 was vacuum-deposited on the emission layer to form an electron transport layer (ETL) having a thickness of about 300 Å. Then, LiF was deposited on the ETL to form an electron injection layer (EIL) having a thickness of about 10 Å, thereby forming an electron transport region.


Aluminum (Al) was vacuum-deposited on the electron transport region to form a cathode having a thickness of about 1200 Å, thereby completing the manufacture of an organic light-emitting device




embedded image


Example 2

An organic light-emitting device of Example 2 was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound 3 was used as a host instead of Compound 1 to form an emission layer.


Example 3

An organic light-emitting device of Example 3 was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound 5 was used as a host instead of Compound 1 to form an emission layer.


Example 4

An organic light-emitting device of Example 4 was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound 16 was used as a host instead of Compound 1 to form an emission layer.


Example 5

An organic light-emitting device of Example 5 was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound 18 was used as a host instead of Compound 1 to form an emission layer.


Example 6

An organic light-emitting device of Example 6 was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound 20 was used as a host instead of Compound 1 to form an emission layer.


Example 7

An organic light-emitting device of Example 7 was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound 22 was used as a host instead of Compound 1 to form an emission layer.


Example 8

An organic light-emitting device of Example 8 was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound 24 was used as a host instead of Compound 1 to form an emission layer.


Example 9

An organic light-emitting device of Example 9 was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound 25 was used as a host instead of Compound 1 to form an emission layer.


Example 10

An organic light-emitting device of Example 10 was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound 31 was used as a host instead of Compound 1 to form an emission layer.


Example 11

An organic light-emitting device of Example 11 was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound 33 was used as a host instead of Compound 1 to form an emission layer.


Example 12

An organic light-emitting device of Example 12 was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound 34 was used as a host instead of Compound 1 to form an emission layer.


Example 13

An organic light-emitting device of Example 13 was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound 40 was used as a host instead of Compound 1 to form an emission layer.


Example 14

An organic light-emitting device of Example 14 was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound 45 was used as a host instead of Compound 1 to form an emission layer.


Example 15

An organic light-emitting device of Example 15 was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound 56 was used as a host instead of Compound 1 to form an emission layer.


Comparative Example 1

An organic light-emitting device of Comparative Example 1 was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound A was used as a host instead of Compound 1 to form an emission layer.




embedded image


Comparative Example 2

An organic light-emitting device of Comparative Example 2 was manufactured in the same (or substantially the same) manner as in Example 1, except that Compound B was used as a host instead of Compound 1 to form an emission layer.




embedded image


Evaluation Example 1

The efficiency and lifespan (T95) of the organic light-emitting devices manufactured according to Examples 1 to 15 and Comparative Examples 1 and 2 were measured by using Keithley SMU 236 and luminance meter PR650 (Photo Research, Inc.), and results thereof are shown in Table 1. The lifespan (T95) is a period of time that lapses until the luminance of an organic light-emitting device is reduced to 95% of the initial luminance.












TABLE 1








Emission Layer
Efficiency
Lifespan (T95)












Host
Dopant
(cd/A)
(5000 nit)














Example 1
Compound 1
PD1
45
943


Example 2
Compound 3
PD1
49.5
921


Example 3
Compound 5
PD1
50.2
991


Example 4
Compound 16
PD1
41.5
937


Example 5
Compound 18
PD1
43.9
911


Example 6
Compound 20
PD1
46.1
956


Example 7
Compound 22
PD1
45.7
971


Example 8
Compound 24
PD1
48.2
923


Example 9
Compound 25
PD1
49.6
970


Example 10
Compound 31
PD1
48.5
921


Example 11
Compound 33
PD1
45.9
943


Example 12
Compound 34
PD1
47.2
937


Example 13
Compound 40
PD1
49.1
912


Example 14
Compound 45
PD1
52.7
887


Example 15
Compound 56
PD1
43.9
911


Comparative
Compound A
PD1
39.8
456


Example 1






Comparative
Compound B
PD1
40.1
841


Example 2











embedded image


embedded image


embedded image


embedded image


embedded image


From the results shown in Table 1, it can be seen that the organic light-emitting devices of Examples 1 to 15 had a higher efficiency and a longer lifespan than the organic light-emitting devices of Comparative Examples 1 and 2.


Example 16

A 15 Ω/cm2 (1200 Å) ITO glass substrate (available from Corning Co., Ltd) was cut to a size of 50 mm×50 mm×0.7 mm, sonicated in isopropyl alcohol and pure water for 5 minutes in each solvent, cleaned with ultraviolet rays for 30 minutes, and then ozone, and was mounted on a vacuum deposition apparatus.


Compound 2-TNATA was vacuum-deposited on an ITO anode of the glass substrate to form a hole injection layer (HIL) having a thickness of about 600 Å. Then, Compound NPB was vacuum-deposited on the HIL to form a hole transport layer (HTL) having a thickness of about 300 Å, thereby forming a hole transport region.


Compound 34 (as a host), and PD16 (as a dopant), were co-deposited on the hole transport region at a weight ratio of about 95:5, thereby forming an emission layer having a thickness of about 200 Å.


ET1 was vacuum-deposited on the emission layer to form an electron transport layer (ETL) having a thickness of about 300 Å. Then, LiF was deposited on the ETL to form an electron injection layer (EIL) having a thickness of about 10 Å, thereby forming an electron transport region.


Aluminum (Al) was vacuum-deposited on the electron transport region to form a cathode having a thickness of about 1200 Å, thereby completing the manufacture of an organic light-emitting device.




embedded image


Example 17

An organic light-emitting device of Example 17 was manufactured in the same (or substantially the same) manner as in Example 16, except that Compound 37 was used as a host instead of Compound 34 to form an emission layer.


Example 18

An organic light-emitting device of Example 18 was manufactured in the same (or substantially the same) manner as in Example 16, except that Compound 40 was used as a host instead of Compound 34 to form an emission layer.


Example 19

An organic light-emitting device of Example 19 was manufactured in the same (or substantially the same) manner as in Example 16, except that Compound 41 was used as a host instead of Compound 34 to form an emission layer.


Example 20

An organic light-emitting device of Example 20 was manufactured in the same (or substantially the same) manner as in Example 16, except that Compound 42 was used as a host instead of Compound 34 to form an emission layer.


Example 21

An organic light-emitting device of Example 21 was manufactured in the same (or substantially the same) manner as in Example 16, except that Compound 45 was used as a host instead of Compound 34 to form an emission layer.


Example 22

An organic light-emitting device of Example 22 was manufactured in the same (or substantially the same) manner as in Example 16, except that Compound 46 was used as a host instead of Compound 34 to form an emission layer.


Example 23

An organic light-emitting device of Example 23 was manufactured in the same (or substantially the same) manner as in Example 16, except that Compound 47 was used as a host instead of Compound 34 to form an emission layer.


Example 24

An organic light-emitting device of Example 24 was manufactured in the same (or substantially the same) manner as in Example 16, except that Compound 50 was used as a host instead of Compound 34 to form an emission layer.


Example 25

An organic light-emitting device of Example 25 was manufactured in the same (or substantially the same) manner as in Example 16, except that Compound 55 was used as a host instead of Compound 34 to form an emission layer.


Example 26

An organic light-emitting device of Example 26 was manufactured in the same (or substantially the same) manner as in Example 16, except that Compound 56 was used as a host instead of Compound 34 to form an emission layer.


Example 27

An organic light-emitting device of Example 27 was manufactured in the same (or substantially the same) manner as in Example 16, except that Compound 59 was used as a host instead of Compound 34 to form an emission layer.


Example 28

An organic light-emitting device of Example 28 was manufactured in the same (or substantially the same) manner as in Example 16, except that Compound 63 was used as a host instead of Compound 34 to form an emission layer.


Comparative Example 3

An organic light-emitting device of Comparative Example 3 was manufactured in the same (or substantially the same) manner as in Example 16, except that Compound A was used as a host instead of Compound 34 to form an emission layer.




embedded image


Comparative Example 4

An organic light-emitting device of Comparative Example 4 was manufactured in the same (or substantially the same) manner as in Example 16, except that Compound B was used as a host instead of Compound 34 to form an emission layer.




embedded image


Evaluation Example 2

The efficiency and lifespan (T95) of the organic light-emitting devices manufactured according to Examples 16 to 28 and Comparative Examples 3 and 4 were measured by using Keithley SMU 236 and luminance meter PR650, and results thereof are shown in Table 2. The lifespan (T95) is a period of time that lapses until the luminance of an organic light-emitting device is reduced to 95% of the initial luminance.












TABLE 2








Emission Layer
Efficiency
Lifespan (T95)












Host
Dopant
(cd/A)
(3700 nit)














Example 16
Compound 34
PD16
18.2
761


Example 17
Compound 37
PD16
18.3
791


Example 18
Compound 40
PD16
19.0
743


Example 19
Compound 41
PD16
19.2
699


Example 20
Compound 42
PD16
21.9
804


Example 21
Compound 45
PD16
22.0
821


Example 22
Compound 46
PD16
17.9
897


Example 23
Compound 47
PD16
18.8
853


Example 24
Compound 50
PD16
20.1
821


Example 25
Compound 55
PD16
20.4
882


Example 26
Compound 56
PD16
22
823


Example 27
Compound 59
PD16
21.4
822


Example 28
Compound 63
PD16
19.8
861


Comparative
Compound A
PD16
16.5
664


Example 3






Comparative
Compound B
PD16
15.7
684


Example 4











embedded image


embedded image


embedded image


embedded image


From the results shown in Table 2, it can be seen that the organic light-emitting devices of Examples 16 to 28 had a higher efficiency and a longer lifespan than the organic light-emitting devices of Comparative Examples 3 and 4.


Example 29

A 15 Ω/cm2 (1200 Å) ITO glass substrate (available from Corning Co., Ltd) was cut to a size of 50 mm×50 mm×0.7 mm, sonicated in isopropyl alcohol and pure water for 5 minutes in each solvent, cleaned with ultraviolet rays for 30 minutes, and then ozone, and was mounted on a vacuum deposition apparatus.


Compound 2-TNATA was vacuum-deposited on an ITO anode of the glass substrate to form a hole injection layer (HIL) having a thickness of about 600 Å. Then, Compound NPB was vacuum-deposited on the HIL to form a hole transport layer (HTL) having a thickness of about 300 Å, thereby forming a hole transport region.


Compound 1 and Compound 34 (at a weight ratio of 7:3) (as hosts), and PD1 (as a dopant), were co-deposited on the hole transport region at a weight ratio of about 85:15, thereby forming an emission layer having a thickness of about 300 Å.


ET1 was vacuum-deposited on the emission layer to form an electron transport layer (ETL) having a thickness of about 300 Å. Then, LiF was deposited on the ETL to form an electron injection layer (EIL) having a thickness of about 10 Å, thereby forming an electron transport region.


Aluminum (Al) was vacuum-deposited on the electron transport region to form a cathode having a thickness of about 1200 Å, thereby completing the manufacture of an organic light-emitting device.


Example 30

An organic light-emitting device of Example 30 was manufactured in the same (or substantially the same) manner as in Example 29, except that Compound 3 and Compound 37 (at a weight ratio of 5:5) were respectively used as hosts instead of Compound 1 and Compound 34 to form an emission layer.


Example 31

An organic light-emitting device of Example 31 was manufactured in the same (or substantially the same) manner as in Example 29, except that Compound 5 and Compound 40 (at a weight ratio of 5:5) were respectively used as hosts instead of Compound 1 and Compound 34 to form an emission layer.


Example 32

An organic light-emitting device of Example 32 was manufactured in the same (or substantially the same) manner as in Example 29, except that Compound 16 and Compound 41 (at a weight ratio of 6:4) were respectively used as hosts instead of Compound 1 and Compound 34 to form an emission layer.


Example 33

An organic light-emitting device of Example 33 was manufactured in the same (or substantially the same) manner as in Example 29, except that Compound 18 and Compound 42 (at a weight ratio of 5:5) were respectively used as hosts instead of Compound 1 and Compound 34 to form an emission layer.


Example 34

An organic light-emitting device of Example 34 was manufactured in the same (or substantially the same) manner as in Example 29, except that Compound 20 and Compound 45 (at a weight ratio of 6:4) were respectively used as hosts instead of Compound 1 and Compound 34 to form an emission layer.


Example 35

An organic light-emitting device of Example 35 was manufactured in the same (or substantially the same) manner as in Example 29, except that Compound 22 and Compound 47 (at a weight ratio of 5:5) were respectively used as hosts instead of Compound 1 and Compound 34 to form an emission layer.


Example 36

An organic light-emitting device of Example 36 was manufactured in the same (or substantially the same) manner as in Example 29, except that Compound 24 and Compound 50 (at a weight ratio of 6:4) were respectively used as hosts instead of Compound 1 and Compound 34 to form an emission layer.


Example 37

An organic light-emitting device of Example 37 was manufactured in the same (or substantially the same) manner as in Example 29, except that Compound 25 and Compound 55 (at a weight ratio of 5:5) were respectively used as hosts instead of Compound 1 and Compound 34 to form an emission layer.


Example 38

An organic light-emitting device of Example 38 was manufactured in the same (or substantially the same) manner as in Example 29, except that Compound 33 and Compound 56 (at a weight ratio of 6:4) were respectively used as hosts instead of Compound 1 and Compound 34 to form an emission layer.


Evaluation Example 3

The efficiency and lifespan (T95) of the organic light-emitting devices manufactured according to Examples 29 to 38 were measured by using Keithley SMU 236 and luminance meter PR650, and results thereof are shown in Table 3. The lifespan (T95) is a period of time that lapses until the luminance of an organic light-emitting device is reduced to 95% of the initial luminance.












TABLE 3








Emission Layer

Lifespan















Weight Ratio
Efficiency
(T95)



Host 1
Host 2
(Host 1:Host 2)
(cd/A)
(5000 nit)





Example 29
Compound 1
Compound 34
7:3
56.1
1240


Example 30
Compound 3
Compound 37
5:5
57.4
1140


Example 31
Compound 5
Compound 40
5:5
49.1
1260


Example 32
Compound 16
Compound 41
6:4
52.7
1150


Example 33
Compound 18
Compound 42
5:5
59.3
1321


Example 34
Compound 20
Compound 45
6:4
54.1
1246


Example 35
Compound 22
Compound 47
5:5
53.7
1157


Example 36
Compound 24
Compound 50
6:4
55.3
1197


Example 37
Compound 25
Compound 55
5:5
54.9
1168


Example 38
Compound 33
Compound 56
6:4
55.7
1201











embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


From the results shown Table 3, it can be seen that the organic light-emitting devices of Examples 29 to 38 had a high efficiency and a long lifespan.


According to one or more example embodiments, an organic light-emitting device including the above-described condensed cyclic compound may have a low driving voltage, a high efficiency, a high luminance, and a long lifespan.


As used herein, expressions such as “at least one of,” “one of,” “at least one selected from,” and “one selected from,” when preceding a list of elements, modify the entire list of elements and do not modify the individual elements of the list. Further, the use of “may” when describing embodiments of the present invention refers to “one or more embodiments of the present invention.”


In addition, as used herein, the terms “use,” “using,” and “used” may be considered synonymous with the terms “utilize,” “utilizing,” and “utilized,” respectively.


As used herein, the terms “substantially,” “about,” and similar terms are used as terms of approximation and not as terms of degree, and are intended to account for the inherent deviations in measured or calculated values that would be recognized by those of ordinary skill in the art.


Also, any numerical range recited herein is intended to include all subranges of the same numerical precision subsumed within the recited range. For example, a range of “1.0 to 10.0” is intended to include all subranges between (and including) the recited minimum value of 1.0 and the recited maximum value of 10.0, that is, having a minimum value equal to or greater than 1.0 and a maximum value equal to or less than 10.0, such as, for example, 2.4 to 7.6. Any maximum numerical limitation recited herein is intended to include all lower numerical limitations subsumed therein and any minimum numerical limitation recited in this specification is intended to include all higher numerical limitations subsumed therein. Accordingly, Applicant reserves the right to amend this specification, including the claims, to expressly recite any sub-range subsumed within the ranges expressly recited herein. All such ranges are intended to be inherently described in this specification such that amending to expressly recite any such subranges would comply with the requirements of 35 U.S.C. §112(a) and 35 U.S.C. §132(a).


It should be understood that example embodiments described herein should be considered in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects within each example embodiment should typically be considered as available for other similar features or aspects in other example embodiments.


While one or more example embodiments have been described with reference to the drawing, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present disclosure as defined by the following claims and equivalents thereof.

Claims
  • 1. A condensed cyclic compound represented by Formula 1:
  • 2. The condensed cyclic compound of claim 1, wherein L1, L2, L21, and L22 are each independently selected from: a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an indacenylene group, an acenaphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a rubicenylene group, a coronenylene group, an ovalenylene group, a pyrrolylene group, a thiophenylene group, a furanylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, an isoindolylene group, an indolylene group, an indazolylene group, a purinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a carbazolylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzoimidazolylene group, a benzofuranylene group, a benzothiophenylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an oxadiazolylene group, a triazinylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a thiadiazolylene group, an imidazopyridinylene group, and an imidazopyrimidinylene group; anda phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an indacenylene group, an acenaphthylene group, a fluorenylene group, a spiro-fluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a rubicenylene group, a coronenylene group, an ovalenylene group, a pyrrolylene group, a thiophenylene group, a furanylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a pyridinylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, an isoindolylene group, an indolylene group, an indazolylene group, a purinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a carbazolylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzoimidazolylene group, a benzofuranylene group, a benzothiophenylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an oxadiazolylene group, a triazinylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a thiadiazolylene group, an imidazopyridinylene group, and an imidazopyrimidinylene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group.
  • 3. The condensed cyclic compound of claim 1, wherein L1, L2, L21, and L22 are each independently selected from groups represented by Formulae 3-1 to 3-38:
  • 4. The condensed cyclic compound of claim 1, wherein L1, L2, L21, and L22 are each independently selected from groups represented by Formulae 4-1 to 4-25:
  • 5. The condensed cyclic compound of claim 1, wherein a1, a2, a21, and a22 are each independently selected from 0 and 1.
  • 6. The condensed cyclic compound of claim 1, wherein Ar1 and Ar2 are each independently selected from: a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an indazolyl group, a quinolinyl group, an isoquinolinyl group, a carbazolyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, and a dibenzocarbazolyl group; anda phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an indazolyl group, a quinolinyl group, an isoquinolinyl group, a carbazolyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, and a dibenzocarbazolyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an indazolyl group, a quinolinyl group, an isoquinolinyl group, a carbazolyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, and a dibenzocarbazolyl group.
  • 7. The condensed cyclic compound of claim 1, wherein Ar1 and Ar2 are each independently selected from: a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group; anda phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, and —Si(Q31)(Q32)(Q33),wherein Q31 to Q33 are each independently selected from a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, and a naphthyl group.
  • 8. The condensed cyclic compound of claim 1, wherein Ar1 and Ar2 are each independently selected from groups represented by Formulae 5-1 to 5-43:
  • 9. The condensed cyclic compound of claim 1, wherein Ar1 and Ar2 are each independently selected from groups represented by Formulae 6-1 to 6-44:
  • 10. The condensed cyclic compound of claim 1, wherein, in Formula 1, when X1 is N-(L1)a1-(Ar1)b1 and X2 is N-(L2)a2-(Ar2)b2, at least one selected from Ar1 and Ar2 is selected from:a pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group; anda pyrrolyl group, a thiophenyl group, a furanyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an isoindolyl group, an indolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a triazinyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a thiadiazolyl group, an imidazopyridinyl group, and an imidazopyrimidinyl group, each substituted with at least one selected from deuterium, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a phenanthrenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a carbazolyl group, a phenanthrolinyl group, a benzoimidazolyl group, a benzofuranyl group, a benzothiophenyl group, an isobenzothiazolyl group, and a benzoxazolyl group.
  • 11. The condensed cyclic compound of claim 1, wherein R21 and R22 are each independently selected from hydrogen, deuterium, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C1-C20 alkoxy group, a substituted or unsubstituted C6-C20 aryl group, a substituted or unsubstituted C1-C20 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q1)(Q2)(Q3), —B(Q4)(Q5), and N(Q6)(Q7).
  • 12. The condensed cyclic compound of claim 1, wherein R21 and R22 are each independently selected from hydrogen, deuterium, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, a fluorenyl group, a spiro-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a pyrenyl group, a chrysenyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a quinolinyl group, an isoquinolinyl group, a quinoxalinyl group, a quinazolinyl group, a carbazolyl group, and a triazinyl group.
  • 13. The condensed cyclic compound of claim 1, wherein the condensed cyclic compound is represented by one of Formulae 1A to 1 D:
  • 14. The condensed cyclic compound of claim 1, wherein the condensed cyclic compound is represented by one of Formulae 1A-1 to 1A-4:
  • 15. The condensed cyclic compound of claim 1, wherein the condensed cyclic compound is one of Compounds 1 to 64:
  • 16. An organic light-emitting device comprising: a first electrode; a second electrode facing the first electrode; and an organic layer between the first electrode and the second electrode, the organic layer comprising an emission layer, wherein the organic layer comprises at least one condensed cyclic compound of claim 1.
  • 17. The organic light-emitting device of claim 16, wherein the first electrode is an anode,the second electrode is a cathode, andthe organic layer further comprises a hole transport region and an electron transport region,wherein the hole transport region is between the first electrode and the emission layer and comprises at least one condensed from a hole injection layer, a hole transport layer, a buffer layer, and an electron blocking layer, andthe electron transport region is between the emission layer and the second electrode and comprises at least one selected from a hole blocking layer, an electron transport layer, and an electron injection layer.
  • 18. The organic light-emitting device of claim 16, wherein the emission layer comprises the at least one condensed cyclic compound.
  • 19. The organic light-emitting device of claim 18, wherein the emission layer further comprises an organometallic complex represented by Formula 401:
  • 20. The organic light-emitting device of claim 19, wherein an amount of the the condensed cyclic compound in the emission layer is greater than that of the organometallic complex in the emission layer.
Priority Claims (1)
Number Date Country Kind
10-2015-0053770 Apr 2015 KR national