Condensed cyclic compound and organic light-emitting device including the same

Abstract
A condensed cyclic compound and an organic light-emitting device including the same, the condensed cyclic compound being represented by Formula 1:
Description
CROSS-REFERENCE TO RELATED APPLICATION

Korean Patent Application No. 10-2018-0074184, filed on Jun. 27, 2018, in the Korean Intellectual Property Office, and entitled: “Condensed Cyclic Compound and Organic Light-Emitting Device Including the Same,” is incorporated by reference herein in its entirety.


BACKGROUND
1. Field

Embodiments relate to a condensed cyclic compound and an organic light-emitting device including the same.


2. Description of the Related Art

Organic light-emitting devices are self-emission devices that produce full-color images, and also have wide viewing angles, high contrast ratios, short response times, and excellent characteristics in terms of brightness, driving voltage, and response speed, compared to devices in the art.


An example of such organic light-emitting devices may include a first electrode disposed on a substrate, and a hole transport region, an emission layer, an electron transport region, and a second electrode, which are sequentially disposed on the first electrode. Holes provided from the first electrode may move toward the emission layer through the hole transport region, and electrons provided from the second electrode may move toward the emission layer through the electron transport region. Carriers, such as holes and electrons, recombine in the emission layer to produce excitons. These excitons transit from an excited state to a ground state, thereby generating light.


SUMMARY

The embodiments may be realized by providing a condensed cyclic compound represented by Formula 1:




embedded image


wherein, in Formula 1, R11 to R14 are each independently selected from a group represented by Formula 2, hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C10 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted C1-C60 heteroaryloxy group, a substituted or unsubstituted C1-C60 heteroarylthio group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —N(Q1)(Q2), —P(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), and —P(═S)(Q1)(Q2),




embedded image


wherein, in Formulae 1 and 2, A11 to A14 and A21 to A24 are each independently selected from a C5-C60 carbocyclic group and a C1-C60 heterocyclic group, in which A11 to A14 are separate or are linked via a first linking group and A21 to A24 are separate or are linked via a second linking group, n11 and n21 are each independently 0 or 1. L11 to L14 and L21 to L24 are each independently selected from a single bond, *—N(Ra)—*′, a substituted or unsubstituted C5-C60 carbocyclic group, and a substituted or unsubstituted C1-C60 heterocyclic group, in which * and *′ indicate a binding site to a neighboring atom, a11 to a14 and a21 to a24 are each independently selected from 0, 1, 2, and 3, Ra and R21 to R24 are each independently selected from a binding site, hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted C1-C60 heteroaryloxy group, a substituted or unsubstituted C1-C60 heteroarylthio group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —N(Q1)(Q2), —P(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), and —P(═S)(Q1)(Q2), provided that one of R21 to R24 is the binding site, b11 to b14 and b21 to b24 are each independently selected from 1, 2, 3, 4, 5, and 6, c11 to c14 and c21 to c24 are each independently selected from 1, 2, 3, 4, 5, and 6, and Q1 to Q3 are each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a C1-C60 alkyl group substituted with at least one selected from deuterium, —F, and a cyano group, a C6-C60 aryl group substituted with at least one selected from deuterium, —F, and a cyano group, a biphenyl group, and a terphenyl group.


The embodiments may be realized by providing an organic light-emitting device including a first electrode; a second electrode; and an organic layer between the first electrode and the second electrode and including an emission layer, wherein the organic layer includes the condensed cyclic compound according to an embodiment.





BRIEF DESCRIPTION OF THE DRAWINGS

Features will be apparent to those of skill in the art by describing in detail exemplary embodiments with reference to the attached drawings in which:



FIG. 1 illustrates a schematic cross-sectional view of an organic light-emitting device according to an embodiment;



FIG. 2 illustrates a schematic cross-sectional view of an organic light-emitting device according to an embodiment;



FIG. 3 illustrates a schematic cross-sectional view of an organic light-emitting device according to an embodiment; and



FIG. 4 illustrates a schematic cross-sectional view of an organic light-emitting device according to an embodiment.





DETAILED DESCRIPTION

Example embodiments will now be described more fully hereinafter with reference to the accompanying drawings; however, they may be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey exemplary implementations to those skilled in the art.


In the drawing figures, the dimensions of layers and regions may be exaggerated for clarity of illustration.


Hereinafter, embodiments are described in detail by referring to the attached drawings, and in the drawings, like reference numerals denote like elements, and a redundant explanation thereof will not be provided herein.


As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. As used herein, the terms “or” and “and/or” are not exclusive terms.


It will be further understood that the terms “includes,” “including,” “comprises,” and/or “comprising” used herein specify the presence of stated features or components, but do not preclude the presence or addition of one or more other features or components.


It will be understood that when a layer, region, or component is referred to as being “on” or “onto” another layer, region, or component, it may be directly or indirectly formed on the other layer, region, or component. For example, intervening layers, regions, or components may be present.


An aspect provides a condensed cyclic compound represented by Formula 1:




embedded image


In Formulae 1 and 2, A11 to A14 and A21 to A24 (e.g., ring A11 to ring A14 and ring A21 to ring A24) may each independently be selected from a C5-C60 carbocyclic group and a C1-C60 heterocyclic group. In an implementation, in Formulae 1 and 2, A11 to A14 may be separate or may be linked via a first linking group, and A21 to A24 may be separate or may be linked via a second linking group.


In an implementation, in Formulae 1 and 2, A11 to A14 and A21 to A24 may each independently be selected from, e.g., a benzene group, a naphthalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a perylene group, a thiophene group, a furan group, a silole group, a carbazole group, an indole group, an isoindole group, a benzofuran group, a benzothiophene group, a benzosilole group, a dibenzofuran group, a dibenzothiophene group, a benzocarbazole group, a dibenzocarbazole group, and a dibenzosilole group.


In an implementation, in Formulae 1 and 2, A11 to A14 and A21 to A24 may each independently be selected from, e.g., a benzene group, a naphthalene group, a fluorene group, a phenanthrene group, an anthracene group, a triphenylene group, a pyrene group, a chrysene group, a perylene group, a carbazole group, a dibenzofuran group, and a dibenzothiophene group.


In an implementation, in Formulae 1 and 2, A11 to A14 and A21 to A24 may each independently be selected from, e.g., a benzene group, a naphthalene group, and a carbazole group.


In an implementation, in Formulae 1 and 2, A11 to A14 and A21 to A24 may each be, e.g., a benzene group.


In an implementation, in Formula 1, A13 and A14 and/or A11 and A14 may optionally be linked via a first linking group.


In an implementation, in Formula 2, A23 and A24 and/or A21 and A24 may optionally be linked via a second linking group.


The first linking group may be selected from, e.g., a single bond, *—O—*′, *—S—*′, *—B(R15)—*′, *—N(R15)—*′, *—C(R15)(R16)—*′, and —C(R15)═C(R16)—*′,


R15 and R16 may each independently be selected from:


hydrogen, a C1-C20 alkyl group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group; and


a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group, each substituted with at least one selected from deuterium, a C1-C20 alkyl group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group, and


* and *′ each indicate a binding site to a neighboring atom.


The second linking group may be selected from a single bond, *—O—*′, *—S—*′, *—B(R25)—*′, *—N(R25)—*′, *—C(R25)(R26)—*′, and —C(R25)═C(R26)—*′,


R25 and R26 may each independently be selected from:


hydrogen, a C1-C20 alkyl group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group; and


a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group, each substituted with at least one selected from deuterium, a C1-C20 alkyl group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group, and


* and *′ each indicate a binding site to a neighboring atom.


In an implementation, the first linking group and the second linking group may each independently be selected from, e.g., a single bond, *—O—*′, and *—S—*′.


In Formula 1, n11 indicates the number of A14(s) and may be selected from 0 and 1.


In Formula 2, n21 indicates the number of A24(s) and may be selected from 0 and 1.


In an implementation, in Formulae 1 and 2, L11 to L14 and L21 to L24 may each independently be selected from, e.g., a single bond, *—N(Ra)—*′, a substituted or unsubstituted C5-C60 carbocyclic group, and a substituted or unsubstituted C1-C60 heterocyclic group.


For example, in Formulae 1 and 2, L11 to L14 and L21 to L24 may each independently be selected from:


a single bond, *—N(Ra)—*′, a benzene group, a naphthalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a perylene group, a thiophene group, a furan group, a silole group, a carbazole group, an indole group, an isoindole group, a benzofuran group, a benzothiophene group, a benzosilole group, a dibenzofuran group, a dibenzothiophene group, a benzocarbazole group, a dibenzocarbazole group, and a dibenzosilole group; and


a benzene group, a naphthalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a perylene group, a thiophene group, a furan group, a silole group, a carbazole group, an indole group, an isoindole group, a benzofuran group, a benzothiophene group, a benzosilole group, a dibenzofuran group, a dibenzothiophene group, a benzocarbazole group, a dibenzocarbazole group, and a dibenzosilole group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a thiophenyl group, a furanyl group, a silolyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), and —B(Q31)(Q32), and


Q31 to Q33 may each independently be selected from a C1-C60 alkyl group, a phenyl group, a biphenyl group, and a terphenyl group.


In an implementation, in Formulae 1 and 2, L11 to L14 and L21 to L24 may each independently be selected from, e.g., a single bond, *—N(Ra)—*′, and a group represented by one of Formulae 3-1 to 3-41:




embedded image


embedded image


embedded image


embedded image


embedded image


In Formulae 3-1 to 3-41,


X31 may be selected from O and S.


X32 may be selected from O, S, N(R33), and C(R33)(R34),


R31 to R34 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a thiophenyl group, a furanyl group, a silolyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), and —B(Q31)(Q32),


Q31 to Q33 each independently be selected from a C1-C60 alkyl group, a phenyl group, a biphenyl group, and a terphenyl group,


b31 may be selected from 1, 2, 3, and 4,


b32 may be selected from 1, 2, 3, 4, 5, and 6,


b33 may be selected from 1, 2, 3, 4, 5, 6, 7, and 8,


b34 may be selected from 1, 2, 3, 4, and 5,


b35 may be selected from 1, 2, and 3,


b36 may be selected from 1 and 2, and


* and *′ each indicate a binding site to a neighboring atom.


In an implementation, in Formulae 1 and 2, a11 to a14 and a21 to a24 indicate the number of L11 to L14 and L21 to L24, respectively, and may each independently be selected from 0, 1, 2, and 3.


In an implementation, in Formulae 1 and 2, a11 to a14 and a21 to a24 may each independently be selected from 0 and 1.


In Formula 1, R11 to R14 may each independently be selected from a group represented by Formula 2, hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted C1-C60 heteroaryloxy group, a substituted or unsubstituted C1-C60 heteroarylthio group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —N(Q1)(Q2), —P(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), and —P(═S)(Q1)(Q2), and


Q1 to Q3 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a C1-C60 alkyl group substituted with at least one selected from deuterium, —F, and a cyano group, a C6-C60 aryl group substituted with at least one selected from deuterium, —F, and a cyano group, a biphenyl group, and a terphenyl group.


For example, in Formula 1, R11 to R14 may each independently be selected from:


a group represented by Formula 2, hydrogen, deuterium, —F, —Cl, —Br, —I, a cyano group, a C1-C20 alkyl group, and a C1-C20 alkoxy group;


a C1-C20 alkyl group and a C1-C20 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a cyano group, a phenyl group, and a biphenyl group;


a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, an isoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a triazinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphthosilolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an indolopyrrolyl group, an indenocarbazolyl group, and an indolocarbazolyl group;


a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, an isoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a triazinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphthosilolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an indolopyrrolyl group, an indenocarbazolyl group, and an indolocarbazolyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a cyano group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, an isoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a triazinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphthosilolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an indolopyrrolyl group, an indenocarbazolyl group, an indolocarbazolyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q3), —S(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), and —P(═S)(Q31)(Q32); and


—Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), and —P(═S)(Q1)(Q2), and


Q1 to Q3 and Q31 to Q33 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a biphenyl group, and a terphenyl group.


In an implementation, in Formula 1, R11 to R14 may each independently be selected from:


a group represented by Formula 2, hydrogen, deuterium, —F, —Cl, —Br, —I, a cyano group, a C1-C20 alkyl group;


a C1-C20 alkyl group substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, and a cyano group;


groups represented by Formulae 5-1 to 5-142; and


—Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), and —P(═S)(Q)(Q2):




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In Formulae 5-1 to 5-142,


X51 may be selected from O, S, N(R51), and C(R51)(R60);


X52 may be N or C(R52), X53 may be N or C(R53), X54 may be N or C(R54), X55 may be N or C(R55), X56 may be N or C(R56), X57 may be N or C(R57), X58 may be N or C(R58), and X59 may be N or C(R59),


R51 to R60 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a thiophenyl group, a furanyl group, a silolyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), and —P(═S)(Q31)(Q32),


Q1 to Q3 and Q31 to Q33 may each independently be selected from a C1-C60 alkyl group, a phenyl group, a biphenyl group, and a terphenyl group,


b51 may be selected from 1, 2, 3, 4, and 5,


b52 may be selected from 1, 2, 3, 4, 5, 6, and 7,


b53 may be selected from 1, 2, 3, 4, 5, 6, 7, 8, and 9,


b54 may be selected from 1, 2, 3, and 4,


b55 may be selected from 1, 2, and 3,


b56 may be selected from 1 and 2,


b57 may be selected from 1, 2, 3, 4, 5, and 6, and


* indicates a binding site to a neighboring atom.


In one embodiment, in Formula 1, R11 to R14 may each independently be selected from:


a group represented by Formula 2, hydrogen, deuterium, —F, —Cl, —Br, —I, a cyano group, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group;


a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, and a cyano group; and


groups represented by Formulae 6-1 to 6-161:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In Formulae 6-1 to 6-161,


i-Pr indicates an isopropyl group,


t-Bu indicates a tert-butyl group,


Ph indicates a phenyl group,


1-Naph indicates a 1-naphthyl group,


2-Naph indicates a 2-naphthyl group, and


* indicates a binding site to a neighboring atom.


In Formulae 1 and 2, Ra and R21 to R24 may each independently be selected from a binding site (e.g., between Formula 1 and Formula 2), hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted C1-C60 heteroaryloxy group, a substituted or unsubstituted C1-C60 heteroarylthio group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —N(Q1)(Q2), —P(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), and —P(═S)(Q)(Q2), wherein at least one selected from R21 to R24 may be a binding site, and


Q1 to Q3 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a C1-C60 alkyl group substituted with at least one selected from deuterium, —F, and a cyano group, a C6-C60 aryl group substituted with at least one selected from deuterium, —F, and a cyano group, a biphenyl group, and a terphenyl group.


For example, in Formulae 1 and 2, Ra and R21 to R24 may each independently be selected from:


a binding site, hydrogen, deuterium, —F, —Cl, —Br, —I, a cyano group, a C1-C20 alkyl group, and a C1-C20 alkoxy group;


a C1-C20 alkyl group and a C1-C20 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a cyano group, a phenyl group, and a biphenyl group;


a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, an isoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a triazinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphthosilolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an indolopyrrolyl group, an indenocarbazolyl group, and an indolocarbazolyl group;


a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, an isoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a triazinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphthosilolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an indolopyrrolyl group, an indenocarbazolyl group, and an indolocarbazolyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a cyano group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, an isoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a triazinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphthosilolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an indolopyrrolyl group, an indenocarbazolyl group, an indolocarbazolyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), and —P(═S)(Q31)(Q32); and


—Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), and —P(═S)(Q1)(Q2), and


Q1 to Q3 and Q31 to Q33 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a biphenyl group, and a terphenyl group.


In an implementation, in Formulae 1 and 2, Ra and R21 to R24 may each independently be selected from:


a binding site, hydrogen, deuterium, —F, —Cl, —Br, —I, a cyano group, a C1-C20 alkyl group;


a C1-C20 alkyl group substituted with at least one selected from deuterium, —F, —Cl, —Br, —I and a cyano group;


groups represented by Formulae 5-1 to 5-142; and


—Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), and —P(═S)(Q1)(Q2), and


Q1 to Q3 may each independently be selected from a C1-C60 alkyl group, a phenyl group, a biphenyl group, and a terphenyl group.


In an implementation, in Formulae 1 and 2, Ra and R21 to R24 may each independently be selected from:


a binding site, hydrogen, deuterium, —F, —Cl, —Br, —I, a cyano group, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group;


a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I and a cyano group; and


groups represented by Formulae 6-1 to 6-161.


In Formulae 1 and 2, b11 to b14 and b21 to b24 indicate the number of substitutions of R11 to R14 and R21 to R24, respectively, and may each independently be selected from 1, 2, 3, 4, 5, and 6.


In Formulae 1 and 2, c11 to c14 and c21 to c24 may each independently be selected from 1, 3, 4, 5, and 6.


In an implementation, the condensed cyclic compound represented by Formula 1 may be represented by one selected from Formulae 1-1 to 1-3.




embedded image


In Formulae 1-1 to 1-3,


A11 to A14, L11 to L14, a11 to a14, and b11 to b14 may each independently be the same as those described in Formula 1,


X11 may be selected from a single bond, *—O—*′, and *—S—*′,


R11 to R14 may each independently be selected from a group represented by Formula 2, hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted C1-C60 heteroaryloxy group, a substituted or unsubstituted C1-C60 heteroarylthio group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —N(Q1)(Q2), —P(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), and —P(═S)(Q1)(Q2), and


Q1 to Q3 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a C1-C60 alkyl group substituted with at least one selected from deuterium, —F, and a cyano group, a C6-C60 aryl group substituted with at least one selected from deuterium, —F, and a cyano group, a biphenyl group, and a terphenyl group.


In an implementation, the group represented by Formula 2 may be represented by one selected from Formulae 2-1 to 2-4.




embedded image


In Formulae 2-1 to 2-4,


* indicates a binding site,


A21 to A24, L21 to L24, a21 to a24, and b21 to b24 may each independently be the same as those described in Formula 2,


R21 to R24 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted C1-C60 heteroaryloxy group, a substituted or unsubstituted C1-C60 heteroarylthio group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —N(Q1)(Q2), —P(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), and —P(═S)(Q1)(Q2), and


Q1 to Q3 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a C1-C60 alkyl group substituted with at least one selected from deuterium, —F, and a cyano group, a C6-C60 aryl group substituted with at least one selected from deuterium, —F, and a cyano group, a biphenyl group, and a terphenyl group.


In an implementation, the group represented by Formula 2 may be represented by one selected from Formulae 2-11 to 2-22.




embedded image


embedded image


embedded image


In Formulae 2-11 to 2-22,


* indicates a binding site,


A21 to A24, L21 to L24, a21 to a24, and b21 to b24 may each independently be the same as those described in Formula 2,


X21 may be selected from a single bond, *—O—*′, and *—S—*′,


R21 to R24 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted C1-C60 heteroaryloxy group, a substituted or unsubstituted C1-C0 heteroarylthio group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q1)(Q2)(Q3), —B(Q1)(Q2), —N(Q1)(Q2), —P(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), and —P(═S)(Q1)(Q2), and


Q1 to Q3 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a C1-C60 alkyl group substituted with at least one selected from deuterium, —F, and a cyano group, a C6-C60 aryl group substituted with at least one selected from deuterium, —F, and a cyano group, a biphenyl group, and a terphenyl group.


In an implementation, the condensed cyclic compound represented by Formula 1 may be one of Compounds 1 to 86.




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


The condensed cyclic compound represented by Formula 1 may variously emit light such as red light, green light, and blue light. For example, the condensed cyclic compound represented by Formula 1 may emit blue light. In an implementation, the condensed cyclic compound represented by Formula 1 may emit blue light having a maximum (intensity) emission wavelength of, e.g., about 440 nm to about 480 nm.


In order to effectively achieve a thermally activated delayed fluorescence process, satisfying a small difference value (ΔEST) between a lowest excitation singlet energy level and a lowest excitation triplet energy level and a large oscillator strength (f) may be desirable. The small ΔEST and the large f may have a trade-off relation, and it may be difficult to satisfy the small ΔEST and the large f at the same time. Due to the structural characteristics described below, the condensed cyclic compound represented by Formula 1 may satisfy the small ΔEST and the large f at the same time, thereby effectively achieving the thermally activated delayed fluorescence process.


The condensed cyclic compound may include boron (B) in a core as represented by Formula 1A. For example, nitrogen (N) may have energy corresponding to highest occupied molecular orbital (HOMO), B may have energy corresponding to lowest unoccupied molecular orbital (LUMO), and carbon (C) adjacent to N and B alternately may have energy corresponding to HOMO/LUMO due to a resonance effect. As such, in the condensed cyclic compound, HOMO and LUMO may be separated at an atom level, and TADF characteristics may be exhibited. For example, the condensed cyclic compound may exhibit characteristics different from a compound including a carbazole structure that does not include B (e.g., a compound including only a carbazole structure may not exhibit TADF characteristics). Due to such TADF characteristics, the organic light-emitting device including the condensed cyclic compound may have high efficiency:




embedded image


In addition, the condensed cyclic compound may form the overlap of HOMO and LUMO due to a multiple resonance effect, and the condensed cyclic compound may be advantageous to emission transition.


The condensed cyclic compound may include a carbazole ring in a core as represented by Formula 1B, and the condensed cyclic compound may have a relatively rigid structure. In general, when a compound absorbs energy and emits light while the energy transitions, the change in the structure of the compound may result. The condensed cyclic compound may include a carbazole ring, and such a structural change may be minimized. For example, full width at half maximum (FWHM) may be narrowed and vibration may be suppressed, thereby contributing to improving quantum efficiency. Consequently, the efficiency of the organic light-emitting device including the condensed cyclic compound may be improved and high color purity may be provided.


Relatively high S1 and T1 may be required for emitting blue light. The condensed cyclic compound may include a carbazole ring, and it is possible to provide a compound having relatively high bond dissociation energy. For example, the condensed cyclic compound may include a carbazole ring, the condensed cyclic compound may have high bond dissociation energy, and the efficiency of the organic light-emitting device including the condensed cyclic compound may be improved.




embedded image


Furthermore, the condensed cyclic compound may have relatively high charge (hole or electron) transport capability, the exciton formation ratio in the emission layer of the organic light-emitting device including the condensed cyclic compound represented by Formula 1 may be improved, and the organic light-emitting device may have a low driving voltage, high efficiency, a long lifespan, and high maximum quantum efficiency.


In addition, the condensed cyclic compound may have a relatively small ΔEST, the condensed cyclic compound may maintain a relatively low T1 ratio, and TTA or TPQ caused at a high T1 ratio may occur to a relatively lesser degree. For example, roll-off characteristics of the organic light-emitting device including the condensed cyclic compound may be improved.


A synthesis method for the condensed cyclic compound represented by Formula 1 may be understood art by referring to the following examples.


At least one condensed cyclic compound represented by Formula 1 may be included between a pair of electrodes constituting an organic light-emitting device. In an implementation, the condensed cyclic compound may be included in at least one layer selected from a hole transport region, an electron transport region, and an emission layer. In an implementation, the condensed cyclic compound of Formula 1 may be used as a material for a capping layer located outside a pair of electrodes of an organic light-emitting device.


Another aspect provides an organic light-emitting device including: a first electrode, a second electrode facing the first electrode, and an organic layer between the first electrode and the second electrode, the organic layer including an emission layer and at least one condensed cyclic compound represented by Formula 1 described above.


The term “organic layer” as used herein refers to a single layer and/or a plurality of layers disposed between the first electrode and the second electrode of the organic light-emitting device. A material included in the “organic layer” is not limited to an organic material.


The expression “(an organic layer) includes at least one condensed cyclic compound” used herein may include a case in which “(an organic layer) includes identical compounds represented by Formula 1” and a case in which “(an organic layer) includes two or more different condensed cyclic compounds represented by Formula 1.”


For example, the organic layer may include, as the condensed cyclic compound, only Compound 1. In this regard, Compound 1 may exist in an emission layer of the organic light-emitting device. In one or more embodiments, the organic layer may include, as the condensed cyclic compound, Compound 1 and Compound 2. In this regard, Compound 1 and Compound 2 may exist in an identical layer (for example, Compound 1 and Compound 2 may all exist in an emission layer), or different layers (for example, Compound 1 may exist in an emission layer and Compound 2 may exist in an electron transport region).


In an implementation, the first electrode of the organic light-emitting device may be an anode, and the second electrode of the organic light-emitting device may be a cathode, and the organic layer may further include a hole transport region between the first electrode and the emission layer and an electron transport region between the emission layer and the second electrode, and the hole transport region may include a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron blocking layer, or any combination thereof, and the electron transport region may include a hole blocking layer, an electron control layer, an electron transport layer, an electron injection layer, or a combination thereof.


In an implementation, the emission layer may include the condensed cyclic compound represented by Formula 1. The emission layer may further include a host in addition to the condensed cyclic compound, and an amount of the condensed cyclic compound in the emission layer may be smaller than an amount of the host. In an implementation, the condensed cyclic compound may act as a thermally activated delayed fluorescence (TADF) emitter:


In an implementation, the emission layer may not include a phosphorescent compound (e.g., a transition metal compound). For example, the emission layer may consist of the condensed cyclic compound represented by Formula 1 and the host.


In an implementation, at least one selected from the hole transport region and the emission layer may include at least one selected from an arylamine-containing compound, an acridine-containing compound, and a carbazole-containing compound.


In an implementation, at least one selected from the emission layer and the electron transport region may include at least one selected from a silicon-containing compound, a phosphine-containing compound, a sulfur oxide-containing compound, a phosphorus oxide-containing compound, a triazine-containing compound, a pyrimidine-containing compound, a pyridine-containing compound, a dibenzofuran-containing compound, and a dibenzothiophene-containing compound.


[Description of FIG. 1]



FIG. 1 illustrates a schematic view of an organic light-emitting device 10 according to an embodiment. The organic light-emitting device 10 may include a first electrode 110, an organic layer 150, and a second electrode 190.


Hereinafter, the structure of the organic light-emitting device 10 according to an embodiment and a method of manufacturing the organic light-emitting device 10 will be described in connection with FIG. 1.


[First Electrode 110]


In an implementation, a substrate may be additionally disposed under the first electrode 110 or above the second electrode 190. The substrate may be a glass substrate or a plastic substrate, each having excellent mechanical strength, thermal stability, transparency, surface smoothness, ease of handling, and water resistance.


The first electrode 110 may be formed by depositing or sputtering a material for forming the first electrode 110 on the substrate. When the first electrode 110 is an anode, the material for a first electrode may be selected from materials with a high work function to facilitate hole injection.


The first electrode 110 may be a reflective electrode, a semi-transmissive electrode, or a transmissive electrode. In an implementation, when the first electrode 110 is a transmissive electrode, a material for forming a first electrode may be selected from, e.g., indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO2), zinc oxide (ZnO), and a combinations thereof. In an implementation, when the first electrode 110 is a semi-transmissive electrode or a reflectable electrode, a material for forming a first electrode may be selected from, e.g., magnesium (Mg), silver (Ag), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), and a combinations thereof.


The first electrode 110 may have a single-layered structure, or a multi-layered structure including two or more layers. In an implementation, the first electrode 110 may have a three-layered structure of, e.g., ITO/Ag/ITO.


[Organic Layer 150]


The organic layer 150 is disposed on the first electrode 110. The organic layer 150 may include an emission layer.


The organic layer 150 may further include a hole transport region between the first electrode 110 and the emission layer, and an electron transport region between the emission layer and the second electrode 190.


[Hole Transport Region in Organic Layer 150]


The hole transport region may have i) a single-layered structure including a single layer including a single material, ii) a single-layered structure including a single layer including a plurality of different materials, or iii) a multi-layered structure having a plurality of layers including a plurality of different materials.


The hole transport region may include at least one layer selected from a hole injection layer, a hole transport layer, an emission auxiliary layer, and an electron blocking layer.


In an implementation, the hole transport region may have a single-layered structure including a single layer including a plurality of different materials, or a multi-layered structure having a hole injection layer/hole transport layer structure, a hole injection layer/hole transport layer/emission auxiliary layer structure, a hole injection layer/emission auxiliary layer structure, a hole transport layer/emission auxiliary layer structure, or a hole injection layer/hole transport layer/electron blocking layer structure, wherein for each structure, constituting layers are sequentially stacked from the first electrode 110 in this stated order.


The hole transport region may include at least one selected from m-MTDATA, TDATA, 2-TNATA, NPB(NPD), β-NPB, TPD, Spiro-TPD, Spiro-NPB, methylated-NPB, TAPC, HMTPD, 4,4′,4″-tris(N-carbazolyl)triphenylamine (TCTA), polyaniline/dodecylbenzenesulfonic acid (PANI/DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), polyaniline/camphor sulfonic acid (PANI/CSA), polyaniline/poly(4-styrenesulfonate) (PANI/PSS), TCTA, CzSi, a compound represented by Formula 201, and a compound represented by Formula 202:




embedded image


embedded image


embedded image


embedded image


In Formulae 201 and 202,


L201 to L204 may each independently be selected from a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group,


L205 may be selected from *—O—*′, *—S—*′, *—N(Q201)-*′, a substituted or unsubstituted C1-C20 alkylene group, a substituted or unsubstituted C2-C20 alkenylene group, a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group,


xa1 to xa4 may each independently be an integer from 0 to 3,


xa5 may be an integer from 1 to 10, and


R201 to R204 and Q201 may each independently be selected from a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group.


In one embodiment, in Formula 202, R201 and R202 may optionally be linked each other via a single bond, a dimethyl-methylene group, or a diphenyl-methylene group, and R203 and R204 may optionally be linked via a single bond, a dimethyl-methylene group, or a diphenyl-methylene group.


In one embodiment, in Formulae 201 and 202,


L201 to I205 may each independently be selected from:


a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an indacenylene group, an acenaphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a rubicenylene group, a coronenylene group, an ovalenylene group, a thiophenylene group, a furanylene group, a carbazolylene group, an indolylene group, an isoindolylene group, a benzofuranylene group, a benzothiophenylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a dibenzosilolylene group, and a pyridinylene group; and


a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an indacenylene group, an acenaphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a rubicenylene group, a coronenylene group, an ovalenylene group, a thiophenylene group, a furanylene group, a carbazolylene group, an indolylene group, an isoindolylene group, a benzofuranylene group, a benzothiophenylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a dibenzosilolylene group, and a pyridinylene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a phenyl group substituted with a C1-C10 alkyl group, a phenyl group substituted with —F, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, —Si(Q31)(Q32)(Q33), and —N(Q31)(Q32), and


Q31 to Q33 may each independently be selected from a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group.


In one or more embodiments, xa1 to xa4 may each independently be 0, 1, or 2.


In one or more embodiments, xa5 may be 1, 2, 3, or 4.


In one or more embodiments, R201 to R204 and Q201 may each independently be selected from:


a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, and a pyridinyl group; and


a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, and a pyridinyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a phenyl group substituted with a C1-C10 alkyl group, a phenyl group substituted with —F, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, —Si(Q31)(Q32)(Q33), and —N(Q31)(Q32), and


Q31 to Q33 may each independently be the same as described above.


In an implementation, in Formula 201, at least one selected from R201 to R203 may each independently be selected from:


a fluorenyl group, a spiro-bifluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group; and


a fluorenyl group, a spiro-bifluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a phenyl group substituted with a C1-C10 alkyl group, a phenyl group substituted with —F, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group.


In one or more embodiments, in Formula 202, i) R201 and R202 may be linked each other via a single bond, and/or ii) R203 and R204 may be linked each other via a single bond.


In an implementation, in Formula 202, at least one selected from R201 to R204 may be selected from:


a carbazolyl group; and


a carbazolyl group substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a phenyl group substituted with a C1-C10 alkyl group, a phenyl group substituted with —F, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a carbazolyl group, a dibenzofuranyl group, and a dibenzothiophenyl group.


The compound represented by Formula 201 may be represented by Formula 201A:




embedded image


In an implementation, the compound represented by Formula 201 may be represented by Formula 201A(1).




embedded image


In an implementation, the compound represented by Formula 201 may be represented by Formula 201A-1.




embedded image


In an implementation, the compound represented by Formula 202 may be represented by Formula 202A:




embedded image


In an implementation, the compound represented by Formula 202 may be represented by Formula 202A-1:




embedded image


In Formulae 201A, 201A(1), 201A-1, 202A, and 202A-1,


L201 to L203, xa1 to xa3, xa5, and R202 to R204 may each independently be the same as described above,


R211 and R212 are same as R203, and


R213 to R217 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a phenyl group substituted with a C1-C10 alkyl group, a phenyl group substituted with —F, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a naphthacenyl group, a picenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a rubicenyl group, a coronenyl group, an ovalenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, and a pyridinyl group.


In an implementation, the hole transport region may include at least one compound selected from Compounds HT1 to HT39:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


A thickness of the hole transport region may be in a range of about 100 Å to about 10,000 Å, for example, about 100 Å to about 1,000 Å. When the hole transport region includes at least one of a hole injection layer and a hole transport layer, a thickness of the hole injection layer may be in a range of about 100 Å to about 9,000 Å, for example, about 100 Å to about 1,000 Å, and a thickness of the hole transport layer may be in a range of about 50 Å to about 2,000 Å, for example about 100 Å to about 1,500 Å. When the thicknesses of the hole transport region, the hole injection layer, and the hole transport layer are within these ranges, satisfactory hole transporting characteristics may be obtained without a substantial increase in driving voltage.


The emission auxiliary layer may help increase light-emission efficiency by compensating for an optical resonance distance according to the wavelength of light emitted by an emission layer, and the electron blocking layer may block the flow of electrons from an electron transport region. The emission auxiliary layer and the electron blocking layer may include the materials as described above.


[p-Dopant]


The hole transport region may further include, in addition to these materials, a charge-generation material for the improvement of conductive properties. The charge-generation material may be homogeneously or non-homogeneously dispersed in the hole transport region.


The charge-generation material may be, for example, a p-dopant.


In one embodiment, the p-dopant may have a lowest unoccupied molecular orbital (LUMO) level of −3.5 eV or less.


In an implementation, the p-dopant may include at least one selected from, e.g., a quinone derivative, a metal oxide, and a cyano group-containing compound.


In an implementation, the p-dopant may include at least one selected from, e.g.,


a quinone derivative, such as tetracyanoquinodimethane (TCNQ) or 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ);


a metal oxide, such as tungsten oxide or molybdenum oxide;


1,4,5,8,9,12-hexaazatriphenylene-hexacarbonitrile (HAT-CN); and


a compound represented by Formula 221.




embedded image


In Formula 221,


R221 to R223 may each independently be selected from a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, and at least one selected from R221 to R223 may have at least one substituent selected from a cyano group, —F, —Cl, —Br, —I, a C1-C20 alkyl group substituted with —F, a C1-C20 alkyl group substituted with —Cl, a C1-C20 alkyl group substituted with —Br and a C1-C20 alkyl group substituted with —I.


[Emission Layer in Organic Layer 150]


When the organic light-emitting device 10 is a full-color organic light-emitting device, the emission layer may be patterned into a red emission layer, a green emission layer, or a blue emission layer, according to a sub-pixel. In an implementation, the emission layer may have a stacked structure of two or more layers selected from a red emission layer, a green emission layer, and a blue emission layer, in which the two or more layers contact each other or are separated from each other. In an implementation, the emission layer may include two or more materials selected from a red light-emitting material, a green light-emitting material, and a blue light-emitting material, in which the two or more materials are mixed with each other in a single layer to emit white light.


The emission layer may include a host and a dopant. The dopant may include the condensed cyclic compound represented by Formula 1.


In an implementation, in the emission layer, an amount of the dopant may be in a range of, e.g., about 0.01 parts by weight to about 30 parts by weight, based on 100 parts by weight of the host.


A thickness of the emission layer may be in a range of about 100 Å to about 1,000 Å, for example, about 200 Å to about 600 Å. When the thickness of the emission layer is satisfied within the range above, excellent emission characteristics may be exhibited without substantial increase in driving voltage.


[Host in Emission Layer]


In an implementation, the host may include a compound represented by Formula 301 below.

[Ar301]xb11-[(L301)xb1-R301]xb21  <Formula 301>


In Formula 301,


Ar301 may be a substituted or unsubstituted C5-C60 carbocyclic group or a substituted or unsubstituted C1-C60 heterocyclic group,


xb11 may be 1, 2, or 3,


L301 may be selected from a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group,


xb1 may be an integer from 0 to 5,


R301 may be selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q301)(Q302)(Q303), —N(Q301)(Q302), —B(Q301)(Q302), —C(═O)(Q301), —S(═O)2(Q301), and —P(═O)(Q301)(Q302),


xb21 may be an integer from 1 to 5, and


Q301 to Q303 may each independently be selected from a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group.


In an implementation, Ar301 in Formula 301 may be selected from:


a naphthalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentaphene group, an indenoanthracene group, a dibenzofuran group, and a dibenzothiophene group; and


a naphthalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentaphene group, an indenoanthracene group, a dibenzofuran group, and a dibenzothiophene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), and —P(═O)(Q31)(Q32), and


Q31 to Q33 may each independently be selected from a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group.


When xb11 in Formula 301 is two or more, two or more Ar301(s) may be linked via a single bond.


In an implementation, the compound represented by Formula 301 may be represented by Formula 301-1 or 301-2:




embedded image


In Formulae 301-1 and 301-2,


A301 to A304 may each independently be selected from a benzene group, a naphthalene group, a phenanthrene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a pyridine group, a pyrimidine group, an indene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, an indole group, a carbazole group, a benzocarbazole group, a dibenzocarbazole group, a furan group, a benzofuran group, a dibenzofuran group, a naphthofuran group, a benzonaphthofuran group, a dinaphthofuran group, a thiophene group, a benzothiophene group, a dibenzothiophene group, a naphthothiophene group, a benzonaphthothiophene group, and a dinaphthothiophene group,


X301 may be O, S, or N-[(L304)xb4-R304],


R311 to R314 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), and —P(═O)(Q31)(Q32),


xb22 and xb23 may each independently be 0, 1, or 2,


L301, xb1, R301, and Q31 to Q33 may each independently be the same as described above,


L302 to L304 may each independently be the same as L301,


xb2 to xb4 may each independently be the same as xb1, and


R302 to R304 may each independently be the same as R301.


In an implementation, in Formulae 301, 301-1, and 301-2, L301 to L304 may each independently be selected from:


a phenylene group, a naphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a thiophenylene group, a furanylene group, a carbazolylene group, an indolylene group, an isoindolylene group, a benzofuranylene group, a benzothiophenylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a dibenzosilolylene group, a pyridinylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a thiadiazolylene group, an oxadiazolylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a triazinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzimidazolylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an imidazopyridinylene group, an imidazopyrimidinylene group, and an azacarbazolylene group; and


a phenylene group, a naphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a thiophenylene group, a furanylene group, a carbazolylene group, an indolylene group, an isoindolylene group, a benzofuranylene group, a benzothiophenylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a dibenzosilolylene group, a pyridinylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a thiadiazolylene group, an oxadiazolylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a triazinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzimidazolylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an imidazopyridinylene group, an imidazopyrimidinylene group, and an azacarbazolylene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a thiadiazolyl group, an oxadiazolyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an azacarbazolyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), and —P(═O)(Q31)(Q32), and


Q31 to Q33 may each independently be the same as described above.


In one embodiment, in Formulae 301, 301-1, and 301-2, R301 to R304 may each independently be selected from:


a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a thiadiazolyl group, an oxadiazolyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, and an azacarbazolyl group; and


a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a thiadiazolyl group, an oxadiazolyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, and an azacarbazolyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a thiadiazolyl group, an oxadiazolyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an azacarbazolyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)2(Q31), and —P(═O)(Q31)(Q32), and


Q31 to Q33 may each independently be the same as described above.


In an implementation, the host may include an alkaline earth metal complex. For example, the host may be selected from a Be complex (for example, Compound H55), a Mg complex, and a Zn complex.


In an implementation, the host may include at least one selected from 9,10-di(2-naphthyl)anthracene) (ADN), 2-methyl-9,10-bis(naphthalen-2-yl)anthracene (MADN), 9,10-di-(2-naphthyl)-2-t-butyl-anthracene (TBADN), 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP), 1,3-di-9-carbazolylbenzene (mCP), 1,3,5-tri(carbazol-9-yl)benzene (TCP), bis(4-(9H-carbazol-9-yl)phenyl)diphenylsilane (BCPDS), 4-(1-(4-(diphenylamino)phenyl)cyclohexyl)phenyl)diphenyl-phosphine oxide (POPCPA), DPEPO, and Compounds H1 to H55:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


The host may only include at least one compound, or at least two different compounds, in various manners.


[Dopant Included in Emission Layer in Organic Layer 150]


The dopant may include a compound represented by Formula 1: The emission layer is the same as described above.


[Electron Transport Region in Organic Layer 150]


The electron transport region may have i) a single-layered structure including a single layer including a single material, ii) a single-layered structure including a single layer including a plurality of different materials, or iii) a multi-layered structure having a plurality of layers including a plurality of different materials.


In an implementation, the electron transport region may include at least one selected from a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, and an electron injection layer.


In an implementation, the electron transport region may have an electron transport layer/electron injection layer structure, a hole blocking layer/electron transport layer/electron injection layer structure, an electron control layer/electron transport layer/electron injection layer structure, or a buffer layer/electron transport layer/electron injection layer structure, wherein for each structure, constituting layers are sequentially stacked from an emission layer.


The electron transport region (for example, a buffer layer, a hole blocking layer, an electron control layer, or an electron transport layer in the electron transport region) may include a metal-free compound containing at least one π electron-depleted nitrogen-containing ring.


The “π electron-depleted nitrogen-containing ring” indicates a C1-C60 heterocyclic group having at least one *—N═*′ moiety as a ring-forming moiety.


For example, the “it electron-depleted nitrogen-containing ring” may be i) a 5-membered to 7-membered heteromonocyclic group having at least one *—N═*′ moiety, ii) a heteropolycyclic group in which two or more 5-membered to 7-membered heteromonocyclic groups each having at least one *—N═*′ moiety are condensed with each other, or iii) a heteropolycyclic group in which at least one of 5-membered to 7-membered heteromonocyclic groups, each having at least one *—N═*′ moiety, is condensed with at least one C5-C60 carbocyclic group.


Examples of the π electron-depleted nitrogen-containing ring include an imidazole, a pyrazole, a thiazole, an isothiazole, an oxazole, an isoxazole, a pyridine, a pyrazine, a pyrimidine, a pyridazine, an indazole, a purine, a quinoline, an isoquinoline, a benzoquinoline, a phthalazine, a naphthyridine, a quinoxaline, a quinazoline, a cinnoline, a phenanthridine, an acridine, a phenanthroline, a phenazine, a benzimidazole, an isobenzothiazole, a benzoxazole, an isobenzoxazole, a triazole, a tetrazole, an oxadiazole, a triazine, thiadiazol, an imidazopyridine, an imidazopyrimidine, and an azacarbazole.


For example, the electron transport region may include a compound represented by Formula 601:

[Ar601]xe11-[(L601)xe1-R601]xe21  <Formula 601>


In Formula 601,


Ar601 may be a substituted or unsubstituted C5-C60 carbocyclic group or a substituted or unsubstituted C1-C60 heterocyclic group,


xe11 may be 1, 2, or 3,


L601 may be selected from a substituted or unsubstituted C3-C10 cycloalkylene group, a substituted or unsubstituted C1-C10 heterocycloalkylene group, a substituted or unsubstituted C3-C10 cycloalkenylene group, a substituted or unsubstituted C1-C10 heterocycloalkenylene group, a substituted or unsubstituted C6-C60 arylene group, a substituted or unsubstituted C1-C60 heteroarylene group, a substituted or unsubstituted divalent non-aromatic condensed polycyclic group, and a substituted or unsubstituted divalent non-aromatic condensed heteropolycyclic group,


xe1 may be an integer from 0 to 5,


R601 may be selected from a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C1-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C1-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C1-C60 heteroaryl group, a substituted or unsubstituted monovalent non-aromatic condensed polycyclic group, a substituted or unsubstituted monovalent non-aromatic condensed heteropolycyclic group, —Si(Q601)(Q602)(Q603), —C(═O)(Q601), —S(═O)2(Q601), and —P(═O)(Q601)(Q602),


Q601 to Q603 may each independently be a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, or a naphthyl group, and


xe21 may be an integer from 1 to 5.


In one embodiment, at least one of Ar601(s) in the number of xe11 and/or at least one of R601(s) in the number of xe21 may include the t electron-depleted nitrogen-containing ring.


In one embodiment, ring Ar601 in Formula 601 may be selected from:


a benzene group, a naphthalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentaphene group, an indenoanthracene group, a dibenzofuran group, a dibenzothiophene group, a carbazole group, an imidazole group, a pyrazole group, a thiazole group, an isothiazole group, an oxazole group, an isoxazole group, a pyridine group, a pyrazine group, a pyrimidine group, a pyridazine group, an indazole group, a purine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a phthalazine group, a naphthyridine group, a quinoxaline group, a quinazoline group, a cinnoline group, a phenanthridine group, an acridine group, a phenanthroline group, a phenazine group, a benzimidazole group, an isobenzothiazole group, a benzoxazole group, an isobenzoxazole group, a triazole group, a tetrazole group, an oxadiazole group, a triazine group, a thiadiazole group, an imidazopyridine group, an imidazopyrimidine group, and an azacarbazole group; and


a benzene group, a naphthalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenalene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a naphthacene group, a picene group, a perylene group, a pentaphene group, an indenoanthracene group, a dibenzofuran group, a dibenzothiophene group, a carbazole group, an imidazole group, a pyrazole group, a thiazole group, an isothiazole group, an oxazole group, an isoxazole group, a pyridine group, a pyrazine group, a pyrimidine group, a pyridazine group, an indazole group, a purine group, a quinoline group, an isoquinoline group, a benzoquinoline group, a phthalazine group, a naphthyridine group, a quinoxaline group, a quinazoline group, a cinnoline group, a phenanthridine group, an acridine group, a phenanthroline group, a phenazine group, a benzimidazole group, an isobenzothiazole group, a benzoxazole group, an isobenzoxazole group, a triazole group, a tetrazole group, an oxadiazole group, a triazine group, a thiadiazole group, an imidazopyridine group, an imidazopyrimidine group, and an azacarbazole group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, —Si(Q31)(Q32)(Q33), —S(═O)2(Q31), and —P(═O)(Q31)(Q32), and


Q31 to Q33 may each independently be selected from a C1-C10 alkyl group, a C1-C10 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group.


When xe11 in Formula 601 is two or more, two or more Ar601(s) may be linked via a single bond.


In one or more embodiments, Ar601 in Formula 601 may be an anthracene group.


In one or more embodiments, a compound represented by Formula 601 may be represented by Formula 601-1:




embedded image


In Formula 601-1,


X614 may be N or C(R614), X615 may be N or C(R615), X616 may be N or C(R616), and at least one selected from X614 to X616 may be N,


L611 to L613 may each independently be the same as L601,


xe611 to xe613 may each independently be the same as xe1,


R611 to R613 may each independently be the same as R601, and


R614 to R616 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group.


In an implementation, L601 and L611 to L613 in Formulae 601 and 601-1 may each independently be selected from:


a phenylene group, a naphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a thiophenylene group, a furanylene group, a carbazolylene group, an indolylene group, an isoindolylene group, a benzofuranylene group, a benzothiophenylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a dibenzosilolylene group, a pyridinylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a thiadiazolylene group, an oxadiazolylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a triazinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzimidazolylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an imidazopyridinylene group, an imidazopyrimidinylene group, and an azacarbazolylene group; and


a phenylene group, a naphthylene group, a fluorenylene group, a spiro-bifluorenylene group, a benzofluorenylene group, a dibenzofluorenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylene group, a chrysenylene group, a perylenylene group, a pentaphenylene group, a hexacenylene group, a pentacenylene group, a thiophenylene group, a furanylene group, a carbazolylene group, an indolylene group, an isoindolylene group, a benzofuranylene group, a benzothiophenylene group, a dibenzofuranylene group, a dibenzothiophenylene group, a benzocarbazolylene group, a dibenzocarbazolylene group, a dibenzosilolylene group, a pyridinylene group, an imidazolylene group, a pyrazolylene group, a thiazolylene group, an isothiazolylene group, an oxazolylene group, an isoxazolylene group, a thiadiazolylene group, an oxadiazolylene group, a pyrazinylene group, a pyrimidinylene group, a pyridazinylene group, a triazinylene group, a quinolinylene group, an isoquinolinylene group, a benzoquinolinylene group, a phthalazinylene group, a naphthyridinylene group, a quinoxalinylene group, a quinazolinylene group, a cinnolinylene group, a phenanthridinylene group, an acridinylene group, a phenanthrolinylene group, a phenazinylene group, a benzimidazolylene group, an isobenzothiazolylene group, a benzoxazolylene group, an isobenzoxazolylene group, a triazolylene group, a tetrazolylene group, an imidazopyridinylene group, an imidazopyrimidinylene group, and an azacarbazolylene group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a thiadiazolyl group, an oxadiazolyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, and an azacarbazolyl group.


In one or more embodiments, in Formulae 601 and 601-1, xe1 and xe611 to xe613 may each independently be 0, 1, or 2.


In one or more embodiments, in Formulae 601 and 601-1, R601 and R611 to R613 may each independently be selected from:


a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a thiadiazolyl group, an oxadiazolyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, and an azacarbazolyl group;


a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a thiadiazolyl group, an oxadiazolyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, and an azacarbazolyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentaphenyl group, a hexacenyl group, a pentacenyl group, a thiophenyl group, a furanyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, a pyridinyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a thiadiazolyl group, an oxadiazolyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, an isobenzothiazolyl group, a benzoxazolyl group, an isobenzoxazolyl group, a triazolyl group, a tetrazolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, and an azacarbazolyl group; and


—S(═O)2(Q601) and —P(═O)(Q601)(Q602), and


Q601 and Q602 may be the same as described above.


In an implementation, the electron transport region may include, e.g., at least one compound selected from Compounds ET1 to ET36:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In an implementation, the electron transport region may include at least one selected from 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1,10-phenanthroline (Bphen), Alq3, BAlq, 3-(biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole ( ), NTAZ, diphenyl(4-(triphenylsilyl)phenyl)-phosphine oxide (TSPO1), TPBI, and DPEPO:




embedded image


embedded image


A thickness of the buffer layer, the hole blocking layer, or the electron control layer may be in a range of about 20 Å to about 1,000 Å, for example, about 30 Å to about 300 Å. When the thicknesses of the buffer layer, the hole blocking layer, and the electron control layer are within these ranges, the electron blocking layer may have excellent electron blocking characteristics or electron control characteristics without a substantial increase in driving voltage.


A thickness of the electron transport layer may be in a range of about 100 Å to about 1,000 Å, for example, about 150 Å to about 500 Å. When the thickness of the electron transport layer is within the range described above, the electron transport layer may have satisfactory electron transport characteristics without a substantial increase in driving voltage.


The electron transport region (for example, the electron transport layer in the electron transport region) may further include, in addition to the materials described above, a metal-containing material.


The metal-containing material may include at least one selected from an alkali metal complex and an alkaline earth metal complex. The alkali metal complex may include a metal ion selected from a Li ion, a Na ion, a K ion, a Rb ion, and a Cs ion, and the alkaline earth-metal complex may include a metal ion selected from a Be ion, a Mg ion, a Ca ion, a Sr ion, and a Ba ion. A ligand coordinated with the metal ion of the alkali metal complex or the alkaline earth-metal complex may be selected from a hydroxy quinoline, a hydroxy isoquinoline, a hydroxy benzoquinoline, a hydroxy acridine, a hydroxy phenanthridine, a hydroxy phenyloxazole, a hydroxy phenylthiazole, a hydroxy diphenyloxadiazole, a hydroxy diphenylthiadiazol, a hydroxy phenylpyridine, a hydroxy phenylbenzimidazole, a hydroxy phenylbenzothiazole, a bipyridine, a phenanthroline, and a cyclopentadiene.


For example, the metal-containing material may include a Li complex. The Li complex may include, for example, Compound ET-D1 (lithium quinolate, LiQ) or ET-D2.




embedded image


The electron transport region may include an electron injection layer that facilitates injection of electrons from the second electrode 190. The electron injection layer may directly contact the second electrode 190.


The electron injection layer may have i) a single-layered structure including a single layer including a single material, ii) a single-layered structure including a single layer including a plurality of different materials, or iii) a multi-layered structure having a plurality of layers including a plurality of different materials.


The electron injection layer may include an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal compound, an alkaline earth-metal compound, a rare earth metal compound, an alkali metal complex, an alkaline earth-metal complex, a rare earth metal complex, or a combinations thereof.


The alkali metal may be selected from Li, Na, K, Rb, and Cs. In one embodiment, the alkali metal may be Li, Na, or Cs. In an implementation, the alkali metal may be Li or Cs.


The alkaline earth metal may be selected from Mg, Ca, Sr, and Ba.


The rare earth metal may be selected from Sc, Y, Ce, Tb, Yb, and Gd.


The alkali metal compound, the alkaline earth-metal compound, and the rare earth metal compound may be selected from oxides and halides (for example, fluorides, chlorides, bromides, or iodides) of the alkali metal, the alkaline earth-metal, and the rare earth metal.


The alkali metal compound may be selected from alkali metal oxides, such as Li2O, Cs2O, and K2O, and alkali metal halides, such as LiF, NaF, CsF, KF, LiI, NaI, CsI, KI, and RbI. In an implementation, the alkali metal compound may be selected from LiF, Li2O, NaF, LiI, NaI, CsI, and KI.


The alkaline earth-metal compound may be selected from alkaline earth-metal oxides, such as BaO, SrO, CaO, BaxSr1-xO (0<x<l), BaxCa1-xO (0<x<1). In an implementation, the alkaline earth-metal compound may be selected from BaO, SrO, and CaO.


The rare earth metal compound may be selected from YbF3, ScF3, ScO3, Y2O3, Ce2O3, GdF3, and TbF3. In an implementation, the rare earth metal compound may be selected from YbF3, ScF3, TbF3, YbI3, ScI3, and TbI3.


In an implementation, the alkali metal complex, the alkaline earth-metal complex, and the rare earth metal complex may include an ion of alkali metal, alkaline earth-metal, and rare earth metal as described above, and a ligand coordinated with a metal ion of the alkali metal complex, the alkaline earth-metal complex, or the rare earth metal complex may be selected from hydroxy quinoline, hydroxy isoquinoline, hydroxy benzoquinoline, hydroxy acridine, hydroxy phenanthridine, hydroxy phenyloxazole, hydroxy phenylthiazole, hydroxy diphenyloxadiazole, hydroxy diphenylthiadiazol, hydroxy phenylpyridine, hydroxy phenylbenzimidazole, hydroxy phenylbenzothiazole, bipyridine, phenanthroline, and cyclopentadiene.


In an implementation, the electron injection layer may consist of or include an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal compound, an alkaline earth-metal compound, a rare earth metal compound, an alkali metal complex, an alkaline earth-metal complex, a rare earth metal complex, or any combinations thereof, as described above. In one or more embodiments, the electron injection layer may further include an organic material. When the electron injection layer further includes an organic material, an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal compound, an alkaline earth-metal compound, a rare earth metal compound, an alkali metal complex, an alkaline earth-metal complex, a rare earth metal complex, or any combinations thereof may be homogeneously or non-homogeneously dispersed in a matrix including the organic material.


A thickness of the electron injection layer may be in a range of about 1 Å to about 100 Å, for example, about 3 Å to about 90 Å. When the thickness of the electron injection layer is within the range described above, the electron injection layer may have satisfactory electron injection characteristics without a substantial increase in driving voltage.


[Second Electrode 190]


The second electrode 190 may be disposed on the organic layer 150 having such a structure. The second electrode 190 may be a cathode which is an electron injection electrode, and in this regard, a material for forming the second electrode 190 may be selected from metal, an alloy, an electrically conductive compound, and a combination thereof, which have a relatively low work function.


In an implementation, the second electrode 190 may include at least one selected from, e.g., lithium (Li), silver (Ag), magnesium (Mg), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), ITO, and IZO. The second electrode 190 may be a transmissive electrode, a semi-transmissive electrode, or a reflective electrode.


The second electrode 190 may have a single-layered structure, or a multi-layered structure including two or more layers.


[Description of FIGS. 2 to 4]


An organic light-emitting device 20 of FIG. 2 includes a first capping layer 210, a first electrode 110, an organic layer 150, and a second electrode 190 which are sequentially stacked in this stated order, an organic light-emitting device 30 of FIG. 3 includes a first electrode 110, an organic layer 150, a second electrode 190, and a second capping layer 220 which are sequentially stacked in this stated order, and an organic light-emitting device 40 of FIG. 4 includes a first capping layer 210, a first electrode 110, an organic layer 150, a second electrode 190, and a second capping layer 220.


Regarding FIGS. 2 to 4, the first electrode 110, the organic layer 150, and the second electrode 190 may be understood by referring to the description presented in connection with FIG. 1.


In the organic layer 150 of each of the organic light-emitting devices 20 and 40, light generated in an emission layer may pass through the first electrode 110, which is a semi-transmissive electrode or a transmissive electrode, and the first capping layer 210 toward the outside, and in the organic layer 150 of each of the organic light-emitting devices 30 and 40, light generated in an emission layer may pass through the second electrode 190, which is a semi-transmissive electrode or a transmissive electrode, and the second capping layer 220 toward the outside.


The first capping layer 210 and the second capping layer 220 may increase external luminescent efficiency according to the principle of constructive interference.


The first capping layer 210 and the second capping layer 220 may each independently be an organic capping layer including an organic material, an inorganic capping layer including an inorganic material, or a composite capping layer including an organic material and an inorganic material.


At least one selected from the first capping layer 210 and the second capping layer 220 may each independently include at least one material selected from carbocyclic compounds, heterocyclic compounds, amine-based compounds, porphyrine derivatives, phthalocyanine derivatives, a naphthalocyanine derivatives, alkali metal complexes, and alkaline earth-based complexes. The carbocyclic compound, the heterocyclic compound, and the amine-based compound may be optionally substituted with a substituent containing at least one element selected from O, N, S, Se, Si, F, Cl, Br, and I. In one embodiment, at least one selected from the first capping layer 210 and the second capping layer 220 may each independently include an amine-based compound.


In an implementation, at least one selected from the first capping layer 210 and the second capping layer 220 may each independently include the compound represented by Formula 201 or the compound represented by Formula 202.


In an implementation, at least one selected from the first capping layer 210 and the second capping layer 220 may each independently include a compound selected from Compounds HT28 to HT33 and Compounds CP1 to CP5.




embedded image


Hereinbefore, the organic light-emitting device according to an embodiment has been described in connection with FIGS. 1 to 4.


Layers constituting the hole transport region, an emission layer, and layers constituting the electron transport region may be formed in a certain region by using one or more suitable methods selected from vacuum deposition, spin coating, casting, Langmuir-Blodgett (LB) deposition, ink-jet printing, laser-printing, and laser-induced thermal imaging.


When layers constituting the hole transport region, an emission layer, and layers constituting the electron transport region are formed by vacuum deposition, the deposition may be performed at a deposition temperature of about 100° C. to about 500° C., a vacuum degree of about 10−8 torr to about 10−3 torr, and a deposition speed of about 0.01 Å/sec to about 100 Å/sec by taking into account a material to be included in a layer to be formed, and the structure of a layer to be formed.


When layers constituting the hole transport region, an emission layer, and layers constituting the electron transport region are formed by spin coating, the spin coating may be performed at a coating speed of about 2,000 rpm to about 5,000 rpm and at a heat treatment temperature of about 80° C. to about 200° C. by taking into account a material to be included in a layer to be formed, and the structure of a layer to be formed.


[General Definition of Substituents]


The term “C1-C60 alkyl group” as used herein refers to a linear or branched saturated aliphatic hydrocarbon monovalent group having 1 to 60 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an isoamyl group, and a hexyl group. The term “C1-C60 alkylene group” as used herein refers to a divalent group having the same structure as the C1-C60 alkyl group.


The term “C2-C60 alkenyl group” as used herein refers to a hydrocarbon group having at least one double bond in the middle or at the terminus of the C2-C60 alkyl group, and examples thereof include an ethenyl group, a propenyl group, and a butenyl group. The term “C2-C60 alkenylene group” as used herein refers to a divalent group having the same structure as the C2-C60 alkenyl group.


The term ‘C2-C60 alkynyl group’ as used herein refers to a hydrocarbon group having at least one carbon-carbon triple bond in the middle or at the terminus of the C2-C60 alkyl group, and examples thereof include an ethynyl group, and a propynyl group. The term “C2-C60 alkynylene group” as used herein refers to a divalent group having the same structure as the C2-C60 alkynyl group.


The term “C1-C60 alkoxy group” as used herein refers to a monovalent group represented by —OA101 (wherein A101 is the C1-C60 alkyl group), and examples thereof include a methoxy group, an ethoxy group, and an isopropyloxy group.


The term “C3-C10 cycloalkyl group” as used herein refers to a monovalent saturated hydrocarbon monocyclic group having 3 to 10 carbon atoms, and examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group. The term “C3-C10 cycloalkylene group” as used herein refers to a divalent group having the same structure as the C3-C10 cycloalkyl group.


The term “C1-C10 heterocycloalkyl group” as used herein refers to a monovalent monocyclic group having at least one heteroatom selected from N, O, Si, P, and S as a ring-forming atom and 1 to 10 carbon atoms, and examples thereof include a 1,2,3,4-oxatriazolidinyl group, a tetrahydrofuranyl group, and a tetrahydrothiophenyl group. The term “C1-C10 heterocycloalkylene group” as used herein refers to a divalent group having the same structure as the C1-C10 heterocycloalkyl group.


A C3-C10 cycloalkenyl group used herein refers to a monovalent monocyclic group that has 3 to 10 carbon atoms and at least one double bond in the ring thereof and no aromaticity, and examples thereof include a cyclopentenyl group, a cyclohexenyl group, and a cycloheptenyl group. The term “C3-C10 cycloalkenylene group,” used herein, refers to a divalent group having the same structure as the C3-C10 cycloalkenyl group.


The term “C1-C10 heterocycloalkenyl group” as used herein refers to a monovalent monocyclic group that has at least one heteroatom selected from N, O, Si, P, and S as a ring-forming atom, 1 to 10 carbon atoms, and at least one double bond in its ring. Examples of the C1-C10 heterocycloalkenyl group include a 4,5-dihydro-1,2,3,4-oxatriazolyl group, a 2,3-dihydrofuranyl group, and a 2,3-dihydrothiophenyl group. The term “C1-C10 heterocycloalkenylene group,” used herein, refers to a divalent group having the same structure as the C1-C10 heterocycloalkenyl group.


The term “C6-C60 aryl group” as used herein refers to a monovalent group having a carbocyclic aromatic system having 6 to 60 carbon atoms, and a C6-C60 arylene group used herein refers to a divalent group having a carbocyclic aromatic system having 6 to 60 carbon atoms. Examples of the C6-C60 aryl group are a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a pyrenyl group, and a chrysenyl group. When the C6-C60 aryl group and the C6-C60 arylene group each include two or more rings, the rings may be fused to each other.


The term “C1-C60 heteroaryl group” as used herein refers to a monovalent group having a carbocyclic aromatic system that has at least one heteroatom selected from N, O, Si, P, and S as a ring-forming atom, in addition to 1 to 1 carbon atoms. The term “C1-C60 heteroarylene group” as used herein refers to a divalent group having a carbocyclic aromatic system that has at least one heteroatom selected from N, O, Si, P, and S as a ring-forming atom, in addition to 1 to 60 carbon atoms. Examples of the C1-C60 heteroaryl group are a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, and an isoquinolinyl group. When the C1-C60 heteroaryl group and the C1-C60 heteroarylene group each include two or more rings, the rings may be fused to each other.


The term “C6-C60 aryloxy group,” used herein, indicates —OA102 (wherein A02 is the C6-C60 aryl group), and a C6-C60 arylthio group indicates —SA103 (wherein A103 is the C6-C60 aryl group).


The term “C1-C60 heteroaryloxy group” as used herein indicates —OA104 (wherein A104 is the C1-C60 heteroaryl group), and the term “C6-C60 heteroarylthio group” as used herein indicates —SA105 (wherein A105 is the C1-C60 heteroaryl group).


The term “monovalent non-aromatic condensed polycyclic group” as used herein refers to a monovalent group (for example, having 8 to 60 carbon atoms) having two or more rings condensed with each other, only carbon atoms as ring-forming atoms, and no aromaticity in its entire molecular structure. A detailed example of the monovalent non-aromatic condensed polycyclic group is a fluorenyl group. The term “divalent non-aromatic condensed polycyclic group” as used herein refers to a divalent group having the same structure as the monovalent non-aromatic condensed polycyclic group.


The term “monovalent non-aromatic condensed heteropolycyclic group” as used herein refers to a monovalent group (for example, having 1 to 60 carbon atoms) having two or more rings condensed to each other, at least one heteroatom selected from N, O, Si, P, and S, other than carbon atoms, as a ring-forming atom, and no aromaticity in its entire molecular structure. An example of the monovalent non-aromatic condensed heteropolycyclic group is a carbazolyl group. The term “divalent non-aromatic condensed heteropolycyclic group” as used herein refers to a divalent group having the same structure as the monovalent non-aromatic condensed heteropolycyclic group.


The term “C5-C60 carbocyclic group” as used herein refers to a monocyclic or polycyclic group having 5 to 60 carbon atoms in which a ring-forming atom is a carbon atom only. The C5-C60 carbocyclic group may be an aromatic carbocyclic group or a non-aromatic carbocyclic group. The C5-C60 carbocyclic group may be a ring, such as benzene, a monovalent group, such as a phenyl group, or a divalent group, such as a phenylene group. In one or more embodiments, depending on the number of substituents connected to the C5-C60 carbocyclic group, the C5-C60 carbocyclic group may be a trivalent group or a quadrivalent group.


The term “C1-C60 heterocyclic group” as used herein refers to a group having the same structure as the C5-C60 carbocyclic group, except that as a ring-forming atom, at least one heteroatom selected from N, O, Si, P, and S is used in addition to carbon (the number of carbon atoms may be in a range of 1 to 60).


At least one substituent of the substituted C5-C60 carbocyclic group, the substituted C1-C60 heterocyclic group, the substituted C3-C10 cycloalkylene group, the substituted C1-C10 heterocycloalkylene group, the substituted C3-C10 cycloalkenylene group, the substituted C1-C10 heterocycloalkenylene group, the substituted C6-C60 arylene group, the substituted C1-C60 heteroarylene group, the substituted divalent non-aromatic condensed polycyclic group, the substituted divalent non-aromatic condensed heteropolycyclic group, the substituted C1-C60 alkyl group, the substituted C2-C60 alkenyl group, the substituted C2-C60 alkynyl group, the substituted C1-C60 alkoxy group, the substituted C3-C10 cycloalkyl group, the substituted C1-C10 heterocycloalkyl group, the substituted C3-C10 cycloalkenyl group, the substituted C1-C10 heterocycloalkenyl group, the substituted C6-C60 aryl group, the substituted C6-C60 aryloxy group, the substituted C6-C60 arylthio group, the substituted C1-C60 heteroaryl group, the substituted C1-C60 heteroaryloxy group, the substituted C1-C60 heteroarylthio group, the substituted monovalent non-aromatic condensed polycyclic group, and the substituted monovalent non-aromatic condensed heteropolycyclic group may be selected from:


deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group;


a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, and a C1-C60 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —Si(Q11)(Q12)(Q13), —N(Q11)(Q12), —B(Q11)(Q12), —C(═O)(Q11), —S(═O)2(Q11), and —P(═O)(Q11)(Q12);


a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group;


a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed heteropolycyclic group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C1-C60 heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, —Si(Q21)(Q22)(Q23), —N(Q21)(Q22), —B(Q21)(Q22), —C(═O)(Q21), —S(═O)2(Q21), and —P(═O)(Q21)(Q22); and


—Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q3), —S(═O)2(Q31), and —P(═O)(Q31)(Q32), and


Q11 to Q13, Q21 to Q23, and Q31 to Q33 may each independently be selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a C1-C60 heteroaryloxy group, a C1-C60 heteroarylthio group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a C1-C60 alkyl group substituted with at least one selected from deuterium, —F, and a cyano group, a C6-C60 aryl group substituted with at least one selected from deuterium, —F, and a cyano group, a biphenyl group, and a terphenyl group.


The term “Ph” used herein refers to a phenyl group, the term “Me” used herein refers to a methyl group, the term “Et” used herein refers to an ethyl group, the term “ter-Bu” or “But” used herein refers to a tert-butyl group, and the term “OMe” used herein refers to a methoxy group.


The term “biphenyl group” as used herein refers to “a phenyl group substituted with a phenyl group.” In other words, the “biphenyl group” is a substituted phenyl group having a C6-C60 aryl group as a substituent.


The term “terphenyl group” as used herein refers to “a phenyl group substituted with a biphenyl group.” In other words, the “terphenyl group” is a phenyl group having, as a substituent, a C6-C60 aryl group substituted with a C6-C60 aryl group.


* and *′ used herein, unless defined otherwise, each refer to a binding site to a neighboring atom in a corresponding formula.


Hereinafter, a compound according to embodiments and an organic light-emitting device according to embodiments will be described in detail with reference to Synthesis Examples and Examples. The wording “B was used instead of A” used in describing Synthesis Examples refers to that an identical molar equivalent of B was used in place of A.


The following Examples and Comparative Examples are provided in order to highlight characteristics of one or more embodiments, but it will be understood that the Examples and Comparative Examples are not to be construed as limiting the scope of the embodiments, nor are the Comparative Examples to be construed as being outside the scope of the embodiments. Further, it will be understood that the embodiments are not limited to the particular details described in the Examples and Comparative Examples.


EXAMPLES
Synthesis Example 1: Synthesis of Compound 13



embedded image


(1) Synthesis of Intermediate 13-1


1-bromo-4-fluoro-9H-carbazole (1 eq), 1-bromo-2-fluorobenzene (2 eq), and K3PO4 (2 eq) were added to dimethylformamide and stirred at a temperature of 160° C. for 12 hours. The reaction mixture was cooled to ambient temperature and poured into NaCl aqueous solution. After the reaction was completed, the reaction product was stirred for 30 minutes. A solid obtained by filtering the generated precipitate was extracted therefrom by using distilled water and dichloromethane. Then, an organic layer obtained therefrom was dried by using MgSO4 and dried under reduced pressure. A crude product obtained therefrom was purified by column chromatography (dichloromethane/hexane) to obtain Intermediate 13-1 (yield: 75%).


(2) Synthesis of Intermediate 13-2


Intermediate 13-2 (yield: 70%) was synthesized in the same manner as in Synthesis of Intermediate 13-1, except that Intermediate 13-1 (1 eq) and 2,7-diphenyl-9H-carbazole (1 eq) were used instead of 1-bromo-4-fluoro-9H-carbazole (1 eq) and 1-bromo-2-fluorobenzene (2 eq).


(3) Synthesis of Compound 13


Intermediate 13-2 (1 eq) and tetrahydrofuran were added to a reaction container and cooled to a temperature of −76° C., and n-BuLi (2.2 eq) was slowly added thereto. The reaction mixture was stirred at a low temperature for 2 hours, and a solution in which dichloro(p-tolyl)borane (1.3 eq) was diluted in tetrahydrofuran was added to the reaction container. The reaction mixture was stirred at ambient temperature for 24 hours and poured into NaCl aqueous solution. After the reaction was completed, an organic layer was extracted therefrom three times by using distilled water and ethyl acetate. Then, the organic layer collected therefrom was dried by using MgSO4 and dried under reduced pressure. A crude product obtained therefrom was purified by column chromatography (dichloromethane/hexane) to obtain Compound 13 (yield: 55%).


Synthesis Example 2: Synthesis of Compound 18



embedded image


(1) Synthesis of Intermediate 18-1


3,3′″-dibromo-2,2′″-dinitro-1,1′:2′,1″:2″,1′″-quarterphenyl (1 eq) and triphenylphosphine (3 eq) were added to 1,2-dichlorobenzene and stirred at a temperature of 200° C. for 36 hours. The reaction solution was cooled and dried by a rotary evaporator. An organic layer was extracted therefrom by using distilled water and dichloromethane, dried by using MgSO4, and dried under reduced pressure. The obtained organic layer was washed by using diethyl ether and washed by using acetone to obtain Intermediate 18-1 (yield: 43%).


(2) Synthesis of Intermediate 18-2


Intermediate 18-2 (yield: 55%) was synthesized in the same manner as in Synthesis of Intermediate 13-1, except that Intermediate 18-1 (1 eq) and 1-bromo-2-fluorobenzene (5 eq) were used instead of 1-bromo-4-fluoro-9H-carbazole (1 eq) and 1-bromo-2-fluorobenzene (2 eq).


(3) Synthesis of Compound 18


Compound 18 (yield: 23%) was synthesized in the same manner as in Synthesis of Compound 13, except that Intermediate 18-2 (1 eq), n-BuLi (5 eq), and dichloro(mesityl)borane (2.5 eq) were used instead of Intermediate 13-2 (1 eq), n-BuLi (2.2 eq), and dichloro(p-tolyl)borane (1.3 eq).


Synthesis Example 3: Synthesis of Compound 20



embedded image


(1) Synthesis of Intermediate 20-1


Intermediate 20-1 (yield: 65%) was synthesized in the same manner as in Synthesis of Intermediate 13-1, except that 1-bromo-9H-carbazole (1 eq) and 1-bromo-2-fluorobenzene (2 eq) were used instead of 1-bromo-4-fluoro-9H-carbazole (1 eq) and 1-bromo-2-fluorobenzene (2 eq).


(2) Synthesis of Compound 20


Compound 20 (yield: 30%) was synthesized in the same manner as in Synthesis of Compound 13, except that Intermediate 20-1 (1 eq), n-BuLi (2.2 eq), and (2,4,6-trimethyl-1,3-phenylene)bis(dichloroborane) (0.45 eq) were used instead of Intermediate 13-2 (1 eq), n-BuLi (2.2 eq), and dichloro(p-tolyl)borane (1.3 eq).


Synthesis Example 4: Synthesis of Compound 43



embedded image


(1) Synthesis of Intermediate 43-1


Intermediate 43-1 (yield: 70%) was synthesized in the same manner as in Synthesis of Intermediate 13-1, except that 1-bromo-3,6-di-tert-butyl-9H-carbazole (1 eq) and 9-(2-bromo-3-fluorophenyl)-3,6-di-tert-butyl-9H-carbazole (1 eq) were used instead of 1-bromo-4-fluoro-9H-carbazole (1 eq) and 1-bromo-2-fluorobenzene (2 eq).


(2) Synthesis of Compound 43


Compound 43 (yield: 60%) was synthesized in the same manner as in Synthesis of Compound 13, except that Intermediate 43-1 (1 eq) and dichloro(phenyl)borane (1.3 eq) were used instead of Intermediate 13-2 (1 eq) and dichloro(p-tolyl)borane (1.3 eq).


Synthesis Example 5: Synthesis of Compound 67



embedded image


(1) Synthesis of Intermediate 67-1


Intermediate 67-1 (yield: 64%) was synthesized in the same manner as in Synthesis of Intermediate 13-1, except that 9-(2-bromo-3-fluorophenyl)-9H-carbazole (1 eq) and 3-(9H-carbazole-9-yl)phenol (1 eq) were used instead of 1-bromo-4-fluoro-9H-carbazole (1 eq) and 1-bromo-2-fluorobenzene (2 eq).


(2) Synthesis of Compound 67


Intermediate 67-1 was dissolved in o-xylene, cooled to a temperature of −20° C., and stirred. n-BuLi (1.2 eq) was added thereto, and the reaction mixture was heated to a temperature of 70° C., and stirred for 2 hours. The reaction container was cooled again to a temperature of −30° C., and BBr3 (1.3 eq) was slowly added thereto and stirred at ambient temperature for 1 hour. After the reaction container is cooled to a temperature of 0° C., triethylamine (1.5 eq) was added thereto, heated to a temperature of 120° C., and stirred for 5 hours. After cooling, the reaction was completed by pouring sodium acetate aqueous solution, and the reaction solution was removed at a rotary evaporator by drying under reduced pressure. The product obtained therefrom was washed by using diethyl ether and washed and filtered by using acetone to obtain Compound 67 (yield: 24%).


Synthesis Example 6: Synthesis of Compound 69



embedded image


(1) Synthesis of Intermediate 69-1


Intermediate 69-1 (yield: 50%) was synthesized in the same manner as in Synthesis of Intermediate 13-1, except that 9-(2-bromo-3-fluorophenyl)-9H-carbazole (1 eq) and 3-(dibenzo[b,d]furan-4-yl)phenol (1 eq) were used instead of 1-bromo-4-fluoro-9H-carbazole (1 eq) and 1-bromo-2-fluorobenzene (2 eq).


(2) Synthesis of Compound 69


Compound 69 (yield: 18%) was synthesized in the same manner as in Synthesis of Compound 67, except that Intermediate 69-1 was used instead of Intermediate 67-1.


Synthesis Example 7: Synthesis of Compound 81



embedded image


(1) Synthesis of Intermediate 81-1


Intermediate 81-1 (yield: 68%) was synthesized in the same manner as in Synthesis of Intermediate 13-1, except that 9-(2-bromo-3-fluorophenyl)-9H-carbazole (I eq) and 3-(9,9′-spirobi[fluorene]-4-yl) (1 eq) were used instead of 1-bromo-4-fluoro-9H-carbazole (1 eq) and 1-bromo-2-fluorobenzene (2 eq).


(2) Synthesis of Compound 81


Compound 81 (yield: 14%) was synthesized in the same manner as in Synthesis of Compound 67, except that Intermediate 81-1 was used instead of Intermediate 67-1.


Synthesis Example 8: Synthesis of Compound 85



embedded image


(1) Synthesis of Intermediate 85-1


Intermediate 85-1 (yield: 40%) was synthesized in the same manner as in Synthesis of Intermediate 13-1, except that 2-bromo-3-(9H-carbazole-9-yl)-5-iodophenol (1 eq) and fluorobenzene (2 eq) were used instead of 1-bromo-4-fluoro-9H-carbazole (1 eq) and 1-bromo-2-fluorobenzene (2 eq).


(2) Synthesis of Intermediate 85-2


Intermediate 85-1 (1 eq), carbazole (1 eq), CuI (0.05 eq), 1,10-phenanthroline (0.05 eq), and K2CO3 (3 eq) were added to dimethylformamide and stirred at a temperature of 170° C. for 24 hours. After cooling, the reaction solvent was dried by a rotary evaporator, and an organic layer was extracted therefrom by using dichloromethane and distilled water. The organic layer collected therefrom was dried by using MgSO4, washed by using diethyl ether, and washed and filtered by using acetone to synthesize Intermediate 85-2 (yield: 55%).


(3) Synthesis of Compound 85


Compound 85 (yield: 31%) was synthesized in the same manner as in Synthesis of Compound 67, except that Intermediate 85-2 was used instead of Intermediate 67-1.


Synthesis Example 9: Compound 86



embedded image


(1) Synthesis of Intermediate 86-1


Aniline (1 eq), Intermediate 85-1 (2 eq), Pd2(dba)3 (0.05 eq), tert-butyl phosphine (0.1 eq), and sodium tert-butoxide (3 eq) were added to toluene and stirred at a temperature of 100° C. for 6 hours. After cooling, the reaction solvent was dried by a rotary evaporator, and an organic layer was extracted therefrom by dichloromethane and distilled water. The obtained organic layer was dried by using MgSO4 and washed and filtered by using acetone to synthesize Intermediate 86-1 (yield: 40%).


(2) Synthesis of Compound 86


Compound 86 (yield: 20%) was synthesized in the same manner as in Synthesis of Compound 67, except that Intermediate 86-1 was used instead of Intermediate 67-1.



1H NMR and MS/FAB of Compounds synthesized according to Synthesis Examples 1 to 9 are shown in Table 1.


Methods of synthesizing compounds other than Compounds shown in Table 1 are understood by referring to the synthesis paths and source materials described above.











TABLE 1









MS/FAB










Compound

1H NMR (CDCl3, 400 MHz)

Calcd.
Found





13
8.63-8.53 (4H, m), 8.39-8.33 (2H, m), 8.25-8.20 (2H, m)
660.61
660.60



7.99-7.73 (10H, m), 7.69-7.44 (10H, m), 6.88-6.80 (2H, m)



2.33-2.30 (3H, s)


18
8.72-8.65 (2H, m), 8.40-8.30 (6H, m), 8.03-7.80 (6H, m)
740.55
740.53



7.60-7.50 (6H, m), 6.81-6.70 (4H, m), 2.34-2.29 (18H, m),


20
8.20-8.09 (4H, m), 7.98-7.92 (2H, m), 7.69-7.35 (16H, m)
622.37
622.35



6.84-6.79 (1H, s), 2.36-2.28 (9H, m)


43
7.91-7.80 (7H, m), 7.73-7.69 (1H, m), 7.66-7.55 (4H, m)
718.82
718.80



7.40-7.19 (7H, m), 1.75-1.40 (36H, m)


67
8.20-8.10 (2H, m), 8.00-7.94 (3H, m), 7.79-7.70 (2H, m)
508.38
508.36



7.63-7.41 (10H, m), 7.33-7.28 (1H, m), 7.10-7.01 (1H, m)



6.59-6.45 (2H, m)


69
8.26-8.00 (7H, m), 7.81-7.75 (1H, m), 7.76-7.30 (10H, m),
509.36
509.34



7.04-6.99 (1H, m), 6.33-6.27 (1H, m)


81
8.16-8.03 (3H, m), 7.94-7.32 (23H, m), 7.18-7.12 (1H, m)
657.56
657.54



6.32-6.25 (1H, m)


85
8.27-7.93 (8H, m) 7.62-7.42 (10H, m) 7.27-7.13 (2H, m)
508.38
508.37



6.82-6.78 (1H, m)


86
8.16-8.05 (2H, m), 8.01-7.91 (4H, m), 7.64-7.30 (13H, m)
775.46
775.44



7.25-6.95 (10H, m)









Example 1

As an anode electrode, a Corning 15 Ω/cm2 (1,200 Å) ITO glass substrate was cut to a size of 50 mm×50 mm×0.7 mm, sonicated with isopropyl alcohol and pure water each for 5 minutes, and then cleaned by exposure to ultraviolet rays and ozone for 30 minutes. Then, the ITO glass substrate was provided to a vacuum deposition apparatus.


NPD was vacuum-deposited on the ITO glass substrate to form a hole injection layer having a thickness of 300 Å, and TCTA was vacuum-deposited to form a first hole transport layer having a thickness of 200 Å. CzSi was vacuum-deposited on the first hole transport layer to form a second hole transport layer having a thickness of 100 Å. DPEPO (host) and Compound 4 (dopant) were co-deposited on the second hole transport layer at a weight ratio of 90:10 to form an emission layer having a thickness of 200 Å.


Then, DPEPO was vacuum-deposited on the emission layer to form a first electron transport layer having a thickness of 200 Å, and TPBI was vacuum-deposited on the first electron transport layer to form a second electron transport layer having a thickness of 300 Å. LiF was vacuum-deposited on the second electron transport layer to form an electron injection layer having a thickness of 10 Å, and Al was vacuum-deposited to form a cathode electrode having a thickness of 3,000 Å, thereby completing the manufacture of an organic light-emitting device.


Examples 2 to 9 and Comparative Examples 1 to 4

Organic light-emitting devices were manufactured in the same manner as in Example 1, except that Compounds shown in Table 2 were each used as a dopant instead of Compound 4.


Evaluation Example 1

The driving voltage, current density, maximum external quantum efficiency, and emission color of the organic light-emitting devices manufactured according to Examples 1 to 9 and Comparative Examples 1 to 4 were measured by using Keithley SMU 236 and a luminance meter PR650, and results thereof are shown in Table 2.














TABLE 2







Driving
Current
Maximum external





voltage
efficiency
quantum efficiency




Dopant
(V)
(cd/A)
(%)
Emission color




















Example 1
Compound 13
4.8
22.1
21
Blue


Example 2
Compound 18
4.9
24.1
22.3
Blue


Example 3
Compound 20
4.7
23.5
21.1
Blue


Example 4
Compound 43
4.6
24.4
22.3
Blue


Example 5
Compound 67
4.7
23.5
21.9
Blue


Example 6
Compound 69
4.9
24.4
23
Blue


Example 7
Compound 81
5.0
23.8
22.7
Blue


Example 8
Compound 85
4.9
24.7
21.3
Blue


Example 9
Compound 86
5.1
23.3
22.4
Blue


Comparative
Compound A
6.7
19.3
18.5
Blue


Example 1







Comparative
Compound B
7.1
4.2
3.9
Blue


Example 2







Comparative
Compound C
8.5
18.4
14
Deep blue (short


Example 3




wavelength)


Comparative
Compound D
5.3
20.8
19
Blue


Example 4












embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image








Referring to Table 2, it may be seen that the organic light-emitting devices of Examples 1 to 9 emitted blue light having a maximum emission wavelength of e.g., 440 nm to 480 nm and had a low driving voltage, high current efficiency, and high maximum external quantum efficiency, as compared with those of the organic light-emitting devices of Comparative Examples 1 to 4.


The organic light-emitting device including the condensed cyclic compound according to an embodiment may have high quantum efficiency and may improve roll-off characteristics at a high current density.


Example embodiments have been disclosed herein, and although specific terms are employed, they are used and are to be interpreted in a generic and descriptive sense only and not for purpose of limitation. In some instances, as would be apparent to one of ordinary skill in the art as of the filing of the present application, features, characteristics, and/or elements described in connection with a particular embodiment may be used singly or in combination with features, characteristics, and/or elements described in connection with other embodiments unless otherwise specifically indicated. Accordingly, it will be understood by those of skill in the art that various changes in form and details may be made without departing from the spirit and scope of the present invention as set forth in the following claims.

Claims
  • 1. A condensed cyclic compound represented by Formula 1:
  • 2. The condensed cyclic compound as claimed in claim 1, wherein A11 to A14 and A21 to A24 are each independently selected from a benzene group, a naphthalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a perylene group, a thiophene group, a furan group, a silole group, a carbazole group, an indole group, an isoindole group, a benzofuran group, a benzothiophene group, a benzosilole group, a dibenzofuran group, a dibenzothiophene group, a benzocarbazole group, a dibenzocarbazole group, and a dibenzosilole group.
  • 3. The condensed cyclic compound as claimed in claim 1, wherein A11 to A14 and A21 to A24 are each independently selected from a benzene group, a naphthalene group, a fluorene group, a phenanthrene group, an anthracene group, a triphenylene group, a pyrene group, a chrysene group, a perylene group, a carbazole group, a dibenzofuran group, and a dibenzothiophene group.
  • 4. The condensed cyclic compound as claimed in claim 1, wherein: the at least two of A11 to A14 that are linked via a first linking group are A13 and A14 and/or A11 and A14, andthe at least two of A21 to A24 that are optionally linked via a second linking group are A23 and A24 and/or A21 and A24.
  • 5. The condensed cyclic compound as claimed in claim 1, wherein: the first linking group and the second linking group are each independently selected from *O*′ and *—S—*′.
  • 6. The condensed cyclic compound as claimed in claim 1, wherein: L11 to L14 and L21 to L24 are each independently selected from:a single bond, *—N(Ra)—*′, a benzene group, a naphthalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a perylene group, a thiophene group, a furan group, a silole group, a carbazole group, an indole group, an isoindole group, a benzofuran group, a benzothiophene group, a benzosilole group, a dibenzofuran group, a dibenzothiophene group, a benzocarbazole group, a dibenzocarbazole group, and a dibenzosilole group; anda benzene group, a naphthalene group, a fluorene group, a spiro-bifluorene group, a benzofluorene group, a dibenzofluorene group, a phenanthrene group, an anthracene group, a fluoranthene group, a triphenylene group, a pyrene group, a chrysene group, a perylene group, a thiophene group, a furan group, a silole group, a carbazole group, an indole group, an isoindole group, a benzofuran group, a benzothiophene group, a benzosilole group, a dibenzofuran group, a dibenzothiophene group, a benzocarbazole group, a dibenzocarbazole group, and a dibenzosilole group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a thiophenyl group, a furanyl group, a silolyl group, a carbazolyl group, an indolyl group, an isoindolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a benzocarbazolyl group, a dibenzocarbazolyl group, a dibenzosilolyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), and —B(Q31)(Q32), andQ31 to Q33 are each independently selected from a C1-C60 alkyl group, a phenyl group, a biphenyl group, and a terphenyl group.
  • 7. The condensed cyclic compound as claimed in claim 1, wherein a11 to a14 and a21 to a24 are each independently 0 or 1.
  • 8. The condensed cyclic compound as claimed in claim 1, wherein: R11 to R14 are each independently selected from:a group represented by Formula 2, hydrogen, deuterium, —F, —Cl, —Br, —I, a cyano group, a C1-C20 alkyl group, and a C1-C20 alkoxy group;a C1-C20 alkyl group and a C1-C20 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a cyano group, a phenyl group, and a biphenyl group;a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, an isoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a triazinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphthosilolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an indolopyrrolyl group, an indenocarbazolyl group, and an indolocarbazolyl group;a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, an isoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a triazinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphthosilolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an indolopyrrolyl group, an indenocarbazolyl group, and an indolocarbazolyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a cyano group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, an isoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a triazinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphthosilolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an indolopyrrolyl group, an indenocarbazolyl group, an indolocarbazolyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), and —P(═S)(Q31)(Q32); and—Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), and —P(═S)(Q1)(Q2), andQ1 to Q3 and Q31 to Q33 are each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a biphenyl group, and a terphenyl group.
  • 9. The condensed cyclic compound as claimed in claim 1, wherein: R11 to R14 are each independently selected from:a group represented by Formula 2, hydrogen, deuterium, —F, —Cl, —Br, —I, a cyano group, and a C1-C20 alkyl group;a C1-C20 alkyl group substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, and a cyano group;a group represented by one of Formulae 5-1 to 5-142; and—Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), and —P(═S)(Q1)(Q2),
  • 10. The condensed cyclic compound as claimed in claim 1, wherein: Ra and R21 to R24 are each independently selected from:a binding site, hydrogen, deuterium, —F, —Cl, —Br, —I, a cyano group, a C1-C20 alkyl group, and a C1-C20 alkoxy group;a C1-C20 alkyl group and a C1-C20 alkoxy group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a cyano group, a phenyl group, and a biphenyl group;a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, an isoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a triazinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphthosilolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an indolopyrrolyl group, an indenocarbazolyl group, and an indolocarbazolyl group;a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, an isoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a triazinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphthosilolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an indolopyrrolyl group, an indenocarbazolyl group, and an indolocarbazolyl group, each substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, a cyano group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a phenyl group, a biphenyl group, a terphenyl group, a pentalenyl group, an indenyl group, a naphthyl group, an azulenyl group, an indacenyl group, an acenaphthyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a phenalenyl group, a phenanthrenyl group, an anthracenyl group, a fluoranthenyl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, a perylenyl group, a pentacenyl group, a pyrrolyl group, a thiophenyl group, a furanyl group, a silolyl group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, an isothiazolyl group, an oxazolyl group, an isoxazolyl group, a pyridinyl group, a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, an indolyl group, an isoindolyl group, an indazolyl group, a purinyl group, a quinolinyl group, an isoquinolinyl group, a benzoquinolinyl group, an isoquinolinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinnolinyl group, a phenanthridinyl group, an acridinyl group, a phenanthrolinyl group, a phenazinyl group, a benzimidazolyl group, a benzofuranyl group, a benzothiophenyl group, a benzosilolyl group, a benzothiazolyl group, a benzoisothiazolyl group, a benzoxazolyl group, a benzoisoxazolyl group, a triazolyl group, a tetrazolyl group, a thiadiazolyl group, an oxadiazolyl group, a triazinyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a dibenzosilolyl group, a benzocarbazolyl group, a naphthobenzofuranyl group, a naphthobenzothiophenyl group, a naphthobenzosilolyl group, a dibenzocarbazolyl group, a dinaphthofuranyl group, a dinaphthothiophenyl group, a dinaphthosilolyl group, an imidazopyridinyl group, an imidazopyrimidinyl group, an oxazolopyridinyl group, a thiazolopyridinyl group, a benzonaphthyridinyl group, an azafluorenyl group, an azaspiro-bifluorenyl group, an azacarbazolyl group, an azadibenzofuranyl group, an azadibenzothiophenyl group, an azadibenzosilolyl group, an indenopyrrolyl group, an indolopyrrolyl group, an indenocarbazolyl group, an indolocarbazolyl group, —Si(Q31)(Q32)(Q33), —N(Q31)(Q32), —B(Q31)(Q32), —C(═O)(Q31), —S(═O)(Q31), —S(═O)2(Q31), —P(═O)(Q31)(Q32), and —P(═S)(Q31)(Q32); and—Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), and —P(═S)(Q1)(Q2), andQ1 to Q3 and Q31 to Q33 are each independently selected from hydrogen, deuterium, —F, —Cl, —Br, —I, a hydroxyl group, a cyano group, a nitro group, an amidino group, a hydrazino group, a hydrazono group, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C1-C10 heterocycloalkyl group, a C3-C10 cycloalkenyl group, a C1-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C1-C60 heteroaryl group, a monovalent non-aromatic condensed polycyclic group, a monovalent non-aromatic condensed heteropolycyclic group, a biphenyl group, and a terphenyl group.
  • 11. The condensed cyclic compound as claimed in claim 1, wherein: Ra and R21 to R24 are each independently selected from:a binding site, hydrogen, deuterium, —F, —Cl, —Br, —I, a cyano group, and a C1-C20 alkyl group;a C1-C20 alkyl group substituted with at least one selected from deuterium, —F, —Cl, —Br, —I, and a cyano group;a group represented by one of Formulae 5-1 to 5-142; and—Si(Q1)(Q2)(Q3), —N(Q1)(Q2), —B(Q1)(Q2), —C(═O)(Q1), —S(═O)(Q1), —S(═O)2(Q1), —P(═O)(Q1)(Q2), and —P(═S)(Q1)(Q2):
  • 12. The condensed cyclic compound as claimed in claim 1, wherein the condensed cyclic compound represented by Formula 1 is represented by one of Formulae 1-1 to 1-3:
  • 13. An organic light-emitting device, comprising: a first electrode;a second electrode;an organic layer between the first electrode and the second electrode and including an emission layer, andthe condensed cyclic compound as claimed in claim 1,wherein the first electrode comprises indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO2), zinc oxide (ZnO), magnesium (Mg), silver (Ag), aluminum (Al), aluminum-lithium (Al—Li), calcium (Ca), magnesium-indium (Mg—In), magnesium-silver (Mg—Ag), or any combination thereof, and the second electrode comprises lithium (Li), Ag, Mg, Al, Al—Li, Ca, Mg—In, Mg—Ag, ITO, IZO, or any combination thereof.
  • 14. The organic light-emitting device as claimed in claim 13, wherein: the first electrode is an anode,the second electrode is a cathode,the organic layer further includes a hole transport region between the first electrode and the emission layer and an electron transport region between the emission layer and the second electrode,the hole transport region includes a hole injection layer, a hole transport layer, an emission auxiliary layer, an electron blocking layer, or any combination thereof, andthe electron transport region includes a hole blocking layer, an electron transport layer, an electron injection layer, or any combination thereof.
  • 15. The organic light-emitting device as claimed in claim 13, wherein the emission layer includes the condensed cyclic compound.
  • 16. The organic light-emitting device as claimed in claim 13, wherein: the emission layer includes the condensed cyclic compound and a host, andthe condensed cyclic compound is a thermally activated delayed fluorescence (TADF) emitter.
  • 17. The organic light-emitting device as claimed in claim 16, wherein the condensed cyclic compound is included in the emission layer in an amount of about 0.01 parts by weight to about 30 parts by weight, based on 100 parts by weight of the host.
  • 18. A condensed cyclic compound represented by Formula 1:
  • 19. The condensed cyclic compound as claimed in claim 18, wherein the condensed cyclic compound represented by Formula 1 is a compound of the following Compound Group 2:
  • 20. A condensed cyclic compound of the following Compound Group 1:
Priority Claims (1)
Number Date Country Kind
10-2018-0074184 Jun 2018 KR national
US Referenced Citations (8)
Number Name Date Kind
20110278556 Kottas Nov 2011 A1
20110279019 Kottas Nov 2011 A1
20130320839 Watanabe Dec 2013 A1
20150236274 Hatakeyama et al. Aug 2015 A1
20170373267 Kim et al. Dec 2017 A1
20180069182 Hatakeyama Mar 2018 A1
20180094000 Hatakeyama et al. Apr 2018 A1
20190211038 Xia Jul 2019 A1
Foreign Referenced Citations (8)
Number Date Country
107417715 Dec 2017 CN
2 182 040 Jun 2011 EP
2013-243300 Dec 2013 JP
10-2010-0048447 May 2010 KR
10-2016-0119683 Oct 2016 KR
10-2017-0059408 May 2017 KR
10-2018-0000384 Jan 2018 KR
WO 2016152418 Sep 2016 WO
Non-Patent Literature Citations (1)
Entry
Machine translation of CN-107417715, translation generated Mar. 2021, 29 pages. (Year: 2021).
Related Publications (1)
Number Date Country
20200006671 A1 Jan 2020 US