The present invention relates to a cooling device, more particularly to a condenser that rejects heat of a refrigerant to the heat absorption portion of an exterior refrigerator and liquefies it, an evaporator that absorbs heat from an object to be cooled and vaporizes the refrigerant, and a cooling device including the condenser and the evaporator.
Various types of cooling devices have been proposed to cool spaces or objects. In some applications, however, it may be difficult to install the heat absorption portion of the cooling devices in proximity to those spaces or objects. An icebox used in a car has a difficulty to directly attach the heat absorption portion thereon due to the limitation of available spaces interior of the car. Warming of the car interior by the heat radiation of the cooling device has to be avoided as well. In cooling the CPU of the computer where many associated parts are arranged in narrow spaces, installation of cooling devices near the CPU is further difficult.
In order to resolve such difficulties in installation of cooling devices, a cooling means, having the following configuration and shown in
In the above cooling means, the heat reject portion 51 is thermally coupled with the heat absorption portion 91 of the exterior refrigerator in such a configuration that a refrigerant pipe is wound around or laid along the heat absorption portion 91 of the exterior refrigerator. The heat absorption portion 52 is thermally coupled with the object 92 in the same configuration as well.
The above cooling means, by its nature, needs enhancing either the heat transfer performance between the heat absorption portion 91 of the exterior refrigerator and the heat reject portion 51 or that between the object 92 to be cooled and the heat absorption portion 52 in order to improve its cooling efficiency.
Further, size reduction of the cooling means is required as well. In the application of the cooling means to the computer CPU or the like, in which as the object 92 to be cooled is extremely small with only a small amount of heat generated, the exterior refrigerator is small, the heat reject portion 51 fixed to the heat absorption portion 91 thereof has to be small, and so does the heat absorption portion 52 fixed to the object 92. In summary, both the size reduction of either the heat reject portion 51 or the heat absorption portion 52 and the increases of their heat transfer performance are important.
The cooling means also requires simple and easy means for attaching the heat reject portion 51 to the heat absorption portion 91 of the exterior refrigerator or detaching it therefrom and that for attaching the heat absorption portion 52 to the object 92 to be cooled or detaching it therefrom without sacrificing its heat transfer performance.
Accordingly, an object of the present invention is to provide a compact condenser and evaporator with an efficient heat transfer performance and with easy maintenance and to provide a cooling device having including the compact condenser and evaporator.
In accordance with a first aspect of the present invention, a condenser that condenses a refrigerant gas by rejecting heat of the gas to a predetermined column-like shaped heat absorption portion of an exterior cooling device includes a condensing portion, an inlet portion, and an outlet portion. The condensing portion is formed of a flat plate shaped so as to surround the entire periphery of the column-like shaped heat absorption portion. The condensing portion further has a plurality of through holes formed along the circumferential direction thereof and arranged in parallel with each other. The inlet and outlet portions being hollow tubes have a closed end and an open end respectively. The inlet portion is connected to one end face of the condensing portion that is perpendicular to the circumferential direction of the condensing portion. The inlet portion communicates with all of the through holes. The outlet portion is connected to the other end face of the condensing portion that is perpendicular to the circumferential direction of the condensing portion. The outlet portion communicates with all of the through holes. The open end of the inlet portion is connected to an inflow passage of the refrigerant. The open end of the outlet portion is connected to an outflow passage of the refrigerant which section area is smaller than that of the inflow passage. The condensing portion is inserted into and fixed to the column-like shaped heat absorption portion.
The end faces of the condensing portion that are perpendicular to the circumference thereof not only means those formed by dividing the entire circumference thereof into two semicircles, but also means those formed by cutting the condensing portion at one portion on its circumference.
By employing the above-described configuration, the present invention provides the following functions and effects. Namely, if temperature of a refrigerant is merely lowered at a heat-rejecting portion, no more than the amount of heat is rejected which corresponds to the multiplier of the heat capacity of the refrigerant by the temperature differentials of the refrigerant. On the other hand, the present invention enables to reject a larger amount of heat by condensing a refrigerant vapor at a condensing portion, to achieve a highly effective heat transfer. Moreover, the condensing portion is configured so that the entire periphery of the column-like shaped heat absorption portion is surrounded with a flat plate having a number of narrow through holes arranged. Accordingly, while the heat transfer area can be larger, the heat absorption portion and the heat condensing portion attached thereto can be smaller.
Further, as the condensing portion is attached only by inserting it to the column-like shaped heat absorption portion, attachment and detachment can be easier, and assembling and maintenance workability is improved without impairing its heat transfer performance.
The section area of the outflow passage of the refrigerant is smaller than that of the inflow passage, because as the volume of the vaporized refrigerant drastically decreases by condensing, smaller section area is enough for the outflow passage.
In accordance with a second aspect of the present invention, the condenser in the first aspect thereof is further provided with a clamp formed so as to surround the condensing portion, inserted into the column-like shaped heat absorption portion, and attached to it by fastening the clamp.
With employing the above-described configuration, the present invention provides the following functions and effects. When the condensing portion is inserted into the column-like shaped heat absorption portion, if either the outer periphery of the heat absorbing portion or the inner circumference of the condensing portion is not precisely finished, they has to loosely contact with each other, causing poorer heat transfer performances. In the present invention, however, in which the outer circumference of the condensing portion is fastened to the heat absorption portion by means of a clamp, they closely contacts with each other, enabling easy attachment and detachment without reducing its heat transfer performance. Consequently, the invention improves workability of assembly, maintenance or inspection without impairing heat transfer performance.
In accordance with a third aspect of the present invention, the condensing portion either in the first or second aspect thereof is comprised of a plurality of hollow tubes that are arranged in parallel with each other.
In this configuration, nearly equal functions and effects as mentioned above can be achieved at a lower cost.
In accordance with a fourth aspect of the present invention, an evaporator that vaporizes a liquid refrigerant by absorbing heat from an exterior heat source includes a vaporizing portion, an inlet portion, and an outlet portion. The vaporizing portion is formed of a flat plate provided with a plurality of through holes arranged in parallel with each other. The inlet and outlet portions being hollow tubes have a closed end and an open end respectively. The inlet portion is connected to one end portion of the vaporizing portion at its outer circumferential surface. The inlet portion further communicates with all of the through holes. The outlet portion is connected to the other end portion of the vaporizing portion at its outer circumferential surface. The outlet portion further communicates with all of the through holes. The open end of the inlet portion is connected to an inflow passage of the refrigerant. The open end of the outlet portion is connected to an outflow passage of the refrigerant which section area is larger than that of the inflow passage. The vaporizing portion is attached to the exterior heat source.
The above-mentioned configuration of the present invention provides following effects. Generally, in raising the temperature of a cold liquid refrigerant at a cooling portion, no less than the amount of heat is absorbed which corresponds to the multiplier of the heat capacity of the liquid refrigerant by the temperature difference thereof. On the other hand, in the present invention, if the liquid refrigerant is vaporized at an evaporator, an amount of heat equivalent to the vaporization heat thereof may be absorbed, thereby higher heat transfer performance is achieved. Further, as the heat transfer area of the evaporator is enlarged by employing a flat plate with a number of through holes disposed therein in parallel with each other, the evaporator attached to the exterior heat source can be reduced in size. This configuration of the present invention is especially effective for highly integrated small objects such as the CPUs for computer.
Further, the evaporator can be easily attached to or detached from objects to be cooled by means of nuts or clamps, assembly, maintenance and inspection thereof can be improved without impairing its heat transfer performance.
Furthermore, in the evaporator of the present invention, the section area of the outflow passage of the refrigerant is larger than that of the inflow passage, as volume of the refrigerant increases greatly by the vaporization.
In accordance with a fifth aspect of the present invention, an evaporator that vaporizes a liquid refrigerant by absorbing heat from air passing through includes a vaporizing portion, an inlet portion, an outlet portion and a fin. The vaporizing portion is formed of a flat plate provided with a plurality of through holes arranged in parallel with each other. The vaporizing portion is bended to insert a space having predetermined height and length between it.
The fin is inserted into the space crossing with the through hole direction. The inlet and outlet portions being hollow tubes have a closed end and an open end respectively. The inlet portion is connected to one lower end portion of the vaporizing portion at its outer circumferential surface. The inlet portion further communicates with all of the through holes. The outlet portion is connected to the other higher end portion of the vaporizing portion at its outer circumferential surface. The outlet portion further communicates with all of the through holes. The open end of the inlet portion is connected to an inflow passage of the refrigerant. The open end of the outlet portion is connected to an outflow passage of the refrigerant which section area is larger than that of the inflow passage.
The above-mentioned configuration of the present invention provides following effects. The heat transfer area of the evaporator can be enlarged by employing a flat plate with a number of through holes. Further, the evaporator with long length can be small sized by bending it. And further more, the heat transfer area with hot air passing through can be increased by installing the fin between the bended vaporizing portion. Consequently, the evaporator can be small sized, while the heat transfer aria with the refrigerant and the hot air passing through can be increased.
In accordance with a sixth aspect of the present invention, the vaporizing portion either in the fourth or fifth aspect thereof is formed of a plurality of hollow tubes arranged in parallel with each other.
By employing above-mentioned configuration of the present invention, same effects as previously mentioned can be achieved at a lower cost.
In accordance with a seventh aspect of the present invention, there is provided a cooling device comprising the condenser either in the first, second, or third aspect thereof and the evaporator either in the fourth, fifth or sixth aspect thereof, wherein the outflow passage of the condenser is connected to the inflow passage of the evaporator, and the inflow passage of the condenser is connected to the outflow passage of the evaporator.
The above-mentioned configuration of the present invention can reduce the size of the device, enhance cooling efficiency, and improve workability of assembly, maintenance or inspection.
As shown in
As shown in
The clamp 14 is comprised of an insulator 14c and a band 14a. The insulator 14c is formed of polycarbonate thermoplastic resin in a semicircle shape so as to surround the outer periphery of the condensing portion 11. The band 14a is formed of stainless steel in a cylindrical shape so as to surround the outer surface of the insulator 14c. The condensing portion 11 is inserted into the cylindrical heat absorption portion 19 and fixed thereto in such a manner that the band 14a is fastened by inserting a bolt 17 into through holes formed in the both end portions 14b of the band 14a and screwing it by a nut 18.
The insulator 14c of synthetics resin is used as it enable to prevent heat of the outside air from being transmitted to the condensing portion 11 and also enables to utilize elasticity of the synthetics resin in applying uniform radial pressures for fastening the band 14a.
In other embodiment, the condensing portion 11 may be formed in a circumferential shape and cut at one portion thereon to form two end faces, and then either of those two end faces is connected with either the inlet portion 12 or the outlet portion 13.
The open end 22b of the inlet portion 22 is connected to the inflow passage 25 of the refrigerant by brazing, and the open end 23b of the outlet portion 23 is connected to the outflow passage 26 of the refrigerant by brazing. The section area of the outflow passage 26 is larger than that of the inflow passage 25. The vaporizing portion 21 is inserted into a head block 24 formed of aluminum, and is screwed on the top face of the exterior heat source 29 at its through holes 24a.
The vaporizing portion 21 and the head block 24 may be integrally formed into a single-piece member, directly attached on the top face of the exterior heat source 29 by means of a cover for example, instead of the head block 24.
The inlet portion 32 and the outlet portion 33 are aluminum hollow tubes having a closed end 32a, 33a and an open end 32b, 33b respectively.
The inlet portion 32 is connected to one lower end portion of the vaporizing portion 31 at its outer circumferential surface. And the inlet portion 32 communicates with all of the through holes 31a.
The outlet portion 33 is connected to the other higher end portion of the vaporizing portion 31 at its outer circumferential surface. And the outlet portion 33 communicates with all of the through holes 31a.
Then the open end 32b of the inlet portion 32 is connected to an inflow passage 35 of the refrigerant made from aluminum tube. And the open end 33b of the outlet portion 33 is connected to an outflow passage 36 of the refrigerant made from aluminum tube of which section area is larger than that of the inflow passage 35.
By employing the above-described configuration, the liquefied refrigerant flows into the lower position of the vaporizing portion 31 through the inflow passage 35, then gradually vaporizes within the through holes 31a, and finally flow out from the higher position of the vaporizing portion 31 through the outflow passage 36 with larger section area.
In the above invention, the bending positions of the vaporizing portion 31 are not limited to three positions, but one, tow and more four bending position are available. And the wave shape of the fin 34 is not limited U shape, but V shape and other shapes are available.
By applying the condenser 10 and evaporator 20 of the present invention to the heat reject portion 51 and heat absorption portion 52 in
If the condenser 10 is located in an upper position of the evaporator 20 as shown in
Number | Date | Country | Kind |
---|---|---|---|
2001-245958 | Aug 2001 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US02/24191 | 8/1/2002 | WO | 00 | 10/8/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/016795 | 2/27/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2823522 | Collins | Feb 1958 | A |
2863645 | Spieth | Dec 1958 | A |
3704748 | Hapgood | Dec 1972 | A |
3759321 | Ares | Sep 1973 | A |
3908393 | Eubank | Sep 1975 | A |
4932467 | Wigmore et al. | Jun 1990 | A |
4967830 | Eubank et al. | Nov 1990 | A |
5038854 | Peterson, III | Aug 1991 | A |
5257660 | Cargile | Nov 1993 | A |
5884696 | Loup | Mar 1999 | A |
6189603 | Sugimoto et al. | Feb 2001 | B1 |
6236810 | Kadotani | May 2001 | B1 |
6302193 | Inaba et al. | Oct 2001 | B1 |
20020083733 | Zhang et al. | Jul 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20040134638 A1 | Jul 2004 | US |