The present disclosure relates generally to communications, and more particularly to communication methods and related devices and nodes supporting wireless communications.
A wireless communication system is illustrated in
Currently the 5th generation of cellular system, called New Radio (“NR”) is being standardized in 3GPP. NR is developed for maximum flexibility to support multiple and substantially different use cases. Besides the typical mobile broadband use case, also machine type communication (“MTC”), ultra-low latency critical communications (“URLCC”), side-link device-to-device (“D2D”) and several other use cases too.
In NR, the basic scheduling unit is called a slot. A slot can include 14 orthogonal frequency division multiplexing (“OFDM”) symbols for the normal cyclic prefix configuration. NR supports many different subcarrier spacing configurations and at a subcarrier spacing of 30 kHz the OFDM symbol duration is ˜33 us. As an example, a slot with 14 symbols for the same subcarrier-spacing (“SCS”) is 500 us long (including cyclic prefixes).
NR also supports flexible bandwidth configurations for different UEs on the same serving cell. In other words, the bandwidth monitored by a UE and used for its control and data channels may be smaller than the carrier bandwidth. One or multiple bandwidth part configurations for each component carrier can be semi-statically signaled to a UE, where a bandwidth part consists of a group of contiguous PRBs. Reserved resources can be configured within the bandwidth part. The bandwidth of a bandwidth part equals to or is smaller than the maximal bandwidth capability supported by a UE.
NR is targeting both licensed and unlicensed bands and a work item named NR-based Access to Unlicensed Spectrum (“NR-U”) was started in January 2019. Allowing unlicensed networks, for example, networks that operate in shared spectrum (or unlicensed spectrum) to effectively use the available spectrum is an attractive approach to increase system capacity. Although unlicensed spectrum does not match the qualities of the licensed regime, solutions that allow an efficient use of it as a complement to licensed deployments have the potential to bring great value to the 3GPP operators, and, ultimately, to the 3GPP industry as a whole. It is expected that some features in NR will need to be adapted to comply with the special characteristics of the unlicensed band as well as also different regulations. A subcarrier spacing of 15 or 30 kHz are the most promising candidates for NR-U OFDM numerologies for frequencies below 6 GHz.
When operating in an unlicensed spectrum many regions in the world require a device to sense the medium as free before transmitting, This, operation is often referred to as listen before talk or LBT for short. There are many different flavors of LBT, depending on which radio technology the device uses and which type of data it wants to transmit at the moment. Common for all flavors is that the sensing is done in a particular channel (corresponding to a defined carrier frequency) and over a predefined bandwidth. For example, in the 5 GHz band, the sensing is done over 20 MHz channels.
Many devices are capable of transmitting (and receiving) over a wide bandwidth including of multiple sub-bands/channels, for example, LBT sub-band (i.e., the frequency part with bandwidth equals to LBT bandwidth). A device is only allowed to transmit on the sub-bands where the medium is sensed as free. Again, there are different flavors of how the sensing should be done when multiple sub-bands are involved.
In principle, there are two ways a device can operate over multiple sub-bands. One way is that the transmitter/receiver bandwidth is changed depending on which sub-bands that were sensed as free. In this setup, there is only one component carrier (“CC”) and the multiple sub-bands are treated as single channel with a larger bandwidth. The other way is that the device operates almost independent processing chains for each channel. Depending on how independent the processing chains are, this option can be referred to as either carrier aggregation (“CA”) or dual connectivity (“DC”).
Listen-before-talk (“LBT”) is designed for unlicensed spectrum co-existence with other RATs. In this mechanism, a radio device applies a clear channel assessment (“CCA”) check (e.g., channel sensing) before any transmission. The transmitter involves energy detection (“ED”) over a time period compared to a certain threshold (ED threshold) in order to determine if a channel is idle. In case the channel is determined to be occupied, the transmitter performs a random back-off within a contention window before next CCA attempt. In order to protect the ACK transmissions, the transmitter must defer a period after each busy CCA slot prior to resuming back-off. As soon as the transmitter has grasped access to a channel, the transmitter is only allowed to perform transmission up to a maximum time duration (namely, the maximum channel occupancy time (“MCOT”)). For quality of service (“QoS”) differentiation, a channel access priority based on the service type has been defined. For example, there are four LBT priority classes are defined for differentiation of contention window sizes (“CWS”) and MCOT between services.
In NR-U, both configured scheduling and dynamic scheduling may be used.
In NR, configured scheduling is used to allocate semi-static periodic assignments or grants for a UE. For uplink, there are two types of configured scheduling schemes: Type 1 and Type 2. For Type 1, configured grants are configured via RRC signaling only. For Type 2, similar configuration procedure as semi-persistent scheduling (“SPS”) uplink (“UL”) in long term evolution (“LTE”) was defined, for example, some parameters are preconfigured via RRC signaling and some physical layer parameters are configured via media access control (“MAC”) scheduling procedure. The detail procedures can be found in 3GPP TS 38.321 V15.4.0. The configured uplink scheduling will be also used in NR unlicensed operation. For NR-U, the configured scheduling can improve the channel access probability for physical uplink shared channel (“PUSCH”) transmission due to additional LBT for physical downlink control channel (“PDCCH”) transmission per UL grant is avoided and the UE can acquire channel for PUSCH transmission using a configured grant after LBT success. In this uplink transmission procedure, only single LBT procedure is needed compared to 3 LBT procedures (one for secure routing (“SR”) transmission (“TX”), one for PDCCH for UL grant and one for PUSCH TX) relying on SR/BSR procedure. This can significantly improve the channel access probability for PUSCH transmission.
As captured in the 3GPP TR 38.889, for both Type 1 and Type 2, only initial hybrid automatic repeat request (“HARQ”) transmission is allowed to use configured grant. The HARQ retransmission relies on dynamic grant which is indicated via PDCCH addressed to configured scheduling radio network temporary identifier (“CS-RNTI”).
In NR Rel-15, it is desirable to introduce further enhanced licensed-assisted access (“feLAA”) autonomous uplink transmission (“AUL”) type behavior; however, it is important to recognize that the baseline is Type 1 and Type 2 configured grants (“CG”). Hence one should consider what enhancements are needed over and above this baseline to enable the desired behavior. Like for SPS in LTE, the CG periodicity is radio resource control (“RRC”) configured, and this is specified in the ConfiguredGrantConfig information element (“IE”). Different periodicity values are supported in NR Rel-15 depending on the subcarrier spacing. For example, for 15 and 30 kHz SCS, the following periodicities are supported, expressed in a number of orthogonal frequency division multiplexing (“OFDM”) symbols. For 15 kHz SCS: 2, 7, and n*14 OFDM symbols, where n∈{1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 320, 640}. For 30 kHz SCS: 2, 7, and n*14 OFDM symbols, where n∈{1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 256, 320, 640, 1280}.
For Type 1 configured grants, in addition to the periodicity, the time domain allocation of PUSCH is configured purely via RRC signaling. A timeDomainOffset provides a slot offset with respect to system frame number (“SFN”) 0. A timeDomainAllocation provides an index into a table of 16 possible combinations of PUSCH mapping type (TypeA or TypeB), start symbol (“S”) for the mapping (S=OFDM symbol 0, 2, 4, or 8 within a slot), and length (“L”) of the mapping (L=4, 6, 8, 10, 12, or 14 OFDM symbols).
For the case of Type 2 configured grants, the periodicity is configured by RRC in the same way as for Type 1, but the slot offset is dynamically indicated and is given by the slot in which the UE receives the downlink control information (“DCI”) that activates the Type 2 configured grant. In contrast to Type 1, the time domain allocation of PUSCH is indicated dynamically by DCI via the time domain resource assignment field in the same way as for scheduled (non-CG) PUSCH. This DCI field indexes a table of start and length indicator values (“SLIVs”). The detailed configuration details of the RRC spec (i.e., 3GPP TS 38.331 v 15.6.0) for configured grant as illustrated in
In some embodiments, a method of operating a wireless device in a communication network is provided. The method includes, responsive to receiving a downlink control indication, DCI, command to activate or reactivate a configured grant, CG, configuration that is associated with a first transmission block, TB, having a first transmission block size, TBS, handling a non-idle hybrid automatic repeat request, HARQ, process on the CG configuration based on whether the first TBS is different than a second TBS of a second TB associated with the non-idle HARQ process. The non-idle HARQ process including a process of retransmitting the second TB using the CG for which an associated media access control, MAC, protocol data unit, PDU, has been submitted to lower layers for transmission to a network node, but for which successful reception acknowledgment has not been received from the network node.
In other embodiments, a method of operating a wireless device in a communication network is provided. The method includes, responsive to receiving a downlink control indication, DCI, command to activate or reactivate a configured grant, CG, configuration, transmitting, using the CG configuration, a first transmission block, TB, associated with the CG configuration or a second transmission block, TB, associated with a non-idle hybrid automatic repeat request, HARQ, process on the CG configuration based on a priority associated with the first TB and/or a priority associated with the second TB. The non-idle HARQ process including a process of retransmitting the second TB using the CG for which an associated media access control, MAC, protocol data unit, PDU, has been submitted to lower layers for transmission to a network node, but for which successful reception acknowledgment has not been received from the network node.
In other embodiments, a method of operating a wireless device in a communication network is provided. The method includes, responsive to receiving a downlink control indication, DCI, command to deactivate an active configured grant, CG, configuration, transmitting a pending transmission block, TB, associated with the active CG and a non-idle hybrid automatic repeat request, HARQ. The at least one non-idle HARQ process includes a process of retransmitting the TB using the active CG for which an associated media access control, MAC, protocol data unit, PDU, has been submitted to lower layers for transmission to a network node, but for which successful reception acknowledgment has not been received from the network node. The method further includes, responsive to transmitting the pending TB, transmitting (1530) CG confirmation MAC control element, CE.
In other embodiments, a method of operating a wireless device in a communication network is provided. The method including responsive to receiving a downlink control indication, DCI, command to activate or reactivate a configured grant, CG, configuration, suspending all CG retransmissions associated with a non-idle hybrid automatic repeat request, HARQ, process on the CG configuration. The method further includes, responsive to receiving a message from a network node operating in the communication network, handling the non-idle HARQ processes based on the message from the network node. The non-idle HARQ process includes a process of retransmitting a transmission block, TB, using the CG for which an associated media access control, MAC, protocol data unit, PDU, has been submitted to lower layers for transmission to the network node, but for which successful reception acknowledgment has not been received from the network node.
In other embodiments a wireless device, computer program, or computer program product is provided to perform operations similar to the operations performed in the embodiments above.
Various embodiments described herein handle a timers and/or pending TBs associated with non-idle HARQ process during a CG activation, reactivation, or deactivation procedure to improve configuration flexibility of handling configured resource, improve use of configured resources, improve satisfaction of QoS requirements of different services that share a configured resource, and reduce misalignment of timers and NDI state between gNB and UE.
The accompanying drawings, which are included to provide a further understanding of the disclosure and are incorporated in and constitute a part of this application, illustrate certain non-limiting embodiments of inventive concepts. In the drawings:
Inventive concepts will now be described more fully hereinafter with reference to the accompanying drawings, in which examples of embodiments of inventive concepts are shown. Inventive concepts may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of present inventive concepts to those skilled in the art. It should also be noted that these embodiments are not mutually exclusive. Components from one embodiment may be tacitly assumed to be present/used in another embodiment.
The following description presents various embodiments of the disclosed subject matter. These embodiments are presented as teaching examples and are not to be construed as limiting the scope of the disclosed subject matter. For example, certain details of the described embodiments may be modified, omitted, or expanded upon without departing from the scope of the described subject matter.
Repetition of a transmission block (“TB”) is also supported in new radio (“NR”), and the same resource configuration is used for K repetitions for a TB including the initial transmission. The higher layer configured parameters, repK and repK-RV, define the K repetitions to be applied to the transmitted transport block, and the redundancy version pattern to be applied to the repetitions. For the nth transmission occasion among K repetitions, n=1, 2, . . . , K, it is associated with (mod(n−1,4)+1)th value in the configured redundancy version (“RV”) sequence. The initial transmission of a transport block may start at: the first transmission occasion of the K repetitions if the configured RV sequence is {0,2,3,1}; any of the transmission occasions of the K repetitions that are associated with RV=0 if the configured RV sequence is {0,3,0,3}; or any of the transmission occasions of the K repetitions if the configured RV sequence is {0,0,0,0} except the last transmission occasion when K=8.
For any RV sequence, the repetitions can be terminated after transmitting K repetitions, or at the last transmission occasion among the K repetitions within the period, or when an uplink (“UL”) grant for scheduling the same TB is received within the period, whichever is reached first. The communication device (also referred to herein as user equipment (“UE”)) is not expected to be configured with the time duration for the transmission of K repetitions larger than the time duration derived by the periodicity.
For both Type 1 and Type 2 physical uplink shared channel (“PUSCH”) transmissions with a configured grant, when the UE is configured with repK>1, the UE shall repeat the TB across the repK consecutive slots applying the same symbol allocation in each slot. If the UE procedure for determining slot configuration, as defined in subclause 11.1 of [TS 38.213], determines symbols of a slot allocated for PUSCH as downlink symbols, the transmission on that slot is omitted for multi-slot PUSCH transmission.
Autonomous uplink transmission (“AUL”) has been being developed in the third generation partnership project (“3GPP”). The AUL is to be designed based on the configured scheduling scheme in Rel-15. AUL will support autonomous retransmission using a configured grant. To support autonomous retransmission in uplink using a configured grant, in RAN2-105bis, it was determined to introduce a new timer to protect the hybrid automatic repeat request (“HARQ”) procedure so that the retransmission can use the same HARQ process for retransmission as for the initial transmission.
R2 assumes that the configured grant timer is not started/restarted when configured grant is not transmitted due to listen before talk (“LBT”) failure. Protocol data unit (“PDU”) overwrite should be avoided.
The configured grant timer is not started/restarted when UL LBT fails on PUSCH transmission for grant received by PDCCH addressed to CS-RNTI scheduling retransmission for configured grant.
The configured grant timer is not started/restarted when the UL LBT fails on PUSCH transmission for UL grant received by PDCCH addressed to C-RNTI, which indicates the same HARQ process configured for configured uplink grant.
Retransmissions of a TB using configured grant resources, when initial transmission or a retransmission of the TB was previously done using dynamically scheduled resources, is not allowed.
A new timer is introduced for auto retransmission (i.e. timer expiry=HARQ NACK) on configured grant for the case of the TB previous being transmitted on a configured grant “CG retransmission timer.”
The new timer is started when the TB is actually transmitted on the configured grant and stopped upon reception of HARQ feedback (e.g., downlink feedback information (“DFI”)) or dynamic grant for the HARQ process.
The legacy configured grant timer and behavior is kept for preventing the configured grant from overriding the TB scheduled by dynamic grant, i.e. it is (re)started upon reception of the PDCCH as well as transmission on the PUSCH of dynamic grant.
For AUL, the serving gNB can also schedule retransmission for a UE when previous transmission using a configured grant fails.
In some examples, when configuredGrantTimer expires, the UE should stop the CG retransmission timer (“CGRT”) if it is still running. Additionally, upon receiving CG activation command, the UE should stop the CG retransmission timer for HARQ processes configured for the CG. In addition, there is no special handling for HARQ process sharing between configured grant and dynamic grants (i.e. follow licensed specifications). In addition, HARQ process id selection is based on UE implementation. Ongoing retransmissions on HARQ processes should be prioritized. In addition, multiple active CG configurations should be allowed for NR-U. In addition, a single LCH can be mapped to multiple CG configurations. In addition, multiple LCHs can be mapped to a single CG configuration.
Based on the above, a UE can use configuredGrantTimer to limit the maximum retransmission attempts for a TB using a configured grant in case the UE supports autonomous HARQ retransmissions for the TB using a configured grant (i.e., CGRT is configured). Furthermore, a UE can be configured with multiple active CG configurations. Furthermore, The mapping relation between LCHs and CG configurations can be one to many or many to many.
Some problems arise based on the above that are addressed by embodiments herein. For example, there are some issues observed regarding UE behaviors when the UE has received a CG activation or deactivation command.
As highlighted in the MAC spec, in NR Rel-15, the UE only stops the configuredGrantTimer for the corresponding HARQ process, upon reception of a DCI activation/re-activation command. Such behavior is reasonable for Rel-15 UE, since the UE selects the HARQ Process ID for a PUSCH according to the PUSCH transmission time, i.e., the first symbol of the PUSCH transmission. In this case, a UE knows which HARQ process the DCI (re)activation command is addressing, i.e., the HARQ process associated with the first transmission occasion after the activation/re-activation.
If the new data indicator (“NDI”) in the received HARQ information is 0, then if PDCCH contents indicate configured grant Type 2 deactivation then trigger configured uplink grant confirmation. Else if PDCCH contents indicate configured grant Type 2 activation then trigger configured uplink grant confirmation; store the uplink grant for this Serving Cell and the associated HARQ information as configured uplink grant; initialize or re-initialize the configured uplink grant for this Serving Cell to start in the associated PUSCH duration and to recur according to rules in clause 5.8.2; stop the configuredGrantTimer for the corresponding HARQ process, if running; and stop the cg-RetransmissionTimer for the corresponding HARQ process, if running.
Determining which is the “corresponding HARQ process” is important from an operational point of view, since the UE will fill the buffer related to this HARQ process with new data. For example, if, for the corresponding HARQ process, the configuredGrantTimer is not running and cg-RetransmissionTimer is not configured (i.e. new transmission) then consider the NDI bit for the corresponding HARQ process to have been toggled; and deliver the configured uplink grant and the associated HARQ information to the HARQ entity. Else if the cg-RetransmissionTimer for the corresponding HARQ process is configured and not running, then for the corresponding HARQ process, then if the configuredGrantTimer is not running, and the HARQ process is not pending (i.e. new transmission) consider the NDI bit to have been toggled; and deliver the configured uplink grant and the associated HARQ information to the HARQ entity.
For a CG configuration with the CGRT timer configured, it is not feasible to apply the same behavior to handle the CGRT timers upon reception of a DCI activation/re-activation command, since there is no such a specific corresponding HARQ process which can be associated with the first transmission occasion after the activation/re-activation and the selection of the HARQ process to transmit is up to UE implementation. The UE may randomly select any HARQ process from the pool.
Therefore, when it comes to configured UL grant operations in unlicensed spectrum, it is not clear what is the corresponding HARQ process.
In one option, it could be left to UE implementation to determine which is this corresponding HARQ process. However, we believe that this might not be correct. In fact, we note that the UE upon receiving the DCI (re)activation command should send as soon as possible the MAC CE confirmation. However, since RAN2 agreed that the UE shall prioritize retransmissions when selecting an HARQ process, the MAC CE confirmation might be delayed. Additionally, since operations in unlicensed spectrum are prone to misalignment between gNB and UE in terms of NDI, HARQ buffer status, timer status at UE side, it might be beneficial for the whole system to know which is/are the HARQ process(es) that the UE will flush.
In addition, it seems to be unnecessary to flush a HARQ process with pending TB upon reception of a DCI activation/reaction command if the new grant gives the same TBS as the pending TB. A hard rule such as flush the HARQ buffer without consideration of the TBS of the grant would degrade the performance.
In some embodiments, in order to make the functions of CG based TB repetitions work properly, the above issues are addressed.
As discussed herein, operations of communication device UE 300 may be performed by processing circuitry 303 and/or transceiver circuitry 301. For example, processing circuitry 303 may control transceiver circuitry 301 to transmit communications through transceiver circuitry 301 over a radio interface to a radio access network node (also referred to as a base station) and/or to receive communications through transceiver circuitry 301 from a RAN node over a radio interface. Moreover, modules may be stored in memory circuitry 305, and these modules may provide instructions so that when instructions of a module are executed by processing circuitry 303, processing circuitry 303 performs respective operations.
As discussed herein, operations of the RAN node 400 may be performed by processing circuitry 403, network interface 407, and/or transceiver 401. For example, processing circuitry 403 may control transceiver 401 to transmit downlink communications through transceiver 401 over a radio interface to one or more mobile terminals UEs and/or to receive uplink communications through transceiver 401 from one or more mobile terminals UEs over a radio interface. Similarly, processing circuitry 403 may control network interface 407 to transmit communications through network interface 407 to one or more other network nodes and/or to receive communications through network interface from one or more other network nodes. Moreover, modules may be stored in memory 405, and these modules may provide instructions so that when instructions of a module are executed by processing circuitry 403, processing circuitry 403 performs respective operations (e.g., operations discussed below with respect to Example Embodiments relating to network nodes).
According to some other embodiments, a network node may be implemented as a core network CN node without a transceiver. In such embodiments, transmission to a wireless communication device UE may be initiated by the network node so that transmission to the wireless communication device UE is provided through a network node including a transceiver (e.g., through a base station or RAN node). According to embodiments where the network node is a RAN node including a transceiver, initiating transmission may include transmitting through the transceiver.
As discussed herein, operations of the CN node 500 may be performed by processing circuitry 503 and/or network interface circuitry 507. For example, processing circuitry 503 may control network interface circuitry 507 to transmit communications through network interface circuitry 507 to one or more other network nodes and/or to receive communications through network interface circuitry from one or more other network nodes. Moreover, modules may be stored in memory 505, and these modules may provide instructions so that when instructions of a module are executed by processing circuitry 503, processing circuitry 503 performs respective operations (e.g., operations discussed below with respect to Example Embodiments relating to network nodes).
Some embodiments are described in the context of NR unlicensed spectrum (“NR-U”). However, various embodiments described herein are applicable to non-NR-U scenarios. For example, some embodiments are applicable to other unlicensed operation scenarios such as LTE license assisted access (“LAA”)/enhanced LAA (“eLAA”)/further eLAA (“feLAA”)/MulteFire, and licensed spectrum scenarios. The term ConfiguredGrantTimer (“CGT”) is used herein to represent a timer which is defined for controlling the maximum retransmission attempts of a TB using a configured grant. The term CGretransmissionTimer (“CGRT”) is used herein to represent a timer for triggering a UE's autonomous retransmission of a TB using a configured grant. However, discussions on the timer names are still ongoing in the 3GPP, the eventual names may be different. The below embodiments are not restricted to the terms used to represent the timers. Other terms used to refer to timers are equally applicable. The timers may be implemented as counters, for example counting the number of potential CG transmission occasions, slots, or symbols.
In various embodiments described herein, a non-idle HARQ process is a HARQ process whose associated MAC PDU has been submitted to lower layers for transmission, but for which successful reception acknowledgment has not been received yet from the gNB.
In some embodiments, the UE doesn't stop the CGT and/or the CGRT if they are running for a non-idle HARQ process on the concerned CG configuration. When the CGRT timer is expired, the UE would then retransmit the corresponding TB using another selected CG resource associated to any active CG configuration (e.g., the re-activated CG configuration or another active CG configuration). For example, at reception of the DCI command to activate/re-activate a CG configuration, the HARQ buffer of the corresponding HARQ process is not flushed (e.g., the HARQ buffer includes pending TBs), the NDI is not toggled, and the HARQ process is considered as non-idle. In some examples, the selected active CG configuration is such that the corresponding CG resource which can accommodate the same TBS as the CG configuration in which the TB was initially transmitted, for example, the selected configured UL grant is of the same size as the configured UL grant in which the TB was initially transmitted.
In additional or alternative examples, if an active configured UL grant of the same size as the configured UL grant in which the TB was initially transmitted is not available, the UE may select a CG resource which gives different TBS as the CG configuration in which the TB was initially transmitted. In this case, the UE may perform rate matching for the TB to fit the new TBS. When the CGT timer is expired, the UE flushes the buffer of corresponding HARQ process.
In additional or alternative embodiments, the above procedure applies to each running CGT and CGRT associated to each non-idle HARQ process. In additional or alternative embodiments, the above procedure applies to only a subset of non-idle HARQ processes whose HARQ process IDs are indicated in the DCI command indicating (re)activation of the CG configuration.
In some embodiments, the UE stops the CGT and/or the CGRT for the HARQ process if they are running. For the pending TB occupying the HARQ process, the UE may either drop the TB and trigger upper layer retransmission or inform the gNB that there is a pending TB, so the gNB may schedule retransmissions for this TB. For example, at reception of the DCI command to activate/re-activate a CG configuration, the HARQ buffer of the corresponding HARQ process is flushed (cleared of pending TBs), the NDI is considered to be toggled, and the HARQ process is considered as idle (no pending TBs). The UE may send signaling to the gNB via a dedicated RRC signaling, MAC CE, or a L1/L2 control signaling such as PRACH or PUCCH. The signaling can convey the information such as what HARQ process have pending TBs and the TBS associated with each pending TB.
In additional or alternative embodiments, the procedure above applies to each running CGT and CGRT associated to each non-idle HARQ process. In additional or alternative embodiments, the procedure applies to only a subset of non-idle HARQ processes whose HARQ process IDs are indicated in the DCI command indicating (re)activation of the CG configuration.
In some embodiments, the UE already has an active CG configuration and the UE receives a de-activation command for the CG configuration. In some embodiments, a MAC entity of the UE can clear the configured uplink grant immediately after first transmission of Configured Grant Confirmation MAC CE triggered by the configured uplink grant deactivation. In additional or alternative embodiments, the UE stops the CGT and/or CGRT associated for each non-idle HARQ process which is configured for the CG configuration, immediately after first transmission of Configured Grant Confirmation MAC CE triggered by the configured uplink grant deactivation.
In additional or alternative embodiments, for the pending TB occupying each non-idle HARQ process, the UE may either drop the TB and trigger upper layer retransmission or inform the gNB that there is a pending TB, so the gNB may schedule retransmissions for this TB. The UE may send signaling to the gNB via a dedicated RRC signaling, MAC CE, or a L1/L2 control signaling such as PRACH or PUCCH. The signaling shall be able to convey the information such as what HARQ process have pending TBs and the TBS associated with each pending TB.
In additional or alternative embodiments, before transmission of Configured Grant Confirmation MAC CE triggered by the configured uplink grant deactivation, the UE MAC will first transmit pending TBs. In additional or alternative embodiments, the pending TBs and Configured Grant Confirmation MAC CE may be transmitted together using the same grant. Accordingly, the configured uplink grant can be kept active until the pending TBs are transmitted. In additional or alternative embodiments, an additional timer may be set for the UE. The timer is started when the UE receives the CG deactivation command. When the timer is running, the UE will try to transmit the pending TBs with the configured grant. When the timer is expired, the UE clears the configured uplink grant and stop the CGT and/or the CGRT for each non-idle HARQ processes. The pending TBs are also cleared. Buffers of all non-idle HARQ processes configured for the CG configuration are flushed.
In some embodiments, the UE is configured with multiple active CG configurations. When the UE receives a DCI activation/reactivation/deactivation command for a CG configuration, which has shared HARQ processes with another active CG configuration, the UE doesn't stop the timers (CGT and/or CGRT) for each HARQ process if it is being used for transmission by another CG configuration.
In some embodiments, the DCI activation/re-activation/deactivation command comprises a HARQ process ID field. In this case, the UE only stops the timers (CGT and/or CGRT) for the signaled HARQ process if the timers are running.
In some embodiments, in addition to the proposed UE actions on how to handle the HARQ process, the UE may also perform an additional action to set the NDI bits to zero for all HARQ processes (optionally, all non-idle HARQ processes) in a CG configuration when the UE receives a DCI activation/re-activation/deactivation command for the CG configuration.
In some embodiments, a UE receives a DCI command to activate/re-activate a CG configuration and the UE handles each non-idle HARQ process which is configured for the CG configuration on condition of the comparison of TBS sizes between the pending TB and the new grant. Such DCI command to (re)activate a CG configuration may indicate a new TBS compared with the TBS previously addressed by this grant, or the same TBS. In the latter case for example, the DCI just indicates a different PRB allocation for the grant, but same TBS.
In additional or alternative embodiments, a UE takes one or more of the following actions to handle one non-idle HARQ process regardless of whether the new grant gives the same or different TBS as the pending TB for this HARQ process: 1) Stop the associated timers (CGT and/or CGRT); 2) Flush the associated HARQ buffer; and 3) Consider associated NDI bit to be toggled or set to a fixed value (0, or 1). With any of these options, the HARQ buffer can be flushed and the UE can use the associated HARQ process ID for new transmission.
In additional or alternative embodiments, the UE avoids updating one non-idle HARQ process regardless of whether the new grant gives the same or different TBS size as the pending TB. For example, the UE does not flush the HARQ buffer and it does not change the value of the current NDI. The UE may: 1) Stop the associated CGRT; 2) Not flush the associated HARQ buffer; and 3) Not change an associated NDI value.
The UE keeps the non-idle HARQ process as it was, and it can perform retransmissions since the CGRT timer was stopped. For any subsequent retransmission of this non-idle HARQ process, the UE may use the new grant to transmit.
In additional or alternative embodiments, the UE handles one non-idle HARQ process and takes one or more of the following actions if the new grant gives different TBS than the TBS selected for the transmission of the pending TB for this HARQ process. For example, for this non-idle HARQ process, the UE: 1) Stops the associated timers (CGT and/or CGRT); 2) Flushes the associated HARQ buffer; and 3) Considers associated NDI bit to be toggled or set to a fixed value (0, or 1). In some examples, if the TBS indicated in the DCI for the grant is different than the TBS selected for the transmission of the pending TB for this HARQ process, the UE performs a new transmission for the concerned HARQ process.
In additional or alternative embodiments, the UE avoids updating a non-idle HARQ process if the new grant gives same TBS as the pending TB. In some examples, if the TBS is the same and the PRB allocation is different, the UE can perform retransmissions for the concerned HARQ process without flush the associated HARQ buffer. In this example, the UE may: 1) Not stop the associated CGRT (at which point the HARQ process will) or stop the associated CGRT; 2) Not flush the associated HARQ buffer; and 3) Not change associated NDI value.
In additional or alternative embodiments, the UE may not perform this actions for one non-idle HARQ process if such non-idle HARQ process is using more than one configured grant, (e.g., if the HARQ process is shared by multiple configured grants). For example, if the HARQ process is transmitting a TB with TBS X in both CG (configured grant), CG1 and CG2, and the (re)activation command is just received for CG1 addressing a new TBS Y, the UE does not need to flush the HARQ buffer associated to this HARQ process since it can still use the CG2 with TBS X. Therefore if a non-idle HARQ process is using more than one configured grant and a DCI (re)activation command is received for at least one of such configured grants addressing a TBS Y different from the TBS X already allocated for the transmission of the TB, the UE can just suspend the usage of such configured grants for non-idle HARQ processes, and keep using the other configured grants which are still addressing the TBS X.
Some embodiments may be combined for different non-idle HARQ processes. For example, if a new TBS and an old TBS is the same, then one of the non-idle HARQ processes can be flushed while all other non-idle HARQ processes are kept.
In additional or alternative embodiments, for the first transmission occasion after reception of a DCI activation/reactivation/release command for a configured grant, the UE performs a new transmission using the new grant or transmits a pending TB (e.g., it transmits a retransmission), using the new grant considering the priority order associated with the transmission.
In some embodiments, the priority order of the transmission can be determined based on at least one of below conditions: 1) Whether or not there is a high priority MAC CE contained in the transmission; 2) Whether or not the transmission contains high priority PUCCH-UCI information such as HARQ A/N, CSI, or SR; 3) QoS requirements (such as latency requirement) or LCH priority associated with the transmission; and 4) Size of the transmitted data. In some examples, a new transmission is prioritized over any pending TB (e.g., over any retransmission), since the new transmission contains a high priority MAC CE such as Configured Grant Confirmation MAC CE, BSR, PHR etc. In additional or alternative examples, a new transmission is prioritized over any pending TB since the new transmission contains a high priority PUCCH-UCI information. In additional or alternative examples, the UE always prioritize one new transmission using the new grant over any pending TB. In additional or alternative examples, the UE prioritizes pending TBs over any new transmission.
In additional or alternative embodiments, the gNB may provide priority configuration. Alternatively, it is hard coded in the spec.
In additional or alternative embodiments, if the UE does not have an idle HARQ process, it may take one of the non-idle HARQ processes and take one or more of these actions: 1) Stop the associated timers (CGT and/or CGRT); 2) Flush the associated HARQ buffer; and 3) Consider associated NDI bit to be toggled or set to a fixed value (0, or 1).
In additional or alternative embodiments, after reception of a configured grant DCI activation/reactivation command the UE suspends all configured grant retransmissions (and lets each associated CGT be running or stopped) for non-idle HARQ processes. For any non-idle HARQ process, the gNB can send, to the UE, a dynamic retransmission grant, or send DFI indicating ACK (then UE can use the HARQ process for new transmissions) or NACK (then the UE can retransmit the HARQ process using the new configured grant, and if associated CGT was stopped it may restart it, and restart associated CGRT) for each HARQ process.
Operations of the wireless device 300 (implemented using the structure of the block diagram of
In
At block 610, processing circuitry 303 receives, via transceiver 307, a DCI command to activate or reactivate a CG configuration.
At block 620, processing circuitry 303, determines a first TBS of a first TB associated with the CG configuration and a second TBS of a second TB associated with a non-idle HARQ process.
At block 630, processing circuitry 303, handles the non-idle HARQ process based on whether the first TBS is different than the second TBS.
In response to determining that the non-idle HARQ process is shared by multiple CG configurations, one or more of the operations in blocks 730, 740, and 750 are performed. At block 730, processing circuitry 303 maintains at least one timer associated with the non-idle HARQ process. At block 740, processing circuitry 303 maintains a buffer associated with the non-idle HARQ process. At block 750, processing circuitry 303 maintains a NDI bit associated with the non-idle HARQ process.
In response to determining that the non-idle HARQ process is not shared by multiple CG configurations, at block 720, processing circuitry 303 determines whether the first TBS is different than the second TBS. In response to determining that the first TBS is not different than the second TBS one or more of the operations in blocks 730, 740, and 750 are performed.
In response to determining that the first TBS is different than the second TBS one or more of the operations in blocks 760, 770, and 780 are performed. At block 760, processing circuitry 303 stops at least one timer associated with the non-idle HARQ process. At block 770, processing circuitry 303 clears a buffer associated with the non-idle HARQ process. At block 780, processing circuitry 303 toggles a NDI bit associated with the non-idle HARQ process.
In some embodiments, the non-idle HARQ process is one of a plurality of non-idle HARQ processes on the CG configuration and responsive to receiving the DCI command to activate or reactivate the CG configuration, regardless of whether the first TBS is different than a third TBS of a third TB associated with a second non-idle HARQ process of the plurality of non-idle HARQ processes on the CG configuration, processing circuitry 303 handles the second non-idle HARQ process. Handing the second non-idle HARQ process can include the operations of blocks 760, 770, and 780 of
In additional or alternative embodiments, the non-idle HARQ process is one of a plurality of non-idle HARQ processes on the CG configuration, and responsive to receiving the DCI command to activate or reactivate the CG configuration, regardless of whether the first TBS is different than a fourth TBS of a fourth TB associated with a third non-idle HARQ process of the plurality of non-idle HARQ processes on the CG configuration, processing circuitry 303 handles the third non-idle HARQ process. Handing the third non-idle HARQ process can include the operations of blocks 760, 740, and 750 of
In additional or alternative embodiments, the non-idle HARQ process is one of a plurality of non-idle HARQ processes on the CG configuration, and responsive to receiving the DCI command to activate or reactivate the CG configuration, regardless of whether the first TBS is different than a fifth TBS of a fifth TB associated with a fourth non-idle HARQ process of the plurality of non-idle HARQ processes on the CG configuration, at block 710 processing circuitry 303 determines whether the fourth non-idle HARQ process is shared by multiple CG configurations. In response to determining that the fourth non-idle HARQ process is shared by multiple CG configurations, one or more of the operations in blocks 730, 740, and 750 are performed.
In some embodiments the at least one timer includes a configured grant timer, CGT, configured to limit a maximum number of retransmission attempts of a TB associated with a non-idle HARQ request using the CG and a configured grant retransmission timer, CGRT, configured to trigger autonomous retransmission of a TB associated with a non-idle HARQ request using the CG.
At block 610, processing circuitry 303 receives, via transceiver 307, a DCI command to activate or reactivate a CG configuration.
At block 820, processing circuitry 303 determines a priority associated with the first TB and a priority associated with the second TB. In some embodiments, determining the priority associated with the first TB and the second TB includes determining whether the first TB or the second TB includes a high priority media access control, MAC, control element, CE. In additional or alternative embodiments, determining the priority associated with the first TB and the second TB includes determining quality of service, QoS, requirements for the first TB and the second TB. In additional or alternative embodiments, determining the priority associated with the first TB and the second TB includes determining whether the first TB or the second TB comprises high priority physical uplink control channel, PUCCH, uplink control information, UCI. In additional or alternative embodiments, determining the priority associated with the first TB and the second TB includes determining a size of the first TB and the second TB. In additional or alternative embodiments, determining the priority associated with the first TB and the second TB includes receiving the priority information from the network node.
At block 830, processing circuitry 303 transmits the first TB or the second TB using the CG configuration based on the priority associated with the first TB and the priority associated with the second TB.
At block 920, processing circuitry 303 suspends all CG retransmissions associated with the non-idle HARQ process.
At block 930, processing circuitry 303 receives a message from the network node. In some embodiments, the message includes a DFI, ACK, or NACK.
At block 940, processing circuitry 303 handles the non-idle HARQ process based on the message. In some embodiments, in response to receiving the message including an ACK, the processing circuitry 303 uses the non-idle HARQ process to transmit a new TB. In additional or alternative embodiments, in response to receiving the message including a NACK, the processing circuitry 303 uses the non-idle HARQ process to retransmit the TB.
Various operations from the flow charts of
Regarding methods of example embodiment 26 (set forth below), for example, operations of blocks 610, 620, and 630 of
Regarding methods of example embodiment 44 (set forth below), for example, operations of blocks 610, 620, 630 of
Example embodiments are discussed below.
Embodiment 1. A method of operating a wireless device in a communication network, the method comprising:
responsive to receiving a downlink control indication, DCI, command to activate or reactivate a configured grant, CG, configuration that is associated with a first transmission block, TB, having a first transmission block size, TBS, handling (630) a non-idle hybrid automatic repeat request, HARQ, process on the CG configuration based on whether the first TBS is different than a second TBS of a second TB associated with the non-idle HARQ process,
wherein the non-idle HARQ process comprises a process of retransmitting the second TB using the CG for which an associated media access control, MAC, protocol data unit, PDU, has been submitted to lower layers for transmission to a network node, but for which successful reception acknowledgment has not been received from the network node.
Embodiment 2. The method of Embodiment 1, further comprising determining (620) whether the first TBS of the first TB associated with the CG configuration is different than the second TBS of the second TB associated with the non-idle HARQ process.
Embodiment 3. The method of any of Embodiments 1-2, wherein the non-idle HARQ process is one of a plurality of non-idle HARQ processes on the CG configuration, the method further comprising:
responsive to receiving the DCI command to activate or reactivate the CG configuration, regardless of whether the first TBS is different than a third TBS of a third TB associated with a second non-idle HARQ process of the plurality of non-idle HARQ processes on the CG configuration, handling the second non-idle HARQ process,
wherein handling the second non-idle HARQ process comprises at least one of:
Embodiment 4. The method of any of Embodiments 1-3, wherein the non-idle HARQ process is one of a plurality of non-idle HARQ processes on the CG configuration, the method further comprising:
responsive to receiving the DCI command to activate or reactivate the CG configuration, regardless of whether the first TBS is different than a fourth TBS of a fourth TB associated with a third non-idle HARQ process of the plurality of non-idle HARQ processes on the CG configuration, handling the third non-idle HARQ process,
wherein handling the third non-idle HARQ process comprises at least one of:
Embodiment 5. The method of any of Embodiments 1-4, wherein the non-idle HARQ process is one of a plurality of non-idle HARQ processes on the CG configuration, the method further comprising:
responsive to receiving the DCI command to activate or reactivate the CG configuration, regardless of whether the first TBS is different than a fifth TBS of a fifth TB associated with a fourth non-idle HARQ process of the plurality of non-idle HARQ processes on the CG configuration, determining (710) that the fourth non-idle HARQ process is shared by multiple CG configurations; and
responsive to determining that the fourth non-idle HARQ process is shared by multiple CG configurations, handling the fourth non-idle HARQ process,
wherein handling the third non-idle HARQ process comprises at least one of:
Embodiment 6. The method of any of Embodiments 1-5, wherein responsive to the first TBS of the first TB associated with the CG configuration being different than the second TBS of the second TB associated with the non-idle HARQ process, handling the non-idle HARQ process on the CG configuration comprises at least one of:
stopping (760) at least one timer associated with the non-idle HARQ process;
clearing (770) a buffer associated with the non-idle HARQ process; and
toggling (780) a new data indicator, NDI, bit associated with the non-idle HARQ process.
Embodiment 7. The method of any of Embodiments 1-5, wherein responsive to the first TBS of the first TB associated with the CG configuration being the same as the second TBS of the second TB associated with the non-idle HARQ process, handling the non-idle HARQ process on the CG configuration comprises at least one of:
maintaining (730) at least one timer associated with the non-idle HARQ process;
maintaining (740) a buffer associated with the non-idle HARQ process; and
maintaining (750) a new data indicator, NDI, bit associated with the non-idle HARQ process.
Embodiment 8. The method of any of Embodiments 1-7, further comprising:
receiving (610) the DCI command to activate or reactivate the CG configuration.
Embodiment 9. The method of any of Embodiments 2-8, wherein the at least one timer comprises:
a configured grant timer, CGT, configured to limit a maximum number of retransmission attempts of a TB associated with a non-idle HARQ request using the CG; and
a configured grant retransmission timer, CGRT, configured to trigger autonomous retransmission of a TB associated with a non-idle HARQ request using the CG.
Embodiment 10. The method of any of Embodiments 1-9, further comprising:
responsive to receiving the DCI command, transmitting (830), using the CG configuration, the first TB or the second TB based on a priority associated with the first TB and/or a priority associated with the second TB.
Embodiment 11. The method of Embodiment 10, further comprising:
determining (820) the priority associated with the first TB and the priority associated with the second TB.
Embodiment 12. The method of Embodiment 11, wherein determining the priority associated with the first TB and the priority associated with the second TB comprises:
determining whether the first TB or the second TB comprises a high priority media access control, MAC, control element, CE.
Embodiment 13. The method of any of Embodiments 11-12, wherein determining the priority associated with the first TB and the priority associated with the second TB comprises:
determining whether the first TB or the second TB comprises high priority physical uplink control channel, PUCCH, uplink control information, UCI.
Embodiment 14. The method of any of Embodiments 11-13, wherein determining the priority associated with the first TB and the priority associated with the second TB comprises:
determining quality of service, QoS, requirements for the first TB and the second TB.
Embodiment 15. The method of any of Embodiments 11-14, wherein determining the priority associated with the first TB and the priority associated with the second TB comprises:
determining quality of service, QoS, requirements for the first TB and the second TB.
Embodiment 16. The method of any of Embodiments 11-15, wherein determining the priority associated with the first TB and the priority associated with the second TB comprises:
determining a size of the first TB and the second TB.
Embodiment 17. The method of any of Embodiments 11-16, further comprising:
receiving the priority associated with the first TB and the priority associated with the second TB from a network node operating in the communication network.
Embodiment 18. The method of any of Embodiments 1-17, wherein the non-idle HARQ process is a first non-idle HARQ process of a plurality of HARQ processes, the method further comprising:
responsive to determining there are no idle HARQ processes associated with the wireless device, performing at least one of:
stopping (760) at least one timer associated with a second non-idle HARQ process of the plurality of HARQ processes;
clearing (770) a buffer associated with the second non-idle HARQ process of the plurality of HARQ processes; and
toggling (780) a first data indicator, NDI, bit associated with the second non-idle HARQ process of the plurality of HARQ processes.
Embodiment 19. A wireless device (300) comprising:
processing circuitry (303); and
memory (305) coupled with the processing circuitry, wherein the memory includes instructions that when executed by the processing circuitry cause the wireless device to perform operations, the operations comprising:
Embodiment 20. The wireless device of Embodiment 19, the operations further comprising any of Embodiments 2-18.
Embodiment 21. A wireless device (300) adapted to perform operations, the operations comprising:
responsive to receiving a downlink control indication, DCI, command to activate or reactivate a configured grant, CG, configuration that is associated with a first transmission block, TB, having a first transmission block size, TBS, handling (630) a non-idle hybrid automatic repeat request, HARQ, process on the CG configuration based on whether the first TBS is different than a second TBS of a second TB associated with the non-idle HARQ process,
wherein the non-idle HARQ process comprises a process of retransmitting the second TB using the CG for which an associated media access control, MAC, protocol data unit, PDU, has been submitted to lower layers for transmission to a network node, but for which successful reception acknowledgment has not been received from the network node.
Embodiment 22. The wireless device of Embodiment 21, the operations further comprising any of Embodiments 2-18.
Embodiment 23. A computer program comprising program code to be executed by processing circuitry (303) of a wireless device (300), whereby execution of the program code causes the wireless device to perform operations, the operations comprising:
responsive to receiving a downlink control indication, DCI, command to activate or reactivate a configured grant, CG, configuration that is associated with a first transmission block, TB, having a first transmission block size, TBS, handling (630) a non-idle hybrid automatic repeat request, HARQ, process on the CG configuration based on whether the first TBS is different than a second TBS of a second TB associated with the non-idle HARQ process,
wherein the non-idle HARQ process comprises a process of retransmitting the second TB using the CG for which an associated media access control, MAC, protocol data unit, PDU, has been submitted to lower layers for transmission to a network node, but for which successful reception acknowledgment has not been received from the network node.
Embodiment 24. The computer program of Embodiment 23, the operations further comprising any of Embodiments 2-18.
Embodiment 25. A computer program product comprising a non-transitory storage medium (305) including program code to be executed by processing circuitry (3030) of a wireless device (300), whereby execution of the program code causes the wireless device to perform operations, the operations comprising:
responsive to receiving a downlink control indication, DCI, command to activate or reactivate a configured grant, CG, configuration that is associated with a first transmission block, TB, having a first transmission block size, TBS, handling (630) a non-idle hybrid automatic repeat request, HARQ, process on the CG configuration based on whether the first TBS is different than a second TBS of a second TB associated with the non-idle HARQ process,
wherein the non-idle HARQ process comprises a process of retransmitting the second TB using the CG for which an associated media access control, MAC, protocol data unit, PDU, has been submitted to lower layers for transmission to a network node, but for which successful reception acknowledgment has not been received from the network node.
Embodiment 26. The computer program product of Embodiment 25, the operations further comprising any of Embodiments 2-18.
Embodiment 27. A method of operating a wireless device in a communication network, the method comprising:
responsive to receiving a downlink control indication, DCI, command to activate or reactivate a configured grant, CG, configuration, transmitting (830), using the CG configuration, a first transmission block, TB, associated with the CG configuration or a second transmission block, TB, associated with a non-idle hybrid automatic repeat request, HARQ, process on the CG configuration based on a priority associated with the first TB and/or a priority associated with the second TB,
wherein the non-idle HARQ process comprises a process of retransmitting the second TB using the CG for which an associated media access control, MAC, protocol data unit, PDU, has been submitted to lower layers for transmission to a network node, but for which successful reception acknowledgment has not been received from the network node.
Embodiment 28. The method of Embodiment 27, further comprising:
determining (820) the priority associated with the first TB and the priority associated with the second TB.
Embodiment 29. The method of Embodiment 28, wherein determining the priority associated with the first TB and the priority associated with the second TB comprises:
determining whether the first TB or the second TB comprises a high priority media access control, MAC, control element, CE.
Embodiment 30. The method of any of Embodiments 28-29, wherein determining the priority associated with the first TB and the priority associated with the second TB comprises:
determining whether the first TB or the second TB comprises high priority physical uplink control channel, PUCCH, uplink control information, UCI.
Embodiment 31. The method of any of Embodiments 28-30, wherein determining the priority associated with the first TB and the priority associated with the second TB comprises:
determining quality of service, QoS, requirements for the first TB and the second TB.
Embodiment 32. The method of any of Embodiments 28-31, wherein determining the priority associated with the first TB and the priority associated with the second TB comprises:
determining quality of service, QoS, requirements for the first TB and the second TB.
Embodiment 33. The method of any of Embodiments 28-32, wherein determining the priority associated with the first TB and the priority associated with the second TB comprises:
determining a size of the first TB and the second TB.
Embodiment 34. The method of any of Embodiments 27-33, further comprising:
receiving the priority associated with the first TB and the priority associated with the second TB from a network node operating in the communication network.
Embodiment 35. The method of any of Embodiments 27-34, wherein the non-idle HARQ process is a first non-idle HARQ process of a plurality of HARQ processes, the method further comprising:
responsive to determining there are no idle HARQ processes associated with the wireless device, performing at least one of:
stopping (760) at least one timer associated with a second non-idle HARQ process of the plurality of HARQ processes;
clearing (770) a buffer associated with the second non-idle HARQ process of the plurality of HARQ processes; and
toggling (780) a first data indicator, NDI, bit associated with the second non-idle HARQ process of the plurality of HARQ processes.
Embodiment 36. The method of any of Embodiments 27-35, further comprising any of the operations of Embodiments 1-9.
Embodiment 37. A wireless device (300) comprising:
processing circuitry (303); and
memory (305) coupled with the processing circuitry, wherein the memory includes instructions that when executed by the processing circuitry cause the wireless device to perform operations, the operations comprising:
responsive to receiving a downlink control indication, DCI, command to activate or reactivate a configured grant, CG, configuration, transmitting (830), using the CG configuration, a first transmission block, TB, associated with the CG configuration or a second transmission block, TB, associated with a non-idle hybrid automatic repeat request, HARQ, process on the CG configuration based on a priority associated with the first TB and/or a priority associated with the second TB,
wherein the non-idle HARQ process comprises a process of retransmitting the second TB using the CG for which an associated media access control, MAC, protocol data unit, PDU, has been submitted to lower layers for transmission to a network node, but for which successful reception acknowledgment has not been received from the network node.
Embodiment 38. The wireless device of Embodiment 37, the operations further comprising any of Embodiments 27-36.
Embodiment 39. A wireless device (300) adapted to perform operations, the operations comprising:
responsive to receiving a downlink control indication, DCI, command to activate or reactivate a configured grant, CG, configuration, transmitting (830), using the CG configuration, a first transmission block, TB, associated with the CG configuration or a second transmission block, TB, associated with a non-idle hybrid automatic repeat request, HARQ, process on the CG configuration based on a priority associated with the first TB and/or a priority associated with the second TB,
wherein the non-idle HARQ process comprises a process of retransmitting the second TB using the CG for which an associated media access control, MAC, protocol data unit, PDU, has been submitted to lower layers for transmission to a network node, but for which successful reception acknowledgment has not been received from the network node.
Embodiment 40. The wireless device of Embodiment 39, the operations further comprising any of Embodiments 27-36.
Embodiment 41. A computer program comprising program code to be executed by processing circuitry (303) of a wireless device (300), whereby execution of the program code causes the wireless device to perform operations, the operations comprising:
responsive to receiving a downlink control indication, DCI, command to activate or reactivate a configured grant, CG, configuration, transmitting (830), using the CG configuration, a first transmission block, TB, associated with the CG configuration or a second transmission block, TB, associated with a non-idle hybrid automatic repeat request, HARQ, process on the CG configuration based on a priority associated with the first TB and/or a priority associated with the second TB,
wherein the non-idle HARQ process comprises a process of retransmitting the second TB using the CG for which an associated media access control, MAC, protocol data unit, PDU, has been submitted to lower layers for transmission to a network node, but for which successful reception acknowledgment has not been received from the network node.
Embodiment 42. The computer program of Embodiment 41, the operations further comprising any of Embodiments 27-36.
Embodiment 43. A computer program product comprising a non-transitory storage medium (305) including program code to be executed by processing circuitry (3030) of a wireless device (300), whereby execution of the program code causes the wireless device to perform operations, the operations comprising:
responsive to receiving a downlink control indication, DCI, command to activate or reactivate a configured grant, CG, configuration, transmitting (830), using the CG configuration, a first transmission block, TB, associated with the CG configuration or a second transmission block, TB, associated with a non-idle hybrid automatic repeat request, HARQ, process on the CG configuration based on a priority associated with the first TB and/or a priority associated with the second TB,
wherein the non-idle HARQ process comprises a process of retransmitting the second TB using the CG for which an associated media access control, MAC, protocol data unit, PDU, has been submitted to lower layers for transmission to a network node, but for which successful reception acknowledgment has not been received from the network node.
Embodiment 44. The computer program product of Embodiment 43, the operations further comprising any of Embodiments 27-36.
Embodiment 45. A method of operating a wireless device in a communication network, the method comprising:
responsive to receiving a downlink control indication, DCI, command to activate or reactivate a configured grant, CG, configuration, suspending (920) all CG retransmissions associated with a non-idle hybrid automatic repeat request, HARQ, process on the CG configuration; and
responsive to receiving a message from a network node operating in the communication network, handling (940) the non-idle HARQ processes based on the message from the network node,
wherein the non-idle HARQ process comprises a process of retransmitting a transmission block, TB, using the CG for which an associated media access control, MAC, protocol data unit, PDU, has been submitted to lower layers for transmission to the network node, but for which successful reception acknowledgment has not been received from the network node.
Embodiment 46. The method of Embodiment 45, further comprising:
receiving (930) the message from the network node operating in the communication network.
Embodiment 47. The method of Embodiment 46, wherein receiving the message comprises receiving a dynamic retransmission grant or a downlink feedback indicator, DFI.
Embodiment 48. The method of Embodiment 47, wherein the DFI comprises a positive acknowledgment, ACK, and
wherein handling the non-idle HARQ processes based on the message from the network node comprises using the non-idle HARQ process to transmit a new TB associated with the CG configuration.
Embodiment 49. The method of Embodiment 47, wherein the DFI comprises a negative acknowledgment, NACK, and
wherein handling the non-idle HARQ processes based on the message from the network node comprises using the non-idle HARQ process to retransmit the TB associated with the CG configuration.
Embodiment 50. The method of any of Embodiment 44-49, further comprising performing any of the operations of Embodiments 27-35.
Embodiment 51. A wireless device (300) comprising:
processing circuitry (303); and
memory (305) coupled with the processing circuitry, wherein the memory includes instructions that when executed by the processing circuitry cause the wireless device to perform operations, the operations comprising:
responsive to receiving a downlink control indication, DCI, command to activate or reactivate a configured grant, CG, configuration, suspending (920) all CG retransmissions associated with a non-idle hybrid automatic repeat request, HARQ, process on the CG configuration; and
responsive to receiving a message from a network node operating in the communication network, handling (940) the non-idle HARQ processes based on the message from the network node,
wherein the non-idle HARQ process comprises a process of retransmitting a transmission block, TB, using the CG for which an associated media access control, MAC, protocol data unit, PDU, has been submitted to lower layers for transmission to the network node, but for which successful reception acknowledgment has not been received from the network node.
Embodiment 52. The wireless device of Embodiment 51, the operations further comprising any of Embodiments 44-50.
Embodiment 53. A wireless device (300) adapted to perform operations, the operations comprising:
responsive to receiving a downlink control indication, DCI, command to activate or reactivate a configured grant, CG, configuration, suspending (920) all CG retransmissions associated with a non-idle hybrid automatic repeat request, HARQ, process on the CG configuration; and
responsive to receiving a message from a network node operating in the communication network, handling (940) the non-idle HARQ processes based on the message from the network node,
wherein the non-idle HARQ process comprises a process of retransmitting a transmission block, TB, using the CG for which an associated media access control, MAC, protocol data unit, PDU, has been submitted to lower layers for transmission to the network node, but for which successful reception acknowledgment has not been received from the network node.
Embodiment 54. The wireless device of Embodiment 53, the operations further comprising any of Embodiments 44-50.
Embodiment 55. A computer program comprising program code to be executed by processing circuitry (303) of a wireless device (300), whereby execution of the program code causes the wireless device to perform operations, the operations comprising:
responsive to receiving a downlink control indication, DCI, command to activate or reactivate a configured grant, CG, configuration, suspending (920) all CG retransmissions associated with a non-idle hybrid automatic repeat request, HARQ, process on the CG configuration; and
responsive to receiving a message from a network node operating in the communication network, handling (940) the non-idle HARQ processes based on the message from the network node,
wherein the non-idle HARQ process comprises a process of retransmitting a transmission block, TB, using the CG for which an associated media access control, MAC, protocol data unit, PDU, has been submitted to lower layers for transmission to the network node, but for which successful reception acknowledgment has not been received from the network node.
Embodiment 56. The computer program of Embodiment 55, the operations further comprising any of Embodiments 44-50.
Embodiment 57. A computer program product comprising a non-transitory storage medium (305) including program code to be executed by processing circuitry (303) of a wireless device (300), whereby execution of the program code causes the wireless device to perform operations, the operations comprising:
responsive to receiving a downlink control indication, DCI, command to activate or reactivate a configured grant, CG, configuration, suspending (920) all CG retransmissions associated with a non-idle hybrid automatic repeat request, HARQ, process on the CG configuration; and
responsive to receiving a message from a network node operating in the communication network, handling (940) the non-idle HARQ processes based on the message from the network node,
wherein the non-idle HARQ process comprises a process of retransmitting a transmission block, TB, using the CG for which an associated media access control, MAC, protocol data unit, PDU, has been submitted to lower layers for transmission to the network node, but for which successful reception acknowledgment has not been received from the network node.
Embodiment 58. The computer program product of Embodiment 57, the operations further comprising any of Embodiments 44-50.
Explanations are provided below for various abbreviations/acronyms used in the present disclosure.
References are identified below.
Additional explanation is provided below.
Generally, all terms used herein are to be interpreted according to their ordinary meaning in the relevant technical field, unless a different meaning is clearly given and/or is implied from the context in which it is used. All references to a/an/the element, apparatus, component, means, step, etc. are to be interpreted openly as referring to at least one instance of the element, apparatus, component, means, step, etc., unless explicitly stated otherwise. The steps of any methods disclosed herein do not have to be performed in the exact order disclosed, unless a step is explicitly described as following or preceding another step and/or where it is implicit that a step must follow or precede another step. Any feature of any of the embodiments disclosed herein may be applied to any other embodiment, wherever appropriate. Likewise, any advantage of any of the embodiments may apply to any other embodiments, and vice versa. Other objectives, features and advantages of the enclosed embodiments will be apparent from the following description.
Some of the embodiments contemplated herein will now be described more fully with reference to the accompanying drawings. Other embodiments, however, are contained within the scope of the subject matter disclosed herein, the disclosed subject matter should not be construed as limited to only the embodiments set forth herein; rather, these embodiments are provided by way of example to convey the scope of the subject matter to those skilled in the art.
Although the subject matter described herein may be implemented in any appropriate type of system using any suitable components, the embodiments disclosed herein are described in relation to a wireless network, such as the example wireless network illustrated in
The wireless network may comprise and/or interface with any type of communication, telecommunication, data, cellular, and/or radio network or other similar type of system. In some embodiments, the wireless network may be configured to operate according to specific standards or other types of predefined rules or procedures. Thus, particular embodiments of the wireless network may implement communication standards, such as Global System for Mobile Communications (GSM), Universal Mobile Telecommunications System (UMTS), Long Term Evolution (LTE), and/or other suitable 2G, 3G, 4G, or 5G standards; wireless local area network (WLAN) standards, such as the IEEE 802.11 standards; and/or any other appropriate wireless communication standard, such as the Worldwide Interoperability for Microwave Access (WiMax), Bluetooth, Z-Wave and/or ZigBee standards.
Network 4106 may comprise one or more backhaul networks, core networks, IP networks, public switched telephone networks (PSTNs), packet data networks, optical networks, wide-area networks (WANs), local area networks (LANs), wireless local area networks (WLANs), wired networks, wireless networks, metropolitan area networks, and other networks to enable communication between devices.
Network node 4160 and WD 4110 comprise various components described in more detail below. These components work together in order to provide network node and/or wireless device functionality, such as providing wireless connections in a wireless network. In different embodiments, the wireless network may comprise any number of wired or wireless networks, network nodes, base stations, controllers, wireless devices, relay stations, and/or any other components or systems that may facilitate or participate in the communication of data and/or signals whether via wired or wireless connections.
As used herein, network node refers to equipment capable, configured, arranged and/or operable to communicate directly or indirectly with a wireless device and/or with other network nodes or equipment in the wireless network to enable and/or provide wireless access to the wireless device and/or to perform other functions (e.g., administration) in the wireless network. Examples of network nodes include, but are not limited to, access points (APs) (e.g., radio access points), base stations (BSs) (e.g., radio base stations, Node Bs, evolved Node Bs (eNBs) and NR NodeBs (gNBs)). Base stations may be categorized based on the amount of coverage they provide (or, stated differently, their transmit power level) and may then also be referred to as femto base stations, pico base stations, micro base stations, or macro base stations. A base station may be a relay node or a relay donor node controlling a relay. A network node may also include one or more (or all) parts of a distributed radio base station such as centralized digital units and/or remote radio units (RRUs), sometimes referred to as Remote Radio Heads (RRHs). Such remote radio units may or may not be integrated with an antenna as an antenna integrated radio. Parts of a distributed radio base station may also be referred to as nodes in a distributed antenna system (DAS). Yet further examples of network nodes include multi-standard radio (MSR) equipment such as MSR BSs, network controllers such as radio network controllers (RNCs) or base station controllers (BSCs), base transceiver stations (BTSs), transmission points, transmission nodes, multi-cell/multicast coordination entities (MCEs), core network nodes (e.g., MSCs, MMEs), O&M nodes, OSS nodes, SON nodes, positioning nodes (e.g., E-SMLCs), and/or MDTs. As another example, a network node may be a virtual network node as described in more detail below. More generally, however, network nodes may represent any suitable device (or group of devices) capable, configured, arranged, and/or operable to enable and/or provide a wireless device with access to the wireless network or to provide some service to a wireless device that has accessed the wireless network.
In
Similarly, network node 4160 may be composed of multiple physically separate components (e.g., a NodeB component and a RNC component, or a BTS component and a BSC component, etc.), which may each have their own respective components. In certain scenarios in which network node 4160 comprises multiple separate components (e.g., BTS and BSC components), one or more of the separate components may be shared among several network nodes. For example, a single RNC may control multiple NodeB's. In such a scenario, each unique NodeB and RNC pair, may in some instances be considered a single separate network node. In some embodiments, network node 4160 may be configured to support multiple radio access technologies (RATs). In such embodiments, some components may be duplicated (e.g., separate device readable medium 4180 for the different RATs) and some components may be reused (e.g., the same antenna 4162 may be shared by the RATs). Network node 4160 may also include multiple sets of the various illustrated components for different wireless technologies integrated into network node 4160, such as, for example, GSM, WCDMA, LTE, NR, WiFi, or Bluetooth wireless technologies. These wireless technologies may be integrated into the same or different chip or set of chips and other components within network node 4160.
Processing circuitry 4170 is configured to perform any determining, calculating, or similar operations (e.g., certain obtaining operations) described herein as being provided by a network node. These operations performed by processing circuitry 4170 may include processing information obtained by processing circuitry 4170 by, for example, converting the obtained information into other information, comparing the obtained information or converted information to information stored in the network node, and/or performing one or more operations based on the obtained information or converted information, and as a result of said processing making a determination.
Processing circuitry 4170 may comprise a combination of one or more of a microprocessor, controller, microcontroller, central processing unit, digital signal processor, application-specific integrated circuit, field programmable gate array, or any other suitable computing device, resource, or combination of hardware, software and/or encoded logic operable to provide, either alone or in conjunction with other network node 4160 components, such as device readable medium 4180, network node 4160 functionality. For example, processing circuitry 4170 may execute instructions stored in device readable medium 4180 or in memory within processing circuitry 4170. Such functionality may include providing any of the various wireless features, functions, or benefits discussed herein. In some embodiments, processing circuitry 4170 may include a system on a chip (SOC).
In some embodiments, processing circuitry 4170 may include one or more of radio frequency (RF) transceiver circuitry 4172 and baseband processing circuitry 4174. In some embodiments, radio frequency (RF) transceiver circuitry 4172 and baseband processing circuitry 4174 may be on separate chips (or sets of chips), boards, or units, such as radio units and digital units. In alternative embodiments, part or all of RF transceiver circuitry 4172 and baseband processing circuitry 4174 may be on the same chip or set of chips, boards, or units
In certain embodiments, some or all of the functionality described herein as being provided by a network node, base station, eNB or other such network device may be performed by processing circuitry 4170 executing instructions stored on device readable medium 4180 or memory within processing circuitry 4170. In alternative embodiments, some or all of the functionality may be provided by processing circuitry 4170 without executing instructions stored on a separate or discrete device readable medium, such as in a hard-wired manner. In any of those embodiments, whether executing instructions stored on a device readable storage medium or not, processing circuitry 4170 can be configured to perform the described functionality. The benefits provided by such functionality are not limited to processing circuitry 4170 alone or to other components of network node 4160, but are enjoyed by network node 4160 as a whole, and/or by end users and the wireless network generally.
Device readable medium 4180 may comprise any form of volatile or non-volatile computer readable memory including, without limitation, persistent storage, solid-state memory, remotely mounted memory, magnetic media, optical media, random access memory (RAM), read-only memory (ROM), mass storage media (for example, a hard disk), removable storage media (for example, a flash drive, a Compact Disk (CD) or a Digital Video Disk (DVD)), and/or any other volatile or non-volatile, non-transitory device readable and/or computer-executable memory devices that store information, data, and/or instructions that may be used by processing circuitry 4170. Device readable medium 4180 may store any suitable instructions, data or information, including a computer program, software, an application including one or more of logic, rules, code, tables, etc. and/or other instructions capable of being executed by processing circuitry 4170 and, utilized by network node 4160. Device readable medium 4180 may be used to store any calculations made by processing circuitry 4170 and/or any data received via interface 4190. In some embodiments, processing circuitry 4170 and device readable medium 4180 may be considered to be integrated.
Interface 4190 is used in the wired or wireless communication of signaling and/or data between network node 4160, network 4106, and/or WDs 4110. As illustrated, interface 4190 comprises port(s)/terminal(s) 4194 to send and receive data, for example to and from network 4106 over a wired connection. Interface 4190 also includes radio front end circuitry 4192 that may be coupled to, or in certain embodiments a part of, antenna 4162. Radio front end circuitry 4192 comprises filters 4198 and amplifiers 4196. Radio front end circuitry 4192 may be connected to antenna 4162 and processing circuitry 4170. Radio front end circuitry may be configured to condition signals communicated between antenna 4162 and processing circuitry 4170. Radio front end circuitry 4192 may receive digital data that is to be sent out to other network nodes or WDs via a wireless connection. Radio front end circuitry 4192 may convert the digital data into a radio signal having the appropriate channel and bandwidth parameters using a combination of filters 4198 and/or amplifiers 4196. The radio signal may then be transmitted via antenna 4162. Similarly, when receiving data, antenna 4162 may collect radio signals which are then converted into digital data by radio front end circuitry 4192. The digital data may be passed to processing circuitry 4170. In other embodiments, the interface may comprise different components and/or different combinations of components.
In certain alternative embodiments, network node 4160 may not include separate radio front end circuitry 4192, instead, processing circuitry 4170 may comprise radio front end circuitry and may be connected to antenna 4162 without separate radio front end circuitry 4192. Similarly, in some embodiments, all or some of RF transceiver circuitry 4172 may be considered a part of interface 4190. In still other embodiments, interface 4190 may include one or more ports or terminals 4194, radio front end circuitry 4192, and RF transceiver circuitry 4172, as part of a radio unit (not shown), and interface 4190 may communicate with baseband processing circuitry 4174, which is part of a digital unit (not shown).
Antenna 4162 may include one or more antennas, or antenna arrays, configured to send and/or receive wireless signals. Antenna 4162 may be coupled to radio front end circuitry 4190 and may be any type of antenna capable of transmitting and receiving data and/or signals wirelessly. In some embodiments, antenna 4162 may comprise one or more omni-directional, sector or panel antennas operable to transmit/receive radio signals between, for example, 2 GHz and 66 GHz. An omni-directional antenna may be used to transmit/receive radio signals in any direction, a sector antenna may be used to transmit/receive radio signals from devices within a particular area, and a panel antenna may be a line of sight antenna used to transmit/receive radio signals in a relatively straight line. In some instances, the use of more than one antenna may be referred to as MIMO. In certain embodiments, antenna 4162 may be separate from network node 4160 and may be connectable to network node 4160 through an interface or port.
Antenna 4162, interface 4190, and/or processing circuitry 4170 may be configured to perform any receiving operations and/or certain obtaining operations described herein as being performed by a network node. Any information, data and/or signals may be received from a wireless device, another network node and/or any other network equipment. Similarly, antenna 4162, interface 4190, and/or processing circuitry 4170 may be configured to perform any transmitting operations described herein as being performed by a network node. Any information, data and/or signals may be transmitted to a wireless device, another network node and/or any other network equipment.
Power circuitry 4187 may comprise, or be coupled to, power management circuitry and is configured to supply the components of network node 4160 with power for performing the functionality described herein. Power circuitry 4187 may receive power from power source 4186. Power source 4186 and/or power circuitry 4187 may be configured to provide power to the various components of network node 4160 in a form suitable for the respective components (e.g., at a voltage and current level needed for each respective component). Power source 4186 may either be included in, or external to, power circuitry 4187 and/or network node 4160. For example, network node 4160 may be connectable to an external power source (e.g., an electricity outlet) via an input circuitry or interface such as an electrical cable, whereby the external power source supplies power to power circuitry 4187. As a further example, power source 4186 may comprise a source of power in the form of a battery or battery pack which is connected to, or integrated in, power circuitry 4187. The battery may provide backup power should the external power source fail. Other types of power sources, such as photovoltaic devices, may also be used.
Alternative embodiments of network node 4160 may include additional components beyond those shown in
As used herein, wireless device (WD) refers to a device capable, configured, arranged and/or operable to communicate wirelessly with network nodes and/or other wireless devices. Unless otherwise noted, the term WD may be used interchangeably herein with user equipment (UE). Communicating wirelessly may involve transmitting and/or receiving wireless signals using electromagnetic waves, radio waves, infrared waves, and/or other types of signals suitable for conveying information through air. In some embodiments, a WD may be configured to transmit and/or receive information without direct human interaction. For instance, a WD may be designed to transmit information to a network on a predetermined schedule, when triggered by an internal or external event, or in response to requests from the network. Examples of a WD include, but are not limited to, a smart phone, a mobile phone, a cell phone, a voice over IP (VoIP) phone, a wireless local loop phone, a desktop computer, a personal digital assistant (PDA), a wireless cameras, a gaming console or device, a music storage device, a playback appliance, a wearable terminal device, a wireless endpoint, a mobile station, a tablet, a laptop, a laptop-embedded equipment (LEE), a laptop-mounted equipment (LME), a smart device, a wireless customer-premise equipment (CPE). a vehicle-mounted wireless terminal device, etc. A WD may support device-to-device (D2D) communication, for example by implementing a 3GPP standard for sidelink communication, vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-everything (V2X) and may in this case be referred to as a D2D communication device. As yet another specific example, in an Internet of Things (IoT) scenario, a WD may represent a machine or other device that performs monitoring and/or measurements, and transmits the results of such monitoring and/or measurements to another WD and/or a network node. The WD may in this case be a machine-to-machine (M2M) device, which may in a 3GPP context be referred to as an MTC device. As one particular example, the WD may be a UE implementing the 3GPP narrow band internet of things (NB-IoT) standard. Particular examples of such machines or devices are sensors, metering devices such as power meters, industrial machinery, or home or personal appliances (e.g. refrigerators, televisions, etc.) personal wearables (e.g., watches, fitness trackers, etc.). In other scenarios, a WD may represent a vehicle or other equipment that is capable of monitoring and/or reporting on its operational status or other functions associated with its operation. A WD as described above may represent the endpoint of a wireless connection, in which case the device may be referred to as a wireless terminal. Furthermore, a WD as described above may be mobile, in which case it may also be referred to as a mobile device or a mobile terminal.
As illustrated, wireless device 4110 includes antenna 4111, interface 4114, processing circuitry 4120, device readable medium 4130, user interface equipment 4132, auxiliary equipment 4134, power source 4136 and power circuitry 4137. WD 4110 may include multiple sets of one or more of the illustrated components for different wireless technologies supported by WD 4110, such as, for example, GSM, WCDMA, LTE, NR, WiFi, WiMAX, or Bluetooth wireless technologies, just to mention a few. These wireless technologies may be integrated into the same or different chips or set of chips as other components within WD 4110.
Antenna 4111 may include one or more antennas or antenna arrays, configured to send and/or receive wireless signals, and is connected to interface 4114. In certain alternative embodiments, antenna 4111 may be separate from WD 4110 and be connectable to WD 4110 through an interface or port. Antenna 4111, interface 4114, and/or processing circuitry 4120 may be configured to perform any receiving or transmitting operations described herein as being performed by a WD. Any information, data and/or signals may be received from a network node and/or another WD. In some embodiments, radio front end circuitry and/or antenna 4111 may be considered an interface.
As illustrated, interface 4114 comprises radio front end circuitry 4112 and antenna 4111. Radio front end circuitry 4112 comprise one or more filters 4118 and amplifiers 4116. Radio front end circuitry 4114 is connected to antenna 4111 and processing circuitry 4120, and is configured to condition signals communicated between antenna 4111 and processing circuitry 4120. Radio front end circuitry 4112 may be coupled to or a part of antenna 4111. In some embodiments, WD 4110 may not include separate radio front end circuitry 4112; rather, processing circuitry 4120 may comprise radio front end circuitry and may be connected to antenna 4111. Similarly, in some embodiments, some or all of RF transceiver circuitry 4122 may be considered a part of interface 4114. Radio front end circuitry 4112 may receive digital data that is to be sent out to other network nodes or WDs via a wireless connection. Radio front end circuitry 4112 may convert the digital data into a radio signal having the appropriate channel and bandwidth parameters using a combination of filters 4118 and/or amplifiers 4116. The radio signal may then be transmitted via antenna 4111. Similarly, when receiving data, antenna 4111 may collect radio signals which are then converted into digital data by radio front end circuitry 4112. The digital data may be passed to processing circuitry 4120. In other embodiments, the interface may comprise different components and/or different combinations of components.
Processing circuitry 4120 may comprise a combination of one or more of a microprocessor, controller, microcontroller, central processing unit, digital signal processor, application-specific integrated circuit, field programmable gate array, or any other suitable computing device, resource, or combination of hardware, software, and/or encoded logic operable to provide, either alone or in conjunction with other WD 4110 components, such as device readable medium 4130, WD 4110 functionality. Such functionality may include providing any of the various wireless features or benefits discussed herein. For example, processing circuitry 4120 may execute instructions stored in device readable medium 4130 or in memory within processing circuitry 4120 to provide the functionality disclosed herein.
As illustrated, processing circuitry 4120 includes one or more of RF transceiver circuitry 4122, baseband processing circuitry 4124, and application processing circuitry 4126. In other embodiments, the processing circuitry may comprise different components and/or different combinations of components. In certain embodiments processing circuitry 4120 of WD 4110 may comprise a SOC. In some embodiments, RF transceiver circuitry 4122, baseband processing circuitry 4124, and application processing circuitry 4126 may be on separate chips or sets of chips. In alternative embodiments, part or all of baseband processing circuitry 4124 and application processing circuitry 4126 may be combined into one chip or set of chips, and RF transceiver circuitry 4122 may be on a separate chip or set of chips. In still alternative embodiments, part or all of RF transceiver circuitry 4122 and baseband processing circuitry 4124 may be on the same chip or set of chips, and application processing circuitry 4126 may be on a separate chip or set of chips. In yet other alternative embodiments, part or all of RF transceiver circuitry 4122, baseband processing circuitry 4124, and application processing circuitry 4126 may be combined in the same chip or set of chips. In some embodiments, RF transceiver circuitry 4122 may be a part of interface 4114. RF transceiver circuitry 4122 may condition RF signals for processing circuitry 4120.
In certain embodiments, some or all of the functionality described herein as being performed by a WD may be provided by processing circuitry 4120 executing instructions stored on device readable medium 4130, which in certain embodiments may be a computer-readable storage medium. In alternative embodiments, some or all of the functionality may be provided by processing circuitry 4120 without executing instructions stored on a separate or discrete device readable storage medium, such as in a hard-wired manner. In any of those particular embodiments, whether executing instructions stored on a device readable storage medium or not, processing circuitry 4120 can be configured to perform the described functionality. The benefits provided by such functionality are not limited to processing circuitry 4120 alone or to other components of WD 4110, but are enjoyed by WD 4110 as a whole, and/or by end users and the wireless network generally.
Processing circuitry 4120 may be configured to perform any determining, calculating, or similar operations (e.g., certain obtaining operations) described herein as being performed by a WD. These operations, as performed by processing circuitry 4120, may include processing information obtained by processing circuitry 4120 by, for example, converting the obtained information into other information, comparing the obtained information or converted information to information stored by WD 4110, and/or performing one or more operations based on the obtained information or converted information, and as a result of said processing making a determination.
Device readable medium 4130 may be operable to store a computer program, software, an application including one or more of logic, rules, code, tables, etc. and/or other instructions capable of being executed by processing circuitry 4120. Device readable medium 4130 may include computer memory (e.g., Random Access Memory (RAM) or Read Only Memory (ROM)), mass storage media (e.g., a hard disk), removable storage media (e.g., a Compact Disk (CD) or a Digital Video Disk (DVD)), and/or any other volatile or non-volatile, non-transitory device readable and/or computer executable memory devices that store information, data, and/or instructions that may be used by processing circuitry 4120. In some embodiments, processing circuitry 4120 and device readable medium 4130 may be considered to be integrated.
User interface equipment 4132 may provide components that allow for a human user to interact with WD 4110. Such interaction may be of many forms, such as visual, audial, tactile, etc. User interface equipment 4132 may be operable to produce output to the user and to allow the user to provide input to WD 4110. The type of interaction may vary depending on the type of user interface equipment 4132 installed in WD 4110. For example, if WD 4110 is a smart phone, the interaction may be via a touch screen; if WD 4110 is a smart meter, the interaction may be through a screen that provides usage (e.g., the number of gallons used) or a speaker that provides an audible alert (e.g., if smoke is detected). User interface equipment 4132 may include input interfaces, devices and circuits, and output interfaces, devices and circuits. User interface equipment 4132 is configured to allow input of information into WD 4110, and is connected to processing circuitry 4120 to allow processing circuitry 4120 to process the input information. User interface equipment 4132 may include, for example, a microphone, a proximity or other sensor, keys/buttons, a touch display, one or more cameras, a USB port, or other input circuitry. User interface equipment 4132 is also configured to allow output of information from WD 4110, and to allow processing circuitry 4120 to output information from WD 4110. User interface equipment 4132 may include, for example, a speaker, a display, vibrating circuitry, a USB port, a headphone interface, or other output circuitry. Using one or more input and output interfaces, devices, and circuits, of user interface equipment 4132, WD 4110 may communicate with end users and/or the wireless network, and allow them to benefit from the functionality described herein.
Auxiliary equipment 4134 is operable to provide more specific functionality which may not be generally performed by WDs. This may comprise specialized sensors for doing measurements for various purposes, interfaces for additional types of communication such as wired communications etc. The inclusion and type of components of auxiliary equipment 4134 may vary depending on the embodiment and/or scenario.
Power source 4136 may, in some embodiments, be in the form of a battery or battery pack. Other types of power sources, such as an external power source (e.g., an electricity outlet), photovoltaic devices or power cells, may also be used. WD 4110 may further comprise power circuitry 4137 for delivering power from power source 4136 to the various parts of WD 4110 which need power from power source 4136 to carry out any functionality described or indicated herein. Power circuitry 4137 may in certain embodiments comprise power management circuitry. Power circuitry 4137 may additionally or alternatively be operable to receive power from an external power source; in which case WD 4110 may be connectable to the external power source (such as an electricity outlet) via input circuitry or an interface such as an electrical power cable. Power circuitry 4137 may also in certain embodiments be operable to deliver power from an external power source to power source 4136. This may be, for example, for the charging of power source 4136. Power circuitry 4137 may perform any formatting, converting, or other modification to the power from power source 4136 to make the power suitable for the respective components of WD 4110 to which power is supplied.
In
In
In the depicted embodiment, input/output interface 4205 may be configured to provide a communication interface to an input device, output device, or input and output device. UE 4200 may be configured to use an output device via input/output interface 4205. An output device may use the same type of interface port as an input device. For example, a USB port may be used to provide input to and output from UE 4200. The output device may be a speaker, a sound card, a video card, a display, a monitor, a printer, an actuator, an emitter, a smartcard, another output device, or any combination thereof. UE 4200 may be configured to use an input device via input/output interface 4205 to allow a user to capture information into UE 4200. The input device may include a touch-sensitive or presence-sensitive display, a camera (e.g., a digital camera, a digital video camera, a web camera, etc.), a microphone, a sensor, a mouse, a trackball, a directional pad, a trackpad, a scroll wheel, a smartcard, and the like. The presence-sensitive display may include a capacitive or resistive touch sensor to sense input from a user. A sensor may be, for instance, an accelerometer, a gyroscope, a tilt sensor, a force sensor, a magnetometer, an optical sensor, a proximity sensor, another like sensor, or any combination thereof. For example, the input device may be an accelerometer, a magnetometer, a digital camera, a microphone, and an optical sensor.
In
RAM 4217 may be configured to interface via bus 4202 to processing circuitry 4201 to provide storage or caching of data or computer instructions during the execution of software programs such as the operating system, application programs, and device drivers. ROM 4219 may be configured to provide computer instructions or data to processing circuitry 4201. For example, ROM 4219 may be configured to store invariant low-level system code or data for basic system functions such as basic input and output (I/O), startup, or reception of keystrokes from a keyboard that are stored in a non-volatile memory. Storage medium 4221 may be configured to include memory such as RAM, ROM, programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), magnetic disks, optical disks, floppy disks, hard disks, removable cartridges, or flash drives. In one example, storage medium 4221 may be configured to include operating system 4223, application program 4225 such as a web browser application, a widget or gadget engine or another application, and data file 4227. Storage medium 4221 may store, for use by UE 4200, any of a variety of various operating systems or combinations of operating systems.
Storage medium 4221 may be configured to include a number of physical drive units, such as redundant array of independent disks (RAID), floppy disk drive, flash memory, USB flash drive, external hard disk drive, thumb drive, pen drive, key drive, high-density digital versatile disc (HD-DVD) optical disc drive, internal hard disk drive, Blu-Ray optical disc drive, holographic digital data storage (HDDS) optical disc drive, external mini-dual in-line memory module (DIMM), synchronous dynamic random access memory (SDRAM), external micro-DIMM SDRAM, smartcard memory such as a subscriber identity module or a removable user identity (SIM/RUIM) module, other memory, or any combination thereof. Storage medium 4221 may allow UE 4200 to access computer-executable instructions, application programs or the like, stored on transitory or non-transitory memory media, to off-load data, or to upload data. An article of manufacture, such as one utilizing a communication system may be tangibly embodied in storage medium 4221, which may comprise a device readable medium.
In
In the illustrated embodiment, the communication functions of communication subsystem 4231 may include data communication, voice communication, multimedia communication, short-range communications such as Bluetooth, near-field communication, location-based communication such as the use of the global positioning system (GPS) to determine a location, another like communication function, or any combination thereof. For example, communication subsystem 4231 may include cellular communication, Wi-Fi communication, Bluetooth communication, and GPS communication. Network 4243b may encompass wired and/or wireless networks such as a local-area network (LAN), a wide-area network (WAN), a computer network, a wireless network, a telecommunications network, another like network or any combination thereof. For example, network 4243b may be a cellular network, a Wi-Fi network, and/or a near-field network. Power source 4213 may be configured to provide alternating current (AC) or direct current (DC) power to components of UE 4200.
The features, benefits and/or functions described herein may be implemented in one of the components of UE 4200 or partitioned across multiple components of UE 4200. Further, the features, benefits, and/or functions described herein may be implemented in any combination of hardware, software or firmware. In one example, communication subsystem 4231 may be configured to include any of the components described herein. Further, processing circuitry 4201 may be configured to communicate with any of such components over bus 4202. In another example, any of such components may be represented by program instructions stored in memory that when executed by processing circuitry 4201 perform the corresponding functions described herein. In another example, the functionality of any of such components may be partitioned between processing circuitry 4201 and communication subsystem 4231. In another example, the non-computationally intensive functions of any of such components may be implemented in software or firmware and the computationally intensive functions may be implemented in hardware.
In some embodiments, some or all of the functions described herein may be implemented as virtual components executed by one or more virtual machines implemented in one or more virtual environments 4300 hosted by one or more of hardware nodes 4330. Further, in embodiments in which the virtual node is not a radio access node or does not require radio connectivity (e.g., a core network node), then the network node may be entirely virtualized.
The functions may be implemented by one or more applications 4320 (which may alternatively be called software instances, virtual appliances, network functions, virtual nodes, virtual network functions, etc.) operative to implement some of the features, functions, and/or benefits of some of the embodiments disclosed herein. Applications 4320 are run in virtualization environment 4300 which provides hardware 4330 comprising processing circuitry 4360 and memory 4390. Memory 4390 contains instructions 4395 executable by processing circuitry 4360 whereby application 4320 is operative to provide one or more of the features, benefits, and/or functions disclosed herein.
Virtualization environment 4300, comprises general-purpose or special-purpose network hardware devices 4330 comprising a set of one or more processors or processing circuitry 4360, which may be commercial off-the-shelf (COTS) processors, dedicated Application Specific Integrated Circuits (ASICs), or any other type of processing circuitry including digital or analog hardware components or special purpose processors. Each hardware device may comprise memory 4390-1 which may be non-persistent memory for temporarily storing instructions 4395 or software executed by processing circuitry 4360. Each hardware device may comprise one or more network interface controllers (NICs) 4370, also known as network interface cards, which include physical network interface 4380. Each hardware device may also include non-transitory, persistent, machine-readable storage media 4390-2 having stored therein software 4395 and/or instructions executable by processing circuitry 4360. Software 4395 may include any type of software including software for instantiating one or more virtualization layers 4350 (also referred to as hypervisors), software to execute virtual machines 4340 as well as software allowing it to execute functions, features and/or benefits described in relation with some embodiments described herein.
Virtual machines 4340, comprise virtual processing, virtual memory, virtual networking or interface and virtual storage, and may be run by a corresponding virtualization layer 4350 or hypervisor. Different embodiments of the instance of virtual appliance 4320 may be implemented on one or more of virtual machines 4340, and the implementations may be made in different ways.
During operation, processing circuitry 4360 executes software 4395 to instantiate the hypervisor or virtualization layer 4350, which may sometimes be referred to as a virtual machine monitor (VMM). Virtualization layer 4350 may present a virtual operating platform that appears like networking hardware to virtual machine 4340.
As shown in
Virtualization of the hardware is in some contexts referred to as network function virtualization (NFV). NFV may be used to consolidate many network equipment types onto industry standard high volume server hardware, physical switches, and physical storage, which can be located in data centers, and customer premise equipment.
In the context of NFV, virtual machine 4340 may be a software implementation of a physical machine that runs programs as if they were executing on a physical, non-virtualized machine. Each of virtual machines 4340, and that part of hardware 4330 that executes that virtual machine, be it hardware dedicated to that virtual machine and/or hardware shared by that virtual machine with others of the virtual machines 4340, forms a separate virtual network elements (VNE).
Still in the context of NFV, Virtual Network Function (VNF) is responsible for handling specific network functions that run in one or more virtual machines 4340 on top of hardware networking infrastructure 4330 and corresponds to application 4320 in
In some embodiments, one or more radio units 43200 that each include one or more transmitters 43220 and one or more receivers 43210 may be coupled to one or more antennas 43225. Radio units 43200 may communicate directly with hardware nodes 4330 via one or more appropriate network interfaces and may be used in combination with the virtual components to provide a virtual node with radio capabilities, such as a radio access node or a base station.
In some embodiments, some signaling can be effected with the use of control system 43230 which may alternatively be used for communication between the hardware nodes 4330 and radio units 43200.
With reference to
Telecommunication network 4410 is itself connected to host computer 4430, which may be embodied in the hardware and/or software of a standalone server, a cloud-implemented server, a distributed server or as processing resources in a server farm. Host computer 4430 may be under the ownership or control of a service provider, or may be operated by the service provider or on behalf of the service provider. Connections 4421 and 4422 between telecommunication network 4410 and host computer 4430 may extend directly from core network 4414 to host computer 4430 or may go via an optional intermediate network 4420. Intermediate network 4420 may be one of, or a combination of more than one of, a public, private or hosted network; intermediate network 4420, if any, may be a backbone network or the Internet; in particular, intermediate network 4420 may comprise two or more sub-networks (not shown).
The communication system of
Example implementations, in accordance with an embodiment, of the UE, base station and host computer discussed in the preceding paragraphs will now be described with reference to
Communication system 4500 further includes base station 4520 provided in a telecommunication system and comprising hardware 4525 enabling it to communicate with host computer 4510 and with UE 4530. Hardware 4525 may include communication interface 4526 for setting up and maintaining a wired or wireless connection with an interface of a different communication device of communication system 4500, as well as radio interface 4527 for setting up and maintaining at least wireless connection 4570 with UE 4530 located in a coverage area (not shown in
Communication system 4500 further includes UE 4530 already referred to. It's hardware 4535 may include radio interface 4537 configured to set up and maintain wireless connection 4570 with a base station serving a coverage area in which UE 4530 is currently located. Hardware 4535 of UE 4530 further includes processing circuitry 4538, which may comprise one or more programmable processors, application-specific integrated circuits, field programmable gate arrays or combinations of these (not shown) adapted to execute instructions. UE 4530 further comprises software 4531, which is stored in or accessible by UE 4530 and executable by processing circuitry 4538. Software 4531 includes client application 4532. Client application 4532 may be operable to provide a service to a human or non-human user via UE 4530, with the support of host computer 4510. In host computer 4510, an executing host application 4512 may communicate with the executing client application 4532 via OTT connection 4550 terminating at UE 4530 and host computer 4510. In providing the service to the user, client application 4532 may receive request data from host application 4512 and provide user data in response to the request data. OTT connection 4550 may transfer both the request data and the user data. Client application 4532 may interact with the user to generate the user data that it provides.
It is noted that host computer 4510, base station 4520 and UE 4530 illustrated in
In
Wireless connection 4570 between UE 4530 and base station 4520 is in accordance with the teachings of the embodiments described throughout this disclosure. One or more of the various embodiments may improve the performance of OTT services provided to UE 4530 using OTT connection 4550, in which wireless connection 4570 forms the last segment. More precisely, the teachings of these embodiments may improve the random access speed and/or reduce random access failure rates and thereby provide benefits such as faster and/or more reliable random access.
A measurement procedure may be provided for the purpose of monitoring data rate, latency and other factors on which the one or more embodiments improve. There may further be an optional network functionality for reconfiguring OTT connection 4550 between host computer 4510 and UE 4530, in response to variations in the measurement results. The measurement procedure and/or the network functionality for reconfiguring OTT connection 4550 may be implemented in software 4511 and hardware 4515 of host computer 4510 or in software 4531 and hardware 4535 of UE 4530, or both. In embodiments, sensors (not shown) may be deployed in or in association with communication devices through which OTT connection 4550 passes; the sensors may participate in the measurement procedure by supplying values of the monitored quantities exemplified above, or supplying values of other physical quantities from which software 4511, 4531 may compute or estimate the monitored quantities. The reconfiguring of OTT connection 4550 may include message format, retransmission settings, preferred routing etc.; the reconfiguring need not affect base station 4520, and it may be unknown or imperceptible to base station 4520. Such procedures and functionalities may be known and practiced in the art. In certain embodiments, measurements may involve proprietary UE signaling facilitating host computer 4510's measurements of throughput, propagation times, latency and the like. The measurements may be implemented in that software 4511 and 4531 causes messages to be transmitted, in particular empty or ‘dummy’ messages, using OTT connection 4550 while it monitors propagation times, errors etc.
Any appropriate steps, methods, features, functions, or benefits disclosed herein may be performed through one or more functional units or modules of one or more virtual apparatuses. Each virtual apparatus may comprise a number of these functional units. These functional units may be implemented via processing circuitry, which may include one or more microprocessor or microcontrollers, as well as other digital hardware, which may include digital signal processors (DSPs), special-purpose digital logic, and the like. The processing circuitry may be configured to execute program code stored in memory, which may include one or several types of memory such as read-only memory (ROM), random-access memory (RAM), cache memory, flash memory devices, optical storage devices, etc. Program code stored in memory includes program instructions for executing one or more telecommunications and/or data communications protocols as well as instructions for carrying out one or more of the techniques described herein. In some implementations, the processing circuitry may be used to cause the respective functional unit to perform corresponding functions according one or more embodiments of the present disclosure.
The term unit may have conventional meaning in the field of electronics, electrical devices and/or electronic devices and may include, for example, electrical and/or electronic circuitry, devices, modules, processors, memories, logic solid state and/or discrete devices, computer programs or instructions for carrying out respective tasks, procedures, computations, outputs, and/or displaying functions, and so on, as such as those that are described herein.
Further definitions and embodiments are discussed below.
In the above-description of various embodiments of present inventive concepts, it is to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of present inventive concepts. Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which present inventive concepts belong. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
When an element is referred to as being “connected”, “coupled”, “responsive”, or variants thereof to another element, it can be directly connected, coupled, or responsive to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected”, “directly coupled”, “directly responsive”, or variants thereof to another element, there are no intervening elements present. Like numbers refer to like elements throughout. Furthermore, “coupled”, “connected”, “responsive”, or variants thereof as used herein may include wirelessly coupled, connected, or responsive. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Well-known functions or constructions may not be described in detail for brevity and/or clarity. The term “and/or” (abbreviated “/”) includes any and all combinations of one or more of the associated listed items.
It will be understood that although the terms first, second, third, etc. may be used herein to describe various elements/operations, these elements/operations should not be limited by these terms. These terms are only used to distinguish one element/operation from another element/operation. Thus a first element/operation in some embodiments could be termed a second element/operation in other embodiments without departing from the teachings of present inventive concepts. The same reference numerals or the same reference designators denote the same or similar elements throughout the specification.
As used herein, the terms “comprise”, “comprising”, “comprises”, “include”, “including”, “includes”, “have”, “has”, “having”, or variants thereof are open-ended, and include one or more stated features, integers, elements, steps, components or functions but does not preclude the presence or addition of one or more other features, integers, elements, steps, components, functions or groups thereof. Furthermore, as used herein, the common abbreviation “e.g.”, which derives from the Latin phrase “exempli gratia,” may be used to introduce or specify a general example or examples of a previously mentioned item, and is not intended to be limiting of such item. The common abbreviation “i.e.”, which derives from the Latin phrase “id est,” may be used to specify a particular item from a more general recitation.
Example embodiments are described herein with reference to block diagrams and/or flowchart illustrations of computer-implemented methods, apparatus (systems and/or devices) and/or computer program products. It is understood that a block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, can be implemented by computer program instructions that are performed by one or more computer circuits. These computer program instructions may be provided to a processor circuit of a general purpose computer circuit, special purpose computer circuit, and/or other programmable data processing circuit to produce a machine, such that the instructions, which execute via the processor of the computer and/or other programmable data processing apparatus, transform and control transistors, values stored in memory locations, and other hardware components within such circuitry to implement the functions/acts specified in the block diagrams and/or flowchart block or blocks, and thereby create means (functionality) and/or structure for implementing the functions/acts specified in the block diagrams and/or flowchart block(s).
These computer program instructions may also be stored in a tangible computer-readable medium that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable medium produce an article of manufacture including instructions which implement the functions/acts specified in the block diagrams and/or flowchart block or blocks. Accordingly, embodiments of present inventive concepts may be embodied in hardware and/or in software (including firmware, resident software, micro-code, etc.) that runs on a processor such as a digital signal processor, which may collectively be referred to as “circuitry,” “a module” or variants thereof.
It should also be noted that in some alternate implementations, the functions/acts noted in the blocks may occur out of the order noted in the flowcharts. For example, two blocks shown in succession may in fact be executed substantially concurrently or the blocks may sometimes be executed in the reverse order, depending upon the functionality/acts involved. Moreover, the functionality of a given block of the flowcharts and/or block diagrams may be separated into multiple blocks and/or the functionality of two or more blocks of the flowcharts and/or block diagrams may be at least partially integrated. Finally, other blocks may be added/inserted between the blocks that are illustrated, and/or blocks/operations may be omitted without departing from the scope of inventive concepts. Moreover, although some of the diagrams include arrows on communication paths to show a primary direction of communication, it is to be understood that communication may occur in the opposite direction to the depicted arrows.
Many variations and modifications can be made to the embodiments without substantially departing from the principles of the present inventive concepts. All such variations and modifications are intended to be included herein within the scope of present inventive concepts. Accordingly, the above disclosed subject matter is to be considered illustrative, and not restrictive, and the examples of embodiments are intended to cover all such modifications, enhancements, and other embodiments, which fall within the spirit and scope of present inventive concepts. Thus, to the maximum extent allowed by law, the scope of present inventive concepts are to be determined by the broadest permissible interpretation of the present disclosure including the examples of embodiments and their equivalents, and shall not be restricted or limited by the foregoing detailed description.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2021/050363 | 1/11/2021 | WO |
Number | Date | Country | |
---|---|---|---|
62976266 | Feb 2020 | US |