This patent document relates to video coding and decoding techniques, devices and systems.
In spite of the advances in video compression, digital video still accounts for the largest bandwidth use on the internet and other digital communication networks. As the number of connected user devices capable of receiving and displaying video increases, it is expected that the bandwidth demand for digital video usage will continue to grow.
Devices, systems and methods related to encoding and decoding digital video using a set of tables containing coding candidates are described. The described methods may be applied to both the existing video coding standards (e.g., High Efficiency Video Coding (HEVC)) and future video coding standards or video codecs.
In one representative aspect, the disclosed technology may be used to provide a video processing method which comprises: maintaining tables, wherein each table includes a set of motion candidates and each motion candidate is associated with corresponding motion information; performing a conversion between a first video block and a bitstream representation of a video including the first video block based on the tables; and updating, after performing of the conversion, zero or more tables, based on an update rule.
In another representative aspect, maintaining tables, wherein each table includes a set of motion candidates and each motion candidate is associated with corresponding motion information; performing a conversion between a first video block and a bitstream representation of a video including the first video block based on the tables; and updating, after performing of the conversion, one or more tables, based on one or more video region in the video until an update termination criterion is met.
In another representative aspect, the disclosed technology may be used to provide another video processing method which comprises maintaining one or more tables that include motion candidates, each motion candidate being associated with corresponding motion information; reordering motion candidates in at least one of the one or more tables; and performing, based on the reordered motion candidates in at least one table, a conversion between a first video block and a bitstream representation of a video including the first video block.
In yet another representative aspect, the disclosed technology may be used to provide another video processing method which includes maintaining one or more tables that include motion candidates, each motion candidate being associated with corresponding motion information; performing, based on one or more of the tables, a conversion between a first video block and a bitstream representation of a video including the first video block using the one or more tables; and updating one or more tables by adding an additional motion candidate to the table based on the conversion of the first video block and reordering of the motion candidates in the table.
In yet another representative aspect, the above-described method is embodied in the form of processor-executable code and stored in a computer-readable program medium.
In yet another representative aspect, a device that is configured or operable to perform the above-described method is disclosed. The device may include a processor that is programmed to implement this method.
In yet another representative aspect, a video decoder apparatus may implement a method as described herein.
The above and other aspects and features of the disclosed technology are described in greater detail in the drawings, the description and the claims.
Due to the increasing demand of higher resolution video, video coding methods and techniques are ubiquitous in modern technology. Video codecs typically include an electronic circuit or software that compresses or decompresses digital video, and are continually being improved to provide higher coding efficiency. A video codec converts uncompressed video to a compressed format or vice versa. There are complex relationships between the video quality, the amount of data used to represent the video (determined by the bit rate), the complexity of the encoding and decoding algorithms, sensitivity to data losses and errors, ease of editing, random access, and end-to-end delay (latency). The compressed format usually conforms to a standard video compression specification, e.g., the High Efficiency Video Coding (HEVC) standard (also known as H.265 or MPEG-H Part 2), the Versatile Video Coding standard to be finalized, or other current and/or future video coding standards.
Embodiments of the disclosed technology may be applied to existing video coding standards (e.g., HEVC, H.265) and future standards to improve compression performance. Section headings are used in the present document to improve readability of the description and do not in any way limit the discussion or the embodiments (and/or implementations) to the respective sections only.
1. Example Embodiments of Video Coding
The residual signal of the intra- or inter-picture prediction, which is the difference between the original block and its prediction, is transformed by a linear spatial transform. The transform coefficients are then scaled, quantized, entropy coded, and transmitted together with the prediction information.
The encoder duplicates the decoder processing loop (see gray-shaded boxes in
Video material to be encoded by HEVC is generally expected to be input as progressive scan imagery (either due to the source video originating in that format or resulting from deinterlacing prior to encoding). No explicit coding features are present in the HEVC design to support the use of interlaced scanning, as interlaced scanning is no longer used for displays and is becoming substantially less common for distribution. However, a metadata syntax has been provided in HEVC to allow an encoder to indicate that interlace-scanned video has been sent by coding each field (i.e., the even or odd numbered lines of each video frame) of interlaced video as a separate picture or that it has been sent by coding each interlaced frame as an HEVC coded picture. This provides an efficient method of coding interlaced video without burdening decoders with a need to support a special decoding process for it.
1.1. Examples of Partition Tree Structures in H.264/AVC
The core of the coding layer in previous standards was the macroblock, containing a 16×16 block of luma samples and, in the usual case of 4:2:0 color sampling, two corresponding 8×8 blocks of chroma samples.
An intra-coded block uses spatial prediction to exploit spatial correlation among pixels. Two partitions are defined: 16×16 and 4×4.
An inter-coded block uses temporal prediction, instead of spatial prediction, by estimating motion among pictures. Motion can be estimated independently for either 16×16 macroblock or any of its sub-macroblock partitions: 16×8, 8×16, 8×8, 8×4, 4×8, 4×4, as shown in
1.2 Examples of Partition Tree Structures in HEVC
In HEVC, a coding tree unit (CTU) is split into coding units (CUs) by using a quadtree structure denoted as coding tree to adapt to various local characteristics. The decision whether to code a picture area using inter-picture (temporal) or intra-picture (spatial) prediction is made at the CU level. Each CU can be further split into one, two or four prediction units (PUs) according to the PU splitting type. Inside one PU, the same prediction process is applied and the relevant information is transmitted to the decoder on a PU basis. After obtaining the residual block by applying the prediction process based on the PU splitting type, a CU can be partitioned into transform units (TUs) according to another quadtree structure similar to the coding tree for the CU. One of key feature of the HEVC structure is that it has the multiple partition conceptions including CU, PU, and TU.
Certain features involved in hybrid video coding using HEVC include:
For residual coding, a CB can be recursively partitioned into transform blocks (TBs). The partitioning is signaled by a residual quadtree. Only square CB and TB partitioning is specified, where a block can be recursively split into quadrants, as illustrated in
In contrast to previous standards, the HEVC design allows a TB to span across multiple PBs for inter-picture predicted CUs to maximize the potential coding efficiency benefits of the quadtree-structured TB partitioning.
1.2.2. Parent and Child Nodes
A CTB is divided according to a quad-tree structure, the nodes of which are coding units. The plurality of nodes in a quad-tree structure includes leaf nodes and non-leaf nodes. The leaf nodes have no child nodes in the tree structure (i.e., the leaf nodes are not further split). The, non-leaf nodes include a root node of the tree structure. The root node corresponds to an initial video block of the video data (e.g., a CTB). For each respective non-root node of the plurality of nodes, the respective non-root node corresponds to a video block that is a sub-block of a video block corresponding to a parent node in the tree structure of the respective non-root node. Each respective non-leaf node of the plurality of non-leaf nodes has one or more child nodes in the tree structure.
1.3. Examples of Quadtree Plus Binary Tree Block Structures with Larger CTUs in JEM
In some embodiments, future video coding technologies are explored using a reference software known as the Joint Exploration Model (JEM). In addition to binary tree structures, JEM describes quadtree plus binary tree (QTBT) and ternary tree (TT) structures.
1.3.1. Examples of the QTBT Block Partitioning Structure
In contrast to HEVC, the QTBT structure removes the concepts of multiple partition types, i.e. it removes the separation of the CU, PU and TU concepts, and supports more flexibility for CU partition shapes. In the QTBT block structure, a CU can have either a square or rectangular shape. As shown in
The following parameters are defined for the QTBT partitioning scheme:
In one example of the QTBT partitioning structure, the CTU size is set as 128×128 luma samples with two corresponding 64×64 blocks of chroma samples, the MinQTSize is set as 16×16, the MaxBTSize is set as 64×64, the MinBTSize (for both width and height) is set as 4×4, and the MaxBTDepth is set as 4. The quadtree partitioning is applied to the CTU first to generate quadtree leaf nodes. The quadtree leaf nodes may have a size from 16×16 (i.e., the MinQTSize) to 128×128 (i.e., the CTU size). If the quadtree leaf node is 128×128, it will not be further split by the binary tree since the size exceeds the MaxBTSize (i.e., 64×64). Otherwise, the quadtree leaf node could be further partitioned by the binary tree. Therefore, the quadtree leaf node is also the root node for the binary tree and it has the binary tree depth as 0. When the binary tree depth reaches MaxBTDepth (i.e., 4), no further splitting is considered. When the binary tree node has width equal to MinBTSize (i.e., 4), no further horizontal splitting is considered. Similarly, when the binary tree node has height equal to MinBTSize, no further vertical splitting is considered. The leaf nodes of the binary tree are further processed by prediction and transform processing without any further partitioning. In the JEM, the maximum CTU size is 256×256 luma samples.
In addition, the QTBT scheme supports the ability for the luma and chroma to have a separate QTBT structure. Currently, for P and B slices, the luma and chroma CTBs in one CTU share the same QTBT structure. However, for I slices, the luma CTB is partitioned into CUs by a QTBT structure, and the chroma CTBs are partitioned into chroma CUs by another QTBT structure. This means that a CU in an I slice consists of a coding block of the luma component or coding blocks of two chroma components, and a CU in a P or B slice consists of coding blocks of all three colour components.
In HEVC, inter prediction for small blocks is restricted to reduce the memory access of motion compensation, such that bi-prediction is not supported for 4×8 and 8×4 blocks, and inter prediction is not supported for 4×4 blocks. In the QTBT of the JEM, these restrictions are removed.
1.4. Ternary-Tree (TT) for Versatile Video Coding (VVC)
In some implementations, two levels of trees are supported: region tree (quad-tree) and prediction tree (binary-tree or ternary-tree). A CTU is firstly partitioned by region tree (RT). A RT leaf may be further split with prediction tree (PT). A PT leaf may also be further split with PT until max PT depth is reached. A PT leaf is the basic coding unit. It is still called CU for convenience. A CU cannot be further split. Prediction and transform are both applied on CU in the same way as JEM. The whole partition structure is named ‘multiple-type-tree’.
1.5. Examples of Partitioning Structures in Alternate Video Coding Technologies
In some embodiments, a tree structure called a Multi-Tree Type (MTT), which is a generalization of the QTBT, is supported. In QTBT, as shown in
The structure of the MTT constitutes of two types of tree nodes: Region Tree (RT) and Prediction Tree (PT), supporting nine types of partitions, as shown in
2. Examples of Inter-Prediction in HEVC/H.265
Video coding standards have significantly improved over the years, and now provide, in part, high coding efficiency and support for higher resolutions. Recent standards such as HEVC and H.265 are based on the hybrid video coding structure wherein temporal prediction plus transform coding are utilized.
2.1 Examples of Prediction Modes
Each inter-predicted PU (prediction unit) has motion parameters for one or two reference picture lists. In some embodiments, motion parameters include a motion vector and a reference picture index. In other embodiments, the usage of one of the two reference picture lists may also be signaled using inter_pred_idc. In yet other embodiments, motion vectors may be explicitly coded as deltas relative to predictors.
When a CU is coded with skip mode, one PU is associated with the CU, and there are no significant residual coefficients, no coded motion vector delta or reference picture index. A merge mode is specified whereby the motion parameters for the current PU are obtained from neighboring PUs, including spatial and temporal candidates. The merge mode can be applied to any inter-predicted PU, not only for skip mode. The alternative to merge mode is the explicit transmission of motion parameters, where motion vector, corresponding reference picture index for each reference picture list and reference picture list usage are signaled explicitly per each PU.
When signaling indicates that one of the two reference picture lists is to be used, the PU is produced from one block of samples. This is referred to as ‘uni-prediction’. Uni-prediction is available both for P-slices and B-slices.
When signaling indicates that both of the reference picture lists are to be used, the PU is produced from two blocks of samples. This is referred to as ‘bi-prediction’. Bi-prediction is available for B-slices only.
2.1.1 Embodiments of Constructing Candidates for Merge Mode
When a PU is predicted using merge mode, an index pointing to an entry in the merge candidates list is parsed from the bitstream and used to retrieve the motion information. The construction of this list can be summarized according to the following sequence of steps:
Step 1: Initial candidates derivation
Step 2: Additional candidates insertion
2.1.2 Constructing Spatial Merge Candidates
In the derivation of spatial merge candidates, a maximum of four merge candidates are selected among candidates located in the positions depicted in
To reduce computational complexity, not all possible candidate pairs are considered in the mentioned redundancy check. Instead only the pairs linked with an arrow in
2.1.3 Constructing Temporal Merge Candidates
In this step, only one candidate is added to the list. Particularly, in the derivation of this temporal merge candidate, a scaled motion vector is derived based on co-located PU belonging to the picture which has the smallest POC difference with current picture within the given reference picture list. The reference picture list to be used for derivation of the co-located PU is explicitly signaled in the slice header.
In the co-located PU (Y) belonging to the reference frame, the position for the temporal candidate is selected between candidates C0 and C1, as depicted in
2.1.4 Constructing Additional Types of Merge Candidates
Besides spatio-temporal merge candidates, there are two additional types of merge candidates: combined bi-predictive merge candidate and zero merge candidate. Combined bi-predictive merge candidates are generated by utilizing spatio-temporal merge candidates. Combined bi-predictive merge candidate is used for B-Slice only. The combined bi-predictive candidates are generated by combining the first reference picture list motion parameters of an initial candidate with the second reference picture list motion parameters of another. If these two tuples provide different motion hypotheses, they will form a new bi-predictive candidate.
Zero motion candidates are inserted to fill the remaining entries in the merge candidates list and therefore hit the MaxNumMergeCand capacity. These candidates have zero spatial displacement and a reference picture index which starts from zero and increases every time a new zero motion candidate is added to the list. The number of reference frames used by these candidates is one and two for uni- and bi-directional prediction, respectively. In some embodiments, no redundancy check is performed on these candidates.
2.1.5 Examples of Motion Estimation Regions for Parallel Processing
To speed up the encoding process, motion estimation can be performed in parallel whereby the motion vectors for all prediction units inside a given region are derived simultaneously. The derivation of merge candidates from spatial neighborhood may interfere with parallel processing as one prediction unit cannot derive the motion parameters from an adjacent PU until its associated motion estimation is completed. To mitigate the trade-off between coding efficiency and processing latency, a motion estimation region (MER) may be defined. The size of the MER may be signaled in the picture parameter set (PPS) using the “log2_parallel_merge_level_minus2” syntax element. When a MER is defined, merge candidates falling in the same region are marked as unavailable and therefore not considered in the list construction.
The picture parameter set (PPS) raw byte sequence payload (RBSP) syntax is shown in Table 1, where log2_parallel_merge_level_minus2 plus 2 specifies the value of the variable Log2ParMrgLevel, which is used in the derivation process for luma motion vectors for merge mode and the derivation process for spatial merging candidates as specified in an existing video coding standard. The value of log2_parallel_merge_level_minus2 shall be in the range of 0 to CtbLog2SizeY−2, inclusive.
The variable Log2ParMrgLevel is derived as follows:
Log2ParMrgLevel=log2_parallel_merge_level_minus2+2
Note that the value of Log2ParMrgLevel indicates the built-in capability of parallel derivation of the merging candidate lists. For example, when Log2ParMrgLevel is equal to 6, the merging candidate lists for all the prediction units (PUs) and coding units (CUs) contained in a 64×64 block can be derived in parallel.
2.2 Embodiments of Motion Vector Prediction in AMVP Mode
Motion vector prediction exploits spatio-temporal correlation of motion vector with neighboring PUs, which is used for explicit transmission of motion parameters. It constructs a motion vector candidate list by firstly checking availability of left, above temporally neighboring PU positions, removing redundant candidates and adding zero vector to make the candidate list to be constant length. Then, the encoder can select the best predictor from the candidate list and transmit the corresponding index indicating the chosen candidate. Similarly with merge index signaling, the index of the best motion vector candidate is encoded using truncated unary.
2.2.1 Examples of Constructing Motion Vector Prediction Candidates
In motion vector prediction, two types of motion vector candidates are considered: spatial motion vector candidate and temporal motion vector candidate. For spatial motion vector candidate derivation, two motion vector candidates are eventually derived based on motion vectors of each PU located in five different positions as previously shown in
For temporal motion vector candidate derivation, one motion vector candidate is selected from two candidates, which are derived based on two different co-located positions. After the first list of spatio-temporal candidates is made, duplicated motion vector candidates in the list are removed. If the number of potential candidates is larger than two, motion vector candidates whose reference picture index within the associated reference picture list is larger than 1 are removed from the list. If the number of spatio-temporal motion vector candidates is smaller than two, additional zero motion vector candidates is added to the list.
2.2.2 Constructing Spatial Motion Vector Candidates
In the derivation of spatial motion vector candidates, a maximum of two candidates are considered among five potential candidates, which are derived from PUs located in positions as previously shown in
The no-spatial-scaling cases are checked first followed by the cases that allow spatial scaling. Spatial scaling is considered when the POC is different between the reference picture of the neighbouring PU and that of the current PU regardless of reference picture list. If all PUs of left candidates are not available or are intra coded, scaling for the above motion vector is allowed to help parallel derivation of left and above MV candidates. Otherwise, spatial scaling is not allowed for the above motion vector.
As shown in the example in
2.2.3 Constructing Temporal Motion Vector Candidates
Apart from the reference picture index derivation, all processes for the derivation of temporal merge candidates are the same as for the derivation of spatial motion vector candidates (as shown in the example in
2.2.4 Signaling of Merge/AMVP Information
For the AMVP mode, four parts may be signalled in the bitstream, e.g., prediction direction, reference index, MVD and my predictor candidate index, which are described in the context of the syntax shown in Table 2-4. While for the merge mode, only a merge index may need to be signalled.
The corresponding semantics include:
five_minus_max_num_merge_cand specifies the maximum number of merging MVP candidates supported in the slice subtracted from 5. The maximum number of merging MVP candidates, MaxNumMergeCand is derived as follows:
MaxNumMergeCand=5−five_minus_max_num_merge_cand
The value of MaxNumMergeCand shall be in the range of 1 to 5, inclusive.
merge_flag[x0][y0] specifies whether the inter prediction parameters for the current prediction unit are inferred from a neighboring inter-predicted partition. The array indices x0, y0 specify the location (x0, y0) of the top-left luma sample of the considered prediction block relative to the top-left luma sample of the picture.
When merge_flag[x0][y0] is not present, it is inferred as follows:
merge_idx[x0][y0] specifies the merging candidate index of the merging candidate list where x0, y0 specify the location (x0, y0) of the top-left luma sample of the considered prediction block relative to the top-left luma sample of the picture.
3. Example of Inter Prediction Methods in Joint Exploration Model (JEM)
In some embodiments, future video coding technologies are explored using a reference software known as the Joint Exploration Model (JEM). In JEM, sub-block based prediction is adopted in several coding tools, such as affine prediction, alternative temporal motion vector prediction (ATMVP), spatial-temporal motion vector prediction (STMVP), bi-directional optical flow (BIO), Frame-Rate Up Conversion (FRUC), Locally Adaptive Motion Vector Resolution (LAMVR), Overlapped Block Motion Compensation (OBMC), Local Illumination Compensation (LIC), and Decoder-side Motion Vector Refinement (DMVR).
3.1 Examples of Sub-CU Based Motion Vector Prediction
In the JEM with quadtrees plus binary trees (QTBT), each CU can have at most one set of motion parameters for each prediction direction. In some embodiments, two sub-CU level motion vector prediction methods are considered in the encoder by splitting a large CU into sub-CUs and deriving motion information for all the sub-CUs of the large CU. Alternative temporal motion vector prediction (ATMVP) method allows each CU to fetch multiple sets of motion information from multiple blocks smaller than the current CU in the collocated reference picture. In spatial-temporal motion vector prediction (STMVP) method motion vectors of the sub-CUs are derived recursively by using the temporal motion vector predictor and spatial neighbouring motion vector. In some embodiments, and to preserve more accurate motion field for sub-CU motion prediction, the motion compression for the reference frames may be disabled.
3.1.1 Examples of Alternative Temporal Motion Vector Prediction (ATMVP)
In the ATMVP method, the temporal motion vector prediction (TMVP) method is modified by fetching multiple sets of motion information (including motion vectors and reference indices) from blocks smaller than the current CU.
In the first step, a reference picture 1850 and the corresponding block is determined by the motion information of the spatial neighboring blocks of the current CU 1800. To avoid the repetitive scanning process of neighboring blocks, the first merge candidate in the merge candidate list of the current CU 1800 is used. The first available motion vector as well as its associated reference index are set to be the temporal vector and the index to the motion source picture. This way, the corresponding block may be more accurately identified, compared with TMVP, wherein the corresponding block (sometimes called collocated block) is always in a bottom-right or center position relative to the current CU.
In one example, if the first merge candidate is from the left neighboring block (i.e., A1 in
In the second step, a corresponding block of the sub-CU 1851 is identified by the temporal vector in the motion source picture 1850, by adding to the coordinate of the current CU the temporal vector. For each sub-CU, the motion information of its corresponding block (e.g., the smallest motion grid that covers the center sample) is used to derive the motion information for the sub-CU. After the motion information of a corresponding N×N block is identified, it is converted to the motion vectors and reference indices of the current sub-CU, in the same way as TMVP of HEVC, wherein motion scaling and other procedures apply. For example, the decoder checks whether the low-delay condition (e.g. the POCs of all reference pictures of the current picture are smaller than the POC of the current picture) is fulfilled and possibly uses motion vector MVx (e.g., the motion vector corresponding to reference picture list X) to predict motion vector MVy (e.g., with X being equal to 0 or 1 and Y being equal to 1−X) for each sub-CU.
3.1.2 Examples of Spatial-Temporal Motion Vector Prediction (STMVP)
In the STMVP method, the motion vectors of the sub-CUs are derived recursively, following raster scan order.
The motion derivation for sub-CU A starts by identifying its two spatial neighbors. The first neighbor is the N×N block above sub-CU A 2001 (block c 2013). If this block c (2013) is not available or is intra coded the other N×N blocks above sub-CU A (2001) are checked (from left to right, starting at block c 2013). The second neighbor is a block to the left of the sub-CU A 2001 (block b 2012). If block b (2012) is not available or is intra coded other blocks to the left of sub-CU A 2001 are checked (from top to bottom, staring at block b 2012). The motion information obtained from the neighboring blocks for each list is scaled to the first reference frame for a given list. Next, temporal motion vector predictor (TMVP) of sub-block A 2001 is derived by following the same procedure of TMVP derivation as specified in HEVC. The motion information of the collocated block at block D 2004 is fetched and scaled accordingly. Finally, after retrieving and scaling the motion information, all available motion vectors are averaged separately for each reference list. The averaged motion vector is assigned as the motion vector of the current sub-CU.
3.1.3 Examples of Sub-CU Motion Prediction Mode Signaling
In some embodiments, the sub-CU modes are enabled as additional merge candidates and there is no additional syntax element required to signal the modes. Two additional merge candidates are added to merge candidates list of each CU to represent the ATMVP mode and STMVP mode. In other embodiments, up to seven merge candidates may be used, if the sequence parameter set indicates that ATMVP and STMVP are enabled. The encoding logic of the additional merge candidates is the same as for the merge candidates in the HM, which means, for each CU in P or B slice, two more RD checks may be needed for the two additional merge candidates. In some embodiments, e.g., JEM, all bins of the merge index are context coded by CABAC (Context-based Adaptive Binary Arithmetic Coding). In other embodiments, e.g., HEVC, only the first bin is context coded and the remaining bins are context by-pass coded.
3.2 Examples of Adaptive Motion Vector Difference Resolution
In some embodiments, motion vector differences (MVDs) (between the motion vector and predicted motion vector of a PU) are signalled in units of quarter luma samples when use_integer_mv_flag is equal to 0 in the slice header. In the JEM, a locally adaptive motion vector resolution (LAMVR) is introduced. In the JEM, MVD can be coded in units of quarter luma samples, integer luma samples or four luma samples. The MVD resolution is controlled at the coding unit (CU) level, and MVD resolution flags are conditionally signalled for each CU that has at least one non-zero MVD components.
For a CU that has at least one non-zero MVD components, a first flag is signalled to indicate whether quarter luma sample MV precision is used in the CU. When the first flag (equal to 1) indicates that quarter luma sample MV precision is not used, another flag is signalled to indicate whether integer luma sample MV precision or four luma sample MV precision is used.
When the first MVD resolution flag of a CU is zero, or not coded for a CU (meaning all MVDs in the CU are zero), the quarter luma sample MV resolution is used for the CU. When a CU uses integer-luma sample MV precision or four-luma-sample MV precision, the MVPs in the AMVP candidate list for the CU are rounded to the corresponding precision.
In the encoder, CU-level RD checks are used to determine which MVD resolution is to be used for a CU. That is, the CU-level RD check is performed three times for each MVD resolution. To accelerate encoder speed, the following encoding schemes are applied in the JEM:
In JEM, the procedure is similar to the HEVC design. However, when the current block chooses a lower precision of MVs (e.g., integer-precision), rounding operations may be applied. In the current implementation, after selecting the 2 candidates from spatial positions, if both are available, these two are rounded, followed by pruning.
3.3 Examples of Pattern Matched Motion Vector Derivation (PMMVD)
The PMMVD mode is a special merge mode based on the Frame-Rate Up Conversion (FRUC) method. With this mode, motion information of a block is not signaled but derived at decoder side.
A FRUC flag can be signaled for a CU when its merge flag is true. When the FRUC flag is false, a merge index can be signaled and the regular merge mode is used. When the FRUC flag is true, an additional FRUC mode flag can be signaled to indicate which method (e.g., bilateral matching or template matching) is to be used to derive motion information for the block.
At the encoder side, the decision on whether using FRUC merge mode for a CU is based on RD cost selection as done for normal merge candidate. For example, multiple matching modes (e.g., bilateral matching and template matching) are checked for a CU by using RD cost selection. The one leading to the minimal cost is further compared to other CU modes. If a FRUC matching mode is the most efficient one, FRUC flag is set to true for the CU and the related matching mode is used.
Typically, motion derivation process in FRUC merge mode has two steps: a CU-level motion search is first performed, then followed by a Sub-CU level motion refinement. At CU level, an initial motion vector is derived for the whole CU based on bilateral matching or template matching. First, a list of MV candidates is generated and the candidate that leads to the minimum matching cost is selected as the starting point for further CU level refinement. Then a local search based on bilateral matching or template matching around the starting point is performed. The MV results in the minimum matching cost is taken as the MV for the whole CU. Subsequently, the motion information is further refined at sub-CU level with the derived CU motion vectors as the starting points.
For example, the following derivation process is performed for a W×H CU motion information derivation. At the first stage, MV for the whole W×H CU is derived. At the second stage, the CU is further split into M×M sub-CUs. The value of M is calculated as in Eq. (3), D is a predefined splitting depth which is set to 3 by default in the JEM. Then the MV for each sub-CU is derived.
The MV candidate set at CU level can include the following: (1) original AMVP candidates if the current CU is in AMVP mode, (2) all merge candidates, (3) several MVs in the interpolated MV field (described later), and top and left neighboring motion vectors.
When using bilateral matching, each valid MV of a merge candidate can be used as an input to generate a MV pair with the assumption of bilateral matching. For example, one valid MV of a merge candidate is (MVa, refa) at reference list A. Then the reference picture refb of its paired bilateral MV is found in the other reference list B so that refa and refb are temporally at different sides of the current picture. If such a refb is not available in reference list B, refb is determined as a reference which is different from refa and its temporal distance to the current picture is the minimal one in list B. After refb is determined, MVb is derived by scaling MVa based on the temporal distance between the current picture and refa, refb.
In some implementations, four MVs from the interpolated MV field can also be added to the CU level candidate list. More specifically, the interpolated MVs at the position (0, 0), (W/2, 0), (0, H/2) and (W/2, H/2) of the current CU are added. When FRUC is applied in AMVP mode, the original AMVP candidates are also added to CU level MV candidate set. In some implementations, at the CU level, 15 MVs for AMVP CUs and 13 MVs for merge CUs can be added to the candidate list.
The MV candidate set at sub-CU level includes an MV determined from a CU-level search, (2) top, left, top-left and top-right neighboring MVs, (3) scaled versions of collocated MVs from reference pictures, (4) one or more ATMVP candidates (e.g., up to four), and (5) one or more STMVP candidates (e.g., up to four). The scaled MVs from reference pictures are derived as follows. The reference pictures in both lists are traversed. The MVs at a collocated position of the sub-CU in a reference picture are scaled to the reference of the starting CU-level MV. ATMVP and STMVP candidates can be the four first ones. At the sub-CU level, one or more MVs (e.g., up to 17) are added to the candidate list.
Generation of an interpolated MV field. Before coding a frame, interpolated motion field is generated for the whole picture based on unilateral ME. Then the motion field may be used later as CU level or sub-CU level MV candidates.
In some embodiments, the motion field of each reference pictures in both reference lists is traversed at 4×4 block level.
Interpolation and matching cost. When a motion vector points to a fractional sample position, motion compensated interpolation is needed. To reduce complexity, bi-linear interpolation instead of regular 8-tap HEVC interpolation can be used for both bilateral matching and template matching.
The calculation of matching cost is a bit different at different steps. When selecting the candidate from the candidate set at the CU level, the matching cost can be the absolute sum difference (SAD) of bilateral matching or template matching. After the starting MV is determined, the matching cost C of bilateral matching at sub-CU level search is calculated as follows:
C=SAD+w·(|MVx−MVxs|+|MVy−MVys|) Eq. (4)
Here, w is a weighting factor. In some embodiments, w can be empirically set to 4. MV and MVs indicate the current MV and the starting MV, respectively. SAD may still be used as the matching cost of template matching at sub-CU level search.
In FRUC mode, MV is derived by using luma samples only. The derived motion will be used for both luma and chroma for MC inter prediction. After MV is decided, final MC is performed using 8-taps interpolation filter for luma and 4-taps interpolation filter for chroma.
MV refinement is a pattern based MV search with the criterion of bilateral matching cost or template matching cost. In the JEM, two search patterns are supported—an unrestricted center-biased diamond search (UCBDS) and an adaptive cross search for MV refinement at the CU level and sub-CU level, respectively. For both CU and sub-CU level MV refinement, the MV is directly searched at quarter luma sample MV accuracy, and this is followed by one-eighth luma sample MV refinement. The search range of MV refinement for the CU and sub-CU step are set equal to 8 luma samples.
In the bilateral matching merge mode, bi-prediction is applied because the motion information of a CU is derived based on the closest match between two blocks along the motion trajectory of the current CU in two different reference pictures. In the template matching merge mode, the encoder can choose among uni-prediction from list° , uni-prediction from list1, or bi-prediction for a CU. The selection ca be based on a template matching cost as follows:
If costBi<=factor*min(cost0, cost1)
Here, cost0 is the SAD of list0 template matching, cost1 is the SAD of list1 template matching and costBi is the SAD of bi-prediction template matching. For example, when the value of factor is equal to 1.25, it means that the selection process is biased toward bi-prediction. The inter prediction direction selection can be applied to the CU-level template matching process.
3.4 Examples of Decoder-Side Motion Vector Refinement (DMVR)
In a bi-prediction operation, for the prediction of one block region, two prediction blocks, formed using a motion vector (MV) of list0 and a MV of list1, respectively, are combined to form a single prediction signal. In the decoder-side motion vector refinement (DMVR) method, the two motion vectors of the bi-prediction are further refined by a bilateral template matching process. The bilateral template matching applied in the decoder to perform a distortion-based search between a bilateral template and the reconstruction samples in the reference pictures in order to obtain a refined MV without transmission of additional motion information.
In DMVR, a bilateral template is generated as the weighted combination (i.e. average) of the two prediction blocks, from the initial MV0 of list0 and MV1 of list1, respectively, as shown in
DMVR is applied for the merge mode of bi-prediction with one MV from a reference picture in the past and another from a reference picture in the future, without the transmission of additional syntax elements. In the JEM, when LIC, affine motion, FRUC, or sub-CU merge candidate is enabled for a CU, DMVR is not applied.
3.5 Local Illumination Compensation
Local Illumination Compensation (IC) is based on a linear model for illumination changes, using a scaling factor a and an offset b. And it is enabled or disabled adaptively for each inter-mode coded coding unit (CU).
When IC applies for a CU, a least square error method is employed to derive the parameters a and b by using the neighbouring samples of the current CU and their corresponding reference samples. More specifically, as illustrated in
When a CU is coded with merge mode, the IC flag is copied from neighbouring blocks, in a way similar to motion information copy in merge mode; otherwise, an IC flag is signalled for the CU to indicate whether LIC applies or not.
When IC is enabled for a picture, additional CU level RD check is needed to determine whether LIC is applied or not for a CU. When IC is enabled for a CU, mean-removed sum of absolute difference (MR-SAD) and mean-removed sum of absolute Hadamard-transformed difference (MR-SATD) are used, instead of SAD and SATD, for integer pel motion search and fractional pel motion search, respectively.
To reduce the encoding complexity, the following encoding scheme is applied in the JEM. IC is disabled for the entire picture when there is no obvious illumination change between a current picture and its reference pictures. To identify this situation, histograms of a current picture and every reference picture of the current picture are calculated at the encoder. If the histogram difference between the current picture and every reference picture of the current picture is smaller than a given threshold, IC is disabled for the current picture; otherwise, IC is enabled for the current picture.
3.6 Examples of Merge/Skip Mode with Bilateral Matching Refinement
A merge candidate list is first constructed by inserting the motion vectors and reference indices of the spatial neighboring and temporal neighboring blocks into the candidate list with redundancy checking until the number of the available candidates reaches the maximum candidate size of 19. The merge candidate list for the merge/skip mode is constructed by inserting spatial candidates, temporal candidates, affine candidates, advanced temporal MVP (ATMVP) candidate, spatial temporal MVP (STMVP) candidate and the additional candidates as used in HEVC (Combined candidates and Zero candidates) according to a pre-defined insertion order, and in the context of the numbered blocks shown in
It may be noted that IC flags are also inherited from merge candidates except for STMVP and affine. Moreover, for the first four spatial candidates, the bi-prediction ones are inserted before the ones with uni-prediction.
4. Examples of Binarization Methods and Merge Index Coding
In some embodiments, several binarization methods could be selected. For one syntax element, the related value should be firstly binarized to a bin string based on the distribution. For each bin, it may be coded with context or bypass coding methods.
4.1 Exemplary Unary and Truncated Unary (TU) Binarization Process
For each unsigned integer valued symbol x≥0 the unary code word in CABAC consists of x “1” bits plus a terminating “0” bit. The truncated unary (TU) code is only defined for x with 0≤x≤S, where for x<S the code is given by the unary code, whereas for x=S the terminating “0” bit is neglected such that the TU code of x=S is given by codeword consisting of x “1” bits only.
4.2 Exemplary K-th Order Exp-Golomb (EGk) Binarization Process
For the EGk binarization the number of symbols having the same code length of k+2·1(x)+1 is geometrically growing. By inverting Shannon's relationship between ideal code length and symbol probability, we can e.g. easily deduce that EG0 is the optimal code for a pdf p(x)=1/2·(x+1)−2 with x≥0. This implies that for an appropriately chosen parameter k the EGk code represents a fairly good first-order approximation of the ideal prefix-free code for tails of typically observed pdfs.
4.3 Exemplary Truncated Rice (TR) Binarization Process
Input to this process is a request for a TR binarization, cMax, and cRiceParam.
Output of this process is the TR binarization associating each value symbolVal with a corresponding bin string.
A TR bin string is a concatenation of a prefix bin string and, when present, a suffix bin string.
For the derivation of the prefix bin string, the following applies:
When cMax is greater than symbolVal and cRiceParam is greater than 0, the suffix of the TR bin string is present and it is derived as follows:
Note that for the input parameter cRiceParam=0 the TR binarization is exactly a truncated unary binarization and it is always invoked with a cMax value equal to the largest possible value of the syntax element being decoded.
4.4 Exemplary Fixed-Length (FL) Binarization Process
Inputs to this process are a request for a FL binarization and cMax.
Output of this process is the FL binarization associating each value symbolVal with a corresponding bin string.
FL binarization is constructed by using the fixedLength-bit unsigned integer bin string of the symbol value symbolVal, where fixedLength=Ceil(Log2(cMax+1)). The indexing of bins for the FL binarization is such that the binIdx=0 relates to the most significant bit with increasing values of binIdx towards the least significant bit.
4.5 Exemplary Coding of Merge_idx
As specified in the HEVC specification, the merge index is firstly binarized to a bin string if the total number of allowed merge candidate is larger than 1.
TR with cRiceParam equal to 0, i.e., TU is used. The first bin of merge_idx is coded with one context and the remaining bins, if exist, are coded with bypass.
5 Example Embodiments of Intra Prediction in JEM
5.1 Examples of Intra Mode Coding with 67 Intra Prediction Modes
To capture the arbitrary edge directions presented in natural video, the number of directional intra modes is extended from 33, as used in HEVC, to 65. The additional directional modes are depicted as light grey dotted arrows in
5.2 Examples of Luma Intra Mode Coding
In JEM, the total number of intra prediction modes has been increased from 35 in HEVC to 67.
To accommodate the increased number of directional intra modes, an intra mode coding method with 6 Most Probable Modes (MPMs) is used. Two major technical aspects are involved: 1) the derivation of 6 MPMs, and 2) entropy coding of 6 MPMs and non-MPM modes.
In the JEM, the modes included into the MPM lists are classified into three groups:
Five neighbouring intra prediction modes are used to form the MPM list. Those locations of the 5 neighbouring blocks are the same as those used in the merge mode, i.e., left (L), above (A), below-left (BL), above-right (AR), and above-left (AL) as shown in
If the MPM list is not full (i.e., there are less than 6 MPM candidates in the list), derived modes are added; these intra modes are obtained by adding −1 or +1 to the angular modes that are already included in the MPM list. Such additional derived modes are not generated from the non-angular modes (DC or planar).
Finally, if the MPM list is still not complete, the default modes are added in the following order: vertical, horizontal, mode 2, and diagonal mode. As a result of this process, a unique list of 6 MPM modes is generated.
For entropy coding of the selected mode using the 6 MPMs, a truncated unary binarization is used. The first three bins are coded with contexts that depend on the MPM mode related to the bin currently being signalled. The MPM mode is classified into one of three categories: (a) modes that are predominantly horizontal (i.e., the MPM mode number is less than or equal to the mode number for the diagonal direction), (b) modes that are predominantly vertical (i.e., the MPM mode is greater than the mode number for the diagonal direction), and (c) the non-angular (DC and planar) class. Accordingly, three contexts are used to signal the MPM index based on this classification.
The coding for selection of the remaining 61 non-MPMs is done as follows. The 61 non-MPMs are first divided into two sets: a selected mode set and a non-selected mode set. The selected modes set contains 16 modes and the rest (45 modes) are assigned to the non-selected modes set. The mode set that the current mode belongs to is indicated in the bitstream with a flag. If the mode to be indicated is within the selected modes set, the selected mode is signalled with a 4-bit fixed-length code, and if the mode to be indicated is from the non-selected set, the selected mode is signalled with a truncated binary code. The selected modes set is generated by sub-sampling the 61 non-MPM modes as follows:
At the encoder side, the similar two-stage intra mode decision process of HM is used. In the first stage, i.e., the intra mode pre-selection stage, a lower complexity Sum of Absolute Transform Difference (SATD) cost is used to pre-select N intra prediction modes from all the available intra modes. In the second stage, a higher complexity R-D cost selection is further applied to select one intra prediction mode from the N candidates. However, when 67 intra prediction modes is applied, since the total number of available modes is roughly doubled, the complexity of the intra mode pre-selection stage will also be increased if the same encoder mode decision process of HM is directly used. To minimize the encoder complexity increase, a two-step intra mode pre-selection process is performed. At the first step, N (N depends on intra prediction block size) modes are selected from the original 35 intra prediction modes (indicated by black solid arrows in
5.3 Examples of Chroma Intra Mode Coding
In the JEM, a total of 11 intra modes are allowed for chroma CB coding. Those modes include 5 traditional intra modes and 6 cross-component linear model modes. The list of chroma mode candidates includes the following three parts:
A pruning process is applied whenever a new chroma intra mode is added to the candidate list. The non-CCLM chroma intra mode candidates list size is then trimmed to 5. For the mode signalling, a flag is first signalled to indicate whether one of the CCLM modes or one of the traditional chroma intra prediction mode is used. Then a few more flags may follow to specify the exact chroma prediction mode used for the current chroma CBs.
6. Examples of Existing Implementations
The current HEVC design could take the correlation of current block its neighbouring blocks (next to the current block) to better code the motion information. However, it is possible that that the neighbouring blocks correspond to different objects with different motion trajectories. In this case, prediction from its neighbouring blocks is not efficient.
Prediction from motion information of non-adjacent blocks could bring additional coding gain with the cost of storing all the motion information (typically on 4×4 level) into cache which significantly increase the complexity for hardware implementation.
Unary binarization method works fine for smaller number of allowed merge candidates. However, when the total number of allowed candidate becomes larger, the unary binarization may be sub-optimal.
The HEVC design of AMVP candidate list construction process only invokes pruning among two spatial AMVP candidates. Full pruning (each of the available candidate compared to all others) is not utilized since there is negligible coding loss due to limited pruning. However, if there are more AMVP candidates available, pruning becomes important. Also, when LAMVR is enabled, how to construct the AVMP candidate list should be studied.
7. Example Methods for LUT-Based Motion Vector Prediction
Embodiments of the presently disclosed technology overcome the drawbacks of existing implementations, thereby providing video coding with higher coding efficiencies. To overcome the drawbacks of existing implementations, LUT-based motion vector prediction techniques using one or more tables (e.g., look up tables) with at least one motion candidate stored to predict motion information of a block can be implemented in various embodiments to provide video coding with higher coding efficiencies. A look up table is an example of a table which can be used to include motion candidates to predict motion information of a block and other implementations are also possible. Each LUT can include one or more motion candidates, each associated with corresponding motion information. Motion information of a motion candidate can include partial or all of the prediction direction, reference indices/pictures, motion vectors, LIC flags, affine flags, Motion Vector Derivation (MVD) precisions, and/or MVD values. Motion information may further include the block position information to indicate from which the motion information is coming.
The LUT-based motion vector prediction based on the disclosed technology, which may enhance both existing and future video coding standards, is elucidated in the following examples described for various implementations. Because the LUTs allow the encoding/decoding process to be performed based on historical data (e.g., the blocks that have been processed), the LUT-based motion vector prediction can also be referred to as History-based Motion Vector Prediction (HMVP) method. In the LUT-based motion vector prediction method, one or multiple tables with motion information from previously coded blocks are maintained during the encoding/decoding process. These motion candidates stored in the LUTs are named HMVP candidates. During the encoding/decoding of one block, the associated motion information in LUTs may be added to the motion candidate lists (e.g., merge/AMVP candidate lists), and after encoding/decoding one block, LUTs may be updated. The updated LUTs are then used to code the subsequent blocks. Thus, the updating of motion candidates in the LUTs are based on the encoding/decoding order of blocks.
The LUT-based motion vector prediction based on the disclosed technology, which may enhance both existing and future video coding standards, is elucidated in the following examples described for various implementations. The examples of the disclosed technology provided below explain general concepts, and are not meant to be interpreted as limiting. In an example, unless explicitly indicated to the contrary, the various features described in these examples may be combined.
With regard to terminology, the following examples an entry of a LUT is a motion candidate. The term motion candidate is used to indicate a set of motion information stored in a look up table. For conventional AMVP or merge modes, AMVP or merge candidates are used for storing the motion information. As will be described below, and in a non-limiting example, the notion of LUTs with motion candidates for motion vector prediction is extended to LUTs with intra prediction modes for intra mode coding, or extended to LUTs with illumination compensation parameters for IC parameter coding or extended to LUTs with filter parameters. The LUT based methods for motion candidates may be extended to other types of coding information, as described in this patent document, existing and future video coding standards.
Examples of Look-Up Tables
Example A: Each look up table may contain one or more motion candidates wherein each candidate is associated with its motion information.
In one example, the table size (e.g., the number of maximally allowed entries of motion candidates) and/or number of tables may depend on sequence resolution, largest coding unit size, size of merge candidate lists.
Update of Look Up Tables
Example B1: After coding a block with motion information (i.e., IntraBC mode, inter coded mode), one or multiple look up tables may be updated.
Example B2: If one block is located at a picture/slice/tile border, updating of look up tables may be always disallowed.
Example B3: Motion information of above LCU rows may be disabled to code the current LCU row.
Example B4: At the beginning of coding a slice/tile with a new temporal layer index, the number of available motion candidates may be reset to 0.
Example B5: The look up table may be continuously updated with one slice/tile/LCU row/slices with same temporal layer index.
Example B6: A LUT may be updated with motion information associated with the block when the block is coded with merge or AMVP mode.
Example B7: Before updating a LUT by adding a motion candidate obtained from a coded block, pruning may be applied.
Example B8: A LUT may be updated periodically.
Example C: Reordering of motion candidates in LUT may be applied.
Example D: Similar to the usage of LUTs with motion candidates for motion vector prediction, it is proposed that one or multiple LUTs may be constructed, and/or updated to store intra prediction modes from previously coded blocks and LUTs may be used for coding/decoding an intra-coded block.
8. Additional Embodiments for LUT-Based Motion Vector Prediction
A history-based MVP (HMVP) method is proposed wherein a HMVP candidate is defined as the motion information of a previously coded block. A table with multiple HMVP candidates is maintained during the encoding/decoding process. The table is emptied when a new slice is encountered. Whenever there is an inter-coded block, the associated motion information is added to the last entry of the table as a new HMVP candidate. The overall coding flow is depicted in
In one example, the table size is set to be L (e.g., L=16 or 6, or 44), which indicates up to L HMVP candidates may be added to the table.
In one embodiment (corresponding to example B1.g.i), if there are more than L HMVP candidates from the previously coded blocks, a First-In-First-Out (FIFO) rule is applied so that the table always contains the latest previously coded L motion candidates.
In another embodiment (corresponding to invention B1.g.iii), whenever adding a new motion candidate (such as the current block is inter-coded and non-affine mode), a redundancy checking process is applied firstly to identify whether there are identical or similar motion candidates in LUTs.
Some examples are depicted as follows:
HMVP candidates could be used in the merge candidate list construction process. All HMVP candidates from the last entry to the first entry (or the last K0 HMVP, e.g., K0 equal to 16 or 6) in the table are inserted after the TMVP candidate. Pruning is applied on the HMVP candidates. Once the total number of available merge candidates reaches the signaled maximally allowed merge candidates, the merge candidate list construction process is terminated. Alternatively, once the total number of added motion candidates reaches a given value, the fetching of motion candidates from LUTs is terminated.
Similarly, HMVP candidates could also be used in the AMVP candidate list construction process. The motion vectors of the last K1 HMVP candidates in the table are inserted after the TMVP candidate. Only HMVP candidates with the same reference picture as the AMVP target reference picture are used to construct the AMVP candidate list. Pruning is applied on the HMVP candidates. In one example, K1 is set to 4. In example of the coding flow for the LUT-based prediction methods is depicted in
The examples described above may be incorporated in the context of the methods described below, e.g., methods 3810, 3820, 3830, 3840 which may be implemented at a video decoder and/or video encoder.
9. Example Implementations of the Disclosed Technology
In some embodiments, the video coding and decoding methods may be implemented using an apparatus that is implemented on a hardware platform as described with respect to
Additional features and embodiments of the above-described methods/techniques are described below using a clause-based description format.
1. A video processing method, comprising: maintaining tables, wherein each table includes a set of motion candidates and each motion candidate is associated with corresponding motion information; performing a conversion between a first video block and a bitstream representation of a video including the first video block based on the tables; and updating, after performing of the conversion, zero or more tables, based on an update rule.
2. The method of clause 1, wherein the update rule disallows updating of tables for video blocks that are located at a picture or a slice or a tile border of the video.
3. A video processing method, comprising: maintaining tables, wherein each table includes a set of motion candidates and each motion candidate is associated with corresponding motion information; performing a conversion between a first video block and a bitstream representation of a video including the first video block based on the tables; and updating, after performing of the conversion, one or more tables, based on one or more video region in the video until an update termination criterion is met.
4. The method of clause 1 or 3, wherein a table is updated only within a slice, tile, Largest Coding Unit (LCU) row, or slices with same temporal layer index.
5. The method of clause 1 or 3, wherein a table is updated after performing the conversion on S video regions or after performing the conversion on a video region with a certain size, where S is an integer.
6. The method of clause 3, wherein the update termination criterion is met when a counter associated with a table that is being updated reaches a maximally allowed number.
7. The method of clause 3, wherein the update termination criterion is met when a counter associated with a table that is being updated reaches a pre-defined value.
8. The method of clause 7, wherein the pre-defined value is signaled in a Video Parameter Set (VPS), a Sequence Parameter Set (SPS), a Picture Parameter Set (PPS), a Slice header, a tile header, a Coding Tree Unit (CTU), a Coding Tree Block (CTB), a Coding Unit (CU), or a Prediction Unit (PU), or a video region covering multiple CTUs, multiple CTBs, multiple CUs, or multiple PUs.
9. The method of clause 1 or 3, wherein the update rule updates a table when a left-top coordinate (x, y) of the first video block satisfies a certain condition defined in the update rule.
10. The method of clause 9, wherein the table is updated when (x & M==0) && (y&M==0), where M is 2, 4, 8, 16, 32, or 64.
11. The method of clause 1 or 3, wherein the update rule updates a table after performing the conversion on S video blocks, where S is an integer not smaller than 1.
12. The method of clause 11, wherein the S video blocks are inter-coded blocks.
13. The method of clause 11, wherein the S video blocks are not coded with a sub-block based motion prediction or a sub-block based motion compensation method.
14. The method of clause 11, wherein the S video blocks are not coded with an affine mode or Alternative Temporal Motion Vector Prediction (ATMVP) mode.
15. A video processing method, comprising: maintaining one or more tables that include motion candidates, each motion candidate being associated with corresponding motion information; reordering motion candidates in at least one of the one or more tables; and performing, based on the reordered motion candidates in at least one table, a conversion between a first video block and a bitstream representation of a video including the first video block.
16. The method of clause 15, further comprising, based on the conversion, updating one or more tables.
17. A video processing method, comprising: maintaining one or more tables that include motion candidates, each motion candidate being associated with corresponding motion information; performing, based on one or more of the tables, a conversion between a first video block and a bitstream representation of a video including the first video block using the one or more tables; and updating one or more tables by adding an additional motion candidate to the table based on the conversion of the first video block and reordering of the motion candidates in the table.
18. The method of clause 15 or 17, further comprising: performing a conversion between a subsequent video block of the video and the bitstream representation of the video based on the reordered table.
19. The method of clause 17, wherein the reordering is performed after performing the conversion on a video unit including at least one of a Largest Coding Unit (LCU), LCU row, multiple LCUs.
20. The method of any one of clauses 1-19, wherein the performing of the conversion includes generating the bitstream representation from the first video block.
21. The method of any one of clauses 1-19, wherein the performing of the conversion includes generating the first video block from the bitstream representation.
22. The method of any one of clauses 1-21, wherein a motion candidate is associated with motion information including at least one of: a prediction direction, a reference picture index, motion vector values, an intensity compensation flag, an affine flag, a motion vector difference precision, or motion vector difference value.
23. The method of any one of clauses 1-14 and 16-22, wherein the updating of one or more tables includes updating one or more tables based on the motion information of the first video block after performing the conversion.
24. The method of clause 23, further comprising: performing a conversion between a subsequent video block of the video and the bitstream representation of the video based on the updated tables.
25. An apparatus comprising a processor and a non-transitory memory with instructions thereon, wherein the instructions upon execution by the processor, cause the processor to implement the method in any one of clauses 1 to 24.
26. A computer program product stored on a non-transitory computer readable media, the computer program product including program code for carrying out the method in any one of clauses 1 to 24.
From the foregoing, it will be appreciated that specific embodiments of the presently disclosed technology have been described herein for purposes of illustration, but that various modifications may be made without deviating from the scope of the invention. Accordingly, the presently disclosed technology is not limited except as by the appended claims.
Implementations of the subject matter and the functional operations described in this patent document can be implemented in various systems, digital electronic circuitry, or in computer software, firmware, or hardware, including the structures disclosed in this specification and their structural equivalents, or in combinations of one or more of them. Implementations of the subject matter described in this specification can be implemented as one or more computer program products, i.e., one or more modules of computer program instructions encoded on a tangible and non-transitory computer readable medium for execution by, or to control the operation of, data processing apparatus. The computer readable medium can be a machine-readable storage device, a machine-readable storage substrate, a memory device, a composition of matter effecting a machine-readable propagated signal, or a combination of one or more of them. The term “data processing unit” or “data processing apparatus” encompasses all apparatus, devices, and machines for processing data, including by way of example a programmable processor, a computer, or multiple processors or computers. The apparatus can include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more of them.
A computer program (also known as a program, software, software application, script, or code) can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program does not necessarily correspond to a file in a file system. A program can be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document), in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub programs, or portions of code). A computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.
The processes and logic flows described in this specification can be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output. The processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit).
Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read only memory or a random access memory or both. The essential elements of a computer are a processor for performing instructions and one or more memory devices for storing instructions and data. Generally, a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks. However, a computer need not have such devices. Computer readable media suitable for storing computer program instructions and data include all forms of nonvolatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices. The processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.
It is intended that the specification, together with the drawings, be considered exemplary only, where exemplary means an example. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Additionally, the use of “or” is intended to include “and/or”, unless the context clearly indicates otherwise.
While this patent document contains many specifics, these should not be construed as limitations on the scope of any invention or of what may be claimed, but rather as descriptions of features that may be specific to particular embodiments of particular inventions. Certain features that are described in this patent document in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.
Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Moreover, the separation of various system components in the embodiments described in this patent document should not be understood as requiring such separation in all embodiments.
Only a few implementations and examples are described and other implementations, enhancements and variations can be made based on what is described and illustrated in this patent document.
Number | Date | Country | Kind |
---|---|---|---|
PCT/CN2018/093663 | Jun 2018 | WO | international |
PCT/CN2018/093987 | Jul 2018 | WO | international |
PCT/CN2018/094929 | Jul 2018 | WO | international |
PCT/CN2018/101220 | Aug 2018 | WO | international |
This application is a continuation of U.S. application Ser. No. 16/998,258, filed on Aug. 20, 2020, which is a continuation of International Application No. PCT/IB2019/055593, filed on Jul. 1, 2019, which claims the priority to and benefits of International Patent Application No. PCT/CN2018/093663, filed on Jun. 29, 2018, International Patent Application No. PCT/CN2018/094929, filed on Jul. 7, 2018, International Patent Application No. PCT/CN2018/101220, filed on Aug. 18, 2018, and International Patent Application No. PCT/CN2018/093987, filed on Jul. 2, 2018. All the aforementioned patent applications are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
7023922 | Xu et al. | Apr 2006 | B1 |
7653134 | Xu et al. | Jan 2010 | B2 |
7675976 | Xu et al. | Mar 2010 | B2 |
7680189 | Xu et al. | Mar 2010 | B2 |
7680190 | Xu et al. | Mar 2010 | B2 |
7801220 | Zhang et al. | Sep 2010 | B2 |
8804816 | Li et al. | Aug 2014 | B2 |
9350970 | Kang et al. | May 2016 | B2 |
9445076 | Zhang et al. | Sep 2016 | B2 |
9485503 | Zhang et al. | Nov 2016 | B2 |
9503702 | Chen et al. | Nov 2016 | B2 |
9621888 | Jeon et al. | Apr 2017 | B2 |
9667996 | Chen et al. | May 2017 | B2 |
9699450 | Zhang et al. | Jul 2017 | B2 |
9762882 | Zhang et al. | Sep 2017 | B2 |
9762900 | Park et al. | Sep 2017 | B2 |
9807431 | Hannuksela et al. | Oct 2017 | B2 |
9872016 | Chuang et al. | Jan 2018 | B2 |
9900615 | Li et al. | Feb 2018 | B2 |
9918102 | Kohn et al. | Mar 2018 | B1 |
9967592 | Zhang et al. | May 2018 | B2 |
9998727 | Zhang et al. | Jun 2018 | B2 |
10021414 | Seregin et al. | Jul 2018 | B2 |
10085041 | Zhang et al. | Sep 2018 | B2 |
10116934 | Zan et al. | Oct 2018 | B2 |
10154286 | He et al. | Dec 2018 | B2 |
10158876 | Chen et al. | Dec 2018 | B2 |
10200709 | Chen et al. | Feb 2019 | B2 |
10200711 | Li et al. | Feb 2019 | B2 |
10230980 | Liu et al. | Mar 2019 | B2 |
10271064 | Chien et al. | Apr 2019 | B2 |
10277909 | Ye et al. | Apr 2019 | B2 |
10284869 | Han et al. | May 2019 | B2 |
10306225 | Zhang et al. | May 2019 | B2 |
10349083 | Chen et al. | Jul 2019 | B2 |
10362330 | Li et al. | Jul 2019 | B1 |
10368072 | Zhang et al. | Jul 2019 | B2 |
10390029 | Ye et al. | Aug 2019 | B2 |
10440378 | Xu et al. | Oct 2019 | B1 |
10448010 | Chen et al. | Oct 2019 | B2 |
10462439 | He et al. | Oct 2019 | B2 |
10491902 | Xu et al. | Nov 2019 | B1 |
10491917 | Chen et al. | Nov 2019 | B2 |
10531118 | Li et al. | Jan 2020 | B2 |
10560718 | Lee et al. | Feb 2020 | B2 |
10595035 | Karczewicz et al. | Mar 2020 | B2 |
10681383 | Ye et al. | Jun 2020 | B2 |
10687077 | Zhang et al. | Jun 2020 | B2 |
10694204 | Chen et al. | Jun 2020 | B2 |
10701366 | Chen et al. | Jun 2020 | B2 |
10771811 | Liu et al. | Sep 2020 | B2 |
10778997 | Zhang et al. | Sep 2020 | B2 |
10778999 | Li et al. | Sep 2020 | B2 |
10805650 | Wang et al. | Oct 2020 | B2 |
10812791 | Chien et al. | Oct 2020 | B2 |
10841615 | He et al. | Nov 2020 | B2 |
10873756 | Zhang et al. | Nov 2020 | B2 |
10911769 | Zhang et al. | Feb 2021 | B2 |
11134243 | Zhang et al. | Sep 2021 | B2 |
11134244 | Zhang et al. | Sep 2021 | B2 |
11134267 | Zhang et al. | Sep 2021 | B2 |
11140383 | Zhang et al. | Oct 2021 | B2 |
11140385 | Zhang et al. | Oct 2021 | B2 |
11146785 | Zhang et al. | Oct 2021 | B2 |
11146786 | Zhang et al. | Oct 2021 | B2 |
11153557 | Zhang et al. | Oct 2021 | B2 |
11153558 | Zhang et al. | Oct 2021 | B2 |
11153559 | Zhang et al. | Oct 2021 | B2 |
11159787 | Zhang et al. | Oct 2021 | B2 |
11159807 | Zhang et al. | Oct 2021 | B2 |
11159817 | Zhang et al. | Oct 2021 | B2 |
11245892 | Zhang et al. | Feb 2022 | B2 |
11412211 | Lee | Aug 2022 | B2 |
11463685 | Zhang et al. | Oct 2022 | B2 |
11528500 | Zhang et al. | Dec 2022 | B2 |
11528501 | Zhang et al. | Dec 2022 | B2 |
11589071 | Zhang et al. | Feb 2023 | B2 |
11641483 | Zhang et al. | May 2023 | B2 |
11695921 | Zhang et al. | Jul 2023 | B2 |
11706406 | Zhang et al. | Jul 2023 | B2 |
20050105812 | Molino et al. | May 2005 | A1 |
20060233243 | Ridge et al. | Oct 2006 | A1 |
20070025444 | Okada et al. | Feb 2007 | A1 |
20090180538 | Visharam et al. | Jul 2009 | A1 |
20100080296 | Lee et al. | Apr 2010 | A1 |
20110109964 | Kim et al. | May 2011 | A1 |
20110116546 | Guo et al. | May 2011 | A1 |
20110170600 | Ishikawa | Jul 2011 | A1 |
20110194608 | Rusert et al. | Aug 2011 | A1 |
20110194609 | Rusert et al. | Aug 2011 | A1 |
20110200107 | Ryu | Aug 2011 | A1 |
20120082229 | Su et al. | Apr 2012 | A1 |
20120134415 | Lin et al. | May 2012 | A1 |
20120195366 | Liu et al. | Aug 2012 | A1 |
20120195368 | Chien et al. | Aug 2012 | A1 |
20120257678 | Zhou et al. | Oct 2012 | A1 |
20120263231 | Zhou | Oct 2012 | A1 |
20120287999 | Li et al. | Nov 2012 | A1 |
20120300846 | Sugio et al. | Nov 2012 | A1 |
20120307903 | Sugio et al. | Dec 2012 | A1 |
20120320984 | Zhou | Dec 2012 | A1 |
20130064301 | Guo et al. | Mar 2013 | A1 |
20130070855 | Zheng et al. | Mar 2013 | A1 |
20130094580 | Zhou et al. | Apr 2013 | A1 |
20130101041 | Fishwick et al. | Apr 2013 | A1 |
20130114717 | Zheng et al. | May 2013 | A1 |
20130114723 | Bici et al. | May 2013 | A1 |
20130128982 | Kim et al. | May 2013 | A1 |
20130163668 | Chen et al. | Jun 2013 | A1 |
20130188013 | Chen et al. | Jul 2013 | A1 |
20130188715 | Seregin et al. | Jul 2013 | A1 |
20130208799 | Srinivasamurthy et al. | Aug 2013 | A1 |
20130243093 | Chen et al. | Sep 2013 | A1 |
20130265388 | Zhang et al. | Oct 2013 | A1 |
20130272377 | Karczewicz et al. | Oct 2013 | A1 |
20130272410 | Seregin et al. | Oct 2013 | A1 |
20130272412 | Seregin et al. | Oct 2013 | A1 |
20130272413 | Seregin et al. | Oct 2013 | A1 |
20130301734 | Gisquet et al. | Nov 2013 | A1 |
20130336406 | Zhang et al. | Dec 2013 | A1 |
20140064372 | Laroche et al. | Mar 2014 | A1 |
20140078251 | Kang et al. | Mar 2014 | A1 |
20140086327 | Ugur et al. | Mar 2014 | A1 |
20140105295 | Shiodera et al. | Apr 2014 | A1 |
20140105302 | Takehara et al. | Apr 2014 | A1 |
20140126629 | Park et al. | May 2014 | A1 |
20140133558 | Seregin et al. | May 2014 | A1 |
20140161186 | Zhang et al. | Jun 2014 | A1 |
20140185685 | Asaka et al. | Jul 2014 | A1 |
20140219356 | Nishitani et al. | Aug 2014 | A1 |
20140241434 | Lin et al. | Aug 2014 | A1 |
20140286427 | Fukushima et al. | Sep 2014 | A1 |
20140286433 | He et al. | Sep 2014 | A1 |
20140334557 | Schierl et al. | Nov 2014 | A1 |
20140341289 | Schwarz et al. | Nov 2014 | A1 |
20140355685 | Chen et al. | Dec 2014 | A1 |
20140376614 | Fukushima et al. | Dec 2014 | A1 |
20140376626 | Lee | Dec 2014 | A1 |
20140376638 | Nakamura et al. | Dec 2014 | A1 |
20150085932 | Lin et al. | Mar 2015 | A1 |
20150110197 | Kim et al. | Apr 2015 | A1 |
20150189313 | Shimada et al. | Jul 2015 | A1 |
20150195558 | Kim | Jul 2015 | A1 |
20150237370 | Zhou et al. | Aug 2015 | A1 |
20150256853 | Li et al. | Sep 2015 | A1 |
20150264386 | Pang et al. | Sep 2015 | A1 |
20150281733 | Fu et al. | Oct 2015 | A1 |
20150312588 | Yamamoto et al. | Oct 2015 | A1 |
20150326880 | He et al. | Nov 2015 | A1 |
20150341635 | Seregin et al. | Nov 2015 | A1 |
20150358635 | Xiu et al. | Dec 2015 | A1 |
20160044332 | Maaninen | Feb 2016 | A1 |
20160050430 | Xiu et al. | Feb 2016 | A1 |
20160219278 | Chen et al. | Jul 2016 | A1 |
20160227214 | Rapaka et al. | Aug 2016 | A1 |
20160234492 | Li et al. | Aug 2016 | A1 |
20160241867 | Sugio et al. | Aug 2016 | A1 |
20160277761 | Li et al. | Sep 2016 | A1 |
20160286230 | Li et al. | Sep 2016 | A1 |
20160286232 | Li et al. | Sep 2016 | A1 |
20160295240 | Kim et al. | Oct 2016 | A1 |
20160301936 | Chen et al. | Oct 2016 | A1 |
20160330471 | Zhu et al. | Nov 2016 | A1 |
20160337661 | Pang et al. | Nov 2016 | A1 |
20160366416 | Liu et al. | Dec 2016 | A1 |
20160366442 | Liu et al. | Dec 2016 | A1 |
20160373784 | Bang | Dec 2016 | A1 |
20170006302 | Lee et al. | Jan 2017 | A1 |
20170013269 | Kim et al. | Jan 2017 | A1 |
20170048550 | Hannuksela | Feb 2017 | A1 |
20170054996 | Xu et al. | Feb 2017 | A1 |
20170078699 | Park et al. | Mar 2017 | A1 |
20170099495 | Rapaka et al. | Apr 2017 | A1 |
20170127082 | Chen et al. | May 2017 | A1 |
20170127086 | Lai et al. | May 2017 | A1 |
20170150168 | Nakamura et al. | May 2017 | A1 |
20170163999 | Li et al. | Jun 2017 | A1 |
20170188045 | Zhou et al. | Jun 2017 | A1 |
20170214932 | Huang et al. | Jul 2017 | A1 |
20170223352 | Kim et al. | Aug 2017 | A1 |
20170238005 | Chien et al. | Aug 2017 | A1 |
20170238011 | Pettersson et al. | Aug 2017 | A1 |
20170264895 | Takehara et al. | Sep 2017 | A1 |
20170272746 | Sugio et al. | Sep 2017 | A1 |
20170280159 | Xu et al. | Sep 2017 | A1 |
20170289570 | Zhou et al. | Oct 2017 | A1 |
20170332084 | Seregin et al. | Nov 2017 | A1 |
20170332095 | Zou et al. | Nov 2017 | A1 |
20170332099 | Lee et al. | Nov 2017 | A1 |
20170339425 | Jeong et al. | Nov 2017 | A1 |
20180014017 | Li et al. | Jan 2018 | A1 |
20180041769 | Chuang et al. | Feb 2018 | A1 |
20180070100 | Chen et al. | Mar 2018 | A1 |
20180077417 | Huang | Mar 2018 | A1 |
20180084260 | Chien et al. | Mar 2018 | A1 |
20180098063 | Chen et al. | Apr 2018 | A1 |
20180184085 | Yang et al. | Jun 2018 | A1 |
20180192069 | Chen et al. | Jul 2018 | A1 |
20180192071 | Chuang et al. | Jul 2018 | A1 |
20180242024 | Chen et al. | Aug 2018 | A1 |
20180262753 | Sugio et al. | Sep 2018 | A1 |
20180278949 | Karczewicz et al. | Sep 2018 | A1 |
20180310018 | Guo et al. | Oct 2018 | A1 |
20180332284 | Liu et al. | Nov 2018 | A1 |
20180332312 | Liu et al. | Nov 2018 | A1 |
20180343467 | Lin | Nov 2018 | A1 |
20180352223 | Chen et al. | Dec 2018 | A1 |
20180352256 | Bang et al. | Dec 2018 | A1 |
20180359483 | Chen et al. | Dec 2018 | A1 |
20180376149 | Zhang et al. | Dec 2018 | A1 |
20180376160 | Zhang et al. | Dec 2018 | A1 |
20180376164 | Zhang et al. | Dec 2018 | A1 |
20190098329 | Han et al. | Mar 2019 | A1 |
20190116374 | Zhang et al. | Apr 2019 | A1 |
20190116381 | Lee et al. | Apr 2019 | A1 |
20190141334 | Lim et al. | May 2019 | A1 |
20190158827 | Sim et al. | May 2019 | A1 |
20190158866 | Kim | May 2019 | A1 |
20190200040 | Lim et al. | Jun 2019 | A1 |
20190215529 | Laroche | Jul 2019 | A1 |
20190222848 | Chen et al. | Jul 2019 | A1 |
20190222865 | Zhang et al. | Jul 2019 | A1 |
20190230362 | Chen et al. | Jul 2019 | A1 |
20190230376 | Hu et al. | Jul 2019 | A1 |
20190297325 | Lim et al. | Sep 2019 | A1 |
20190297343 | Seo et al. | Sep 2019 | A1 |
20190320180 | Yu et al. | Oct 2019 | A1 |
20190342557 | Robert et al. | Nov 2019 | A1 |
20190356925 | Ye et al. | Nov 2019 | A1 |
20200014948 | Lai et al. | Jan 2020 | A1 |
20200021839 | Pham Van et al. | Jan 2020 | A1 |
20200021845 | Lin et al. | Jan 2020 | A1 |
20200029088 | Xu et al. | Jan 2020 | A1 |
20200036997 | Li et al. | Jan 2020 | A1 |
20200077106 | Jhu et al. | Mar 2020 | A1 |
20200077116 | Lee et al. | Mar 2020 | A1 |
20200099951 | Hung et al. | Mar 2020 | A1 |
20200112715 | Hung et al. | Apr 2020 | A1 |
20200112741 | Han et al. | Apr 2020 | A1 |
20200120334 | Xu et al. | Apr 2020 | A1 |
20200128238 | Lee et al. | Apr 2020 | A1 |
20200128266 | Xu et al. | Apr 2020 | A1 |
20200145690 | Li et al. | May 2020 | A1 |
20200154124 | Lee et al. | May 2020 | A1 |
20200169726 | Kim et al. | May 2020 | A1 |
20200169745 | Han et al. | May 2020 | A1 |
20200169748 | Chen et al. | May 2020 | A1 |
20200186793 | Racape et al. | Jun 2020 | A1 |
20200186820 | Park et al. | Jun 2020 | A1 |
20200195920 | Racape et al. | Jun 2020 | A1 |
20200195959 | Zhang et al. | Jun 2020 | A1 |
20200195960 | Zhang et al. | Jun 2020 | A1 |
20200204820 | Zhang et al. | Jun 2020 | A1 |
20200221108 | Xu et al. | Jul 2020 | A1 |
20200228825 | Lim et al. | Jul 2020 | A1 |
20200236353 | Zhang et al. | Jul 2020 | A1 |
20200244954 | Heo et al. | Jul 2020 | A1 |
20200267408 | Lee et al. | Aug 2020 | A1 |
20200275124 | Ko et al. | Aug 2020 | A1 |
20200280735 | Lim et al. | Sep 2020 | A1 |
20200288150 | Jun et al. | Sep 2020 | A1 |
20200288168 | Zhang et al. | Sep 2020 | A1 |
20200296414 | Park et al. | Sep 2020 | A1 |
20200322628 | Lee et al. | Oct 2020 | A1 |
20200336726 | Wang et al. | Oct 2020 | A1 |
20200366923 | Zhang et al. | Nov 2020 | A1 |
20200374542 | Zhang et al. | Nov 2020 | A1 |
20200374543 | Liu et al. | Nov 2020 | A1 |
20200374544 | Liu et al. | Nov 2020 | A1 |
20200382770 | Zhang et al. | Dec 2020 | A1 |
20200396446 | Zhang et al. | Dec 2020 | A1 |
20200396447 | Zhang et al. | Dec 2020 | A1 |
20200396462 | Zhang et al. | Dec 2020 | A1 |
20200396466 | Zhang et al. | Dec 2020 | A1 |
20200404254 | Zhao et al. | Dec 2020 | A1 |
20200404285 | Zhang et al. | Dec 2020 | A1 |
20200404316 | Zhang et al. | Dec 2020 | A1 |
20200404319 | Zhang et al. | Dec 2020 | A1 |
20200404320 | Zhang et al. | Dec 2020 | A1 |
20200413038 | Zhang et al. | Dec 2020 | A1 |
20200413044 | Zhang et al. | Dec 2020 | A1 |
20200413045 | Zhang et al. | Dec 2020 | A1 |
20210006787 | Zhang et al. | Jan 2021 | A1 |
20210006788 | Zhang et al. | Jan 2021 | A1 |
20210006790 | Zhang et al. | Jan 2021 | A1 |
20210006819 | Zhang et al. | Jan 2021 | A1 |
20210006823 | Zhang et al. | Jan 2021 | A1 |
20210014520 | Zhang et al. | Jan 2021 | A1 |
20210014525 | Zhang et al. | Jan 2021 | A1 |
20210029351 | Zhang et al. | Jan 2021 | A1 |
20210029352 | Zhang et al. | Jan 2021 | A1 |
20210029362 | Liu et al. | Jan 2021 | A1 |
20210029366 | Zhang et al. | Jan 2021 | A1 |
20210029372 | Zhang et al. | Jan 2021 | A1 |
20210029374 | Zhang et al. | Jan 2021 | A1 |
20210051324 | Zhang et al. | Feb 2021 | A1 |
20210051339 | Liu et al. | Feb 2021 | A1 |
20210067783 | Liu et al. | Mar 2021 | A1 |
20210076063 | Liu et al. | Mar 2021 | A1 |
20210092379 | Zhang et al. | Mar 2021 | A1 |
20210092436 | Zhang et al. | Mar 2021 | A1 |
20210105482 | Zhang et al. | Apr 2021 | A1 |
20210120234 | Zhang et al. | Apr 2021 | A1 |
20210185326 | Wang et al. | Jun 2021 | A1 |
20210203984 | Salehifar et al. | Jul 2021 | A1 |
20210235108 | Zhang et al. | Jul 2021 | A1 |
20210297659 | Zhang et al. | Jul 2021 | A1 |
20210258569 | Chen et al. | Aug 2021 | A1 |
20210321089 | Lin et al. | Oct 2021 | A1 |
20210337216 | Zhang et al. | Oct 2021 | A1 |
20210344947 | Zhang et al. | Nov 2021 | A1 |
20210352312 | Zhang et al. | Nov 2021 | A1 |
20210360230 | Zhang et al. | Nov 2021 | A1 |
20210377518 | Zhang et al. | Dec 2021 | A1 |
20210377545 | Zhang et al. | Dec 2021 | A1 |
20210400298 | Zhao et al. | Dec 2021 | A1 |
20220007047 | Zhang et al. | Jan 2022 | A1 |
20220094915 | Zhang et al. | Mar 2022 | A1 |
20220094967 | Zhang et al. | Mar 2022 | A1 |
20220417551 | Lim | Dec 2022 | A1 |
Number | Date | Country |
---|---|---|
2019293670 | Jan 2021 | AU |
3020265 | Nov 2017 | CA |
1898715 | Jan 2007 | CN |
1925614 | Mar 2007 | CN |
101193302 | Jun 2008 | CN |
101933328 | Dec 2010 | CN |
102474619 | May 2012 | CN |
102860006 | Jan 2013 | CN |
102907098 | Jan 2013 | CN |
103004204 | Mar 2013 | CN |
103096071 | May 2013 | CN |
103096073 | May 2013 | CN |
103339938 | Oct 2013 | CN |
103370937 | Oct 2013 | CN |
103535039 | Oct 2013 | CN |
103404143 | Nov 2013 | CN |
103444182 | Dec 2013 | CN |
103518374 | Jan 2014 | CN |
103535040 | Jan 2014 | CN |
103609123 | Feb 2014 | CN |
103828364 | May 2014 | CN |
103858428 | Jun 2014 | CN |
103891281 | Jun 2014 | CN |
103931192 | Jul 2014 | CN |
104041042 | Sep 2014 | CN |
104054350 | Sep 2014 | CN |
104079944 | Oct 2014 | CN |
104126302 | Oct 2014 | CN |
104247434 | Dec 2014 | CN |
104350749 | Feb 2015 | CN |
104365102 | Feb 2015 | CN |
104396248 | Mar 2015 | CN |
104539950 | Apr 2015 | CN |
104584549 | Apr 2015 | CN |
104662909 | May 2015 | CN |
104756499 | Jul 2015 | CN |
104915966 | Sep 2015 | CN |
105245900 | Jan 2016 | CN |
105324996 | Feb 2016 | CN |
105556971 | May 2016 | CN |
105681807 | Jun 2016 | CN |
105917650 | Aug 2016 | CN |
106464864 | Feb 2017 | CN |
106471806 | Mar 2017 | CN |
106716997 | May 2017 | CN |
106797477 | May 2017 | CN |
106851046 | Jun 2017 | CN |
106851267 | Jun 2017 | CN |
106851269 | Jun 2017 | CN |
107071458 | Aug 2017 | CN |
107079161 | Aug 2017 | CN |
107079162 | Aug 2017 | CN |
107087165 | Aug 2017 | CN |
107113424 | Aug 2017 | CN |
107113442 | Aug 2017 | CN |
107113446 | Aug 2017 | CN |
107197301 | Sep 2017 | CN |
107211156 | Sep 2017 | CN |
107295348 | Oct 2017 | CN |
107347159 | Nov 2017 | CN |
107493473 | Dec 2017 | CN |
107592529 | Jan 2018 | CN |
107690809 | Feb 2018 | CN |
107690810 | Feb 2018 | CN |
107710764 | Feb 2018 | CN |
107959853 | Apr 2018 | CN |
108134934 | Jun 2018 | CN |
108200437 | Jun 2018 | CN |
108235009 | Jun 2018 | CN |
108293127 | Jul 2018 | CN |
108353184 | Jul 2018 | CN |
109076218 | Dec 2018 | CN |
109089119 | Dec 2018 | CN |
110169073 | Aug 2019 | CN |
2532160 | Dec 2012 | EP |
2668784 | Dec 2013 | EP |
2741499 | Jun 2014 | EP |
2983365 | Feb 2016 | EP |
3791585 | Mar 2021 | EP |
3791588 | Mar 2021 | EP |
3794825 | Mar 2021 | EP |
201111867 | Aug 2011 | GB |
2488815 | Sep 2012 | GB |
2492778 | Jan 2013 | GB |
2588006 | Apr 2021 | GB |
2013110766 | Jun 2013 | JP |
2013537772 | Oct 2013 | JP |
2014501091 | Jan 2014 | JP |
2014509480 | Apr 2014 | JP |
2014197883 | Oct 2014 | JP |
2016059066 | Apr 2016 | JP |
2017123542 | Jul 2017 | JP |
2017028712 | Jan 2019 | JP |
2020523853 | Aug 2020 | JP |
2021052373 | Apr 2021 | JP |
2021510265 | Apr 2021 | JP |
2021513795 | May 2021 | JP |
2022504073 | Jan 2022 | JP |
2022507682 | Jan 2022 | JP |
2022507683 | Jan 2022 | JP |
20170058871 | May 2017 | KR |
20170115969 | Oct 2017 | KR |
2550554 | May 2015 | RU |
2571572 | Dec 2015 | RU |
2632158 | Oct 2017 | RU |
2669005 | Oct 2018 | RU |
201444349 | Nov 2014 | TW |
2011095260 | Nov 2014 | TW |
2011095259 | Aug 2011 | WO |
2011095260 | Aug 2011 | WO |
2012074344 | Jun 2012 | WO |
2012095467 | Jul 2012 | WO |
2012172668 | Dec 2012 | WO |
2013081365 | Jun 2013 | WO |
2013157251 | Oct 2013 | WO |
2014007058 | Jan 2014 | WO |
2014054267 | Apr 2014 | WO |
2015006920 | Jan 2015 | WO |
2015010226 | Jan 2015 | WO |
2015042432 | Mar 2015 | WO |
2015052273 | Apr 2015 | WO |
2015100726 | Jul 2015 | WO |
2015180014 | Dec 2015 | WO |
2016008409 | Jan 2016 | WO |
2016054979 | Apr 2016 | WO |
2016091161 | Jun 2016 | WO |
2017043734 | Mar 2017 | WO |
2017058633 | Apr 2017 | WO |
2017076221 | May 2017 | WO |
2017084512 | May 2017 | WO |
2017197126 | Nov 2017 | WO |
2018012886 | Jan 2018 | WO |
2018045944 | Mar 2018 | WO |
2018048904 | Mar 2018 | WO |
2018058526 | Apr 2018 | WO |
2018061522 | Apr 2018 | WO |
2018065397 | Apr 2018 | WO |
2018070107 | Apr 2018 | WO |
2018127119 | Jul 2018 | WO |
2018231700 | Dec 2018 | WO |
2018237299 | Dec 2018 | WO |
2019223746 | Nov 2019 | WO |
2020003275 | Jan 2020 | WO |
2020003279 | Jan 2020 | WO |
2020003284 | Jan 2020 | WO |
2020113051 | Jun 2020 | WO |
Entry |
---|
US 11,057,620 B2, 07/2021, Zhang et al. (withdrawn) |
US 11,057,638 B2, 07/2021, Zhang et al. (withdrawn) |
US 11,070,835 B2, 07/2021, Zhang et al. (withdrawn) |
US 11,089,321 B2, 08/2021, Zhang et al. (withdrawn) |
Xin, Yakun, “Exploration and Optimization of Merge Mode Candidate Decision in HEVC,” 2016 Microcomputers and Applications No. 15 Xin Yakun (School of Information Engineering, Shanghai Maritime University, Shanghai 201306) Sep. 1, 2016. |
Examination Report from Patent Application GB2018263.0 dated Mar. 30, 2022. |
Examination Report from Patent Application GB2019557.4 dated Apr. 1, 2022. |
Final Office Action from U.S. Appl. No. 17/480,184 dated May 2, 2022. |
Notice of Allowance from U.S. Appl. No. 17/229,019 dated Oct. 12, 2022. |
Non-Final Office Action from U.S. Appl. No. 16/796,708 dated Nov. 23, 2022. |
Non-Final Office Action from U.S. Appl. No. 17/457,868 dated Nov. 25, 2022. |
Non-Final Office Action from U.S. Appl. No. 17/135,054 dated Nov. 25, 2022. |
Rosewarne et al. “High Efficiency Video Coding (HEVC) Test Model 16 (HM 16) Improved Encoder Description Update 9,” Joint Collaborative Team on Video Coding (JCT-VC) of ITU SG 16 WP3 and ISO/IEC JTC1/SC 29/WG 11 28th Meeting, Torino, IT, Jul. 15-21, 2017, document JCTVC-AB1002, 2017. |
Non-Final Office Action from U.S. Appl. No. 17/480,184 dated Dec. 29, 2021. |
Non-Final Office Action from U.S. Appl. No. 17/019,675 dated Nov. 18, 2021. |
Notice of Allowance from U.S. Appl. No. 17/019,753 dated Dec. 1, 2021. |
Chien et al. “Enhanced AMVP Mechanism Based Adaptive Motion Search Range Decision Algorithm for Fast HEVC Coding,” IEEE, Institute of Computer and Communication Engineering, 2014, pp. 3696-3699. |
Guionnet et al. “CE5.h: Reducing the Coding Cost of Merge Index by Dynamic Merge Index Reallocation,” Joint Collaborative Team on 3D Video Coding Extension Development of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 2nd Meeting: Shanghai, CN, Oct. 13-19, 2012, document JCT3V-B0078, 2012. |
Kudo et al. “Motion Vector Prediction Methods Considering Prediction Continuity in HEVC,” Picture Coding Symposium (PCS), 2016. |
Lee et al. “EE2.6: Modification of Merge Candidate Derivation: ATMVP Simplification and Merge Pruning,” Joint Video Exploration Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 3rd Meeting: Geneva, CH, May 26-Jun. 2016, document JVET-C0035, 2016. |
Park et al. “Hardware-friendly Advanced Motion Vector Predictor Generation for an HEVC Encoder,” Journal of Semiconductor Technology and Science, Dec. 2018, 18(6):737-747. |
Yu et al. “Parallel AMVP Candidate List Construction for HEVC,” Conference: Visual Communications and Image Processing (VCIP), Nov. 2012, IEEE, retrieved May 12, 2016. |
Non-Final Office Action from U.S. Appl. No. 17/019,675 dated Nov. 10, 2020. |
Non-Final Office Action from U.S. Appl. No. 17/019,753 dated Nov. 17, 2020. |
Non-Final Office Action from U.S. Appl. No. 17/031,322 dated Nov. 17, 2020. |
Non-Final Office Action from U.S. Appl. No. 17/011,068 dated Nov. 19, 2020. |
Non-Final Office Action from U.S. Appl. No. 17/018,200 dated Nov. 20, 2020. |
Non-Final Office Action from U.S. Appl. No. 16/998,296 dated Nov. 24, 2020. |
Non-Final Office Action from U.S. Appl. No. 16/998,258 dated Nov. 25, 2020. |
Non-Final Office Action from U.S. Appl. No. 17/005,702 dated Nov. 27, 2020. |
Non-Final Office Action from U.S. Appl. No. 17/005,574 dated Dec. 1, 2020. |
Non-Final Office Action from U.S. Appl. No. 17/011,058 dated Dec. 15, 2020. |
Non-Final Office Action from U.S. Appl. No. 17/071,139 dated Dec. 15, 2020. |
Non-Final Office Action from U.S. Appl. No. 16/993,561 dated Dec. 24, 2020. |
Non-Final Office Action from U.S. Appl. No. 17/031,404 dated Dec. 24, 2020. |
International Search Report and Written Opinion from International Patent Application No. PCT/IB2019/055588 dated Sep. 16, 2019 (21 pages). |
International Search Report and Written Opinion from International Patent Application No. PCT/IB2019/055591 dated Jan. 10, 2019 (16 pages). |
International Search Report and Written Opinion from International Patent Application No. PCT/IB2019/055593 dated Sep. 16, 2019 (23 pages). |
International Search Report and Written Opinion from International Patent Application No. PCT/IB2019/055595 dated Sep. 16, 2019 (25 pages). |
International Search Report and Written Opinion from International Patent Application No. PCT/IB2019/055619 dated Sep. 16, 2019 (26 pages). |
International Search Report and Written Opinion from International Patent Application No. PCT/IB2019/055620 dated Sep. 25, 2019 (18 pages). |
International Search Report and Written Opinion from International Patent Application No. PCT/IB2019/055621 dated Sep. 30, 2019 (18 pages). |
International Search Report and Written Opinion from International Patent Application No. PCT/IB2019/055622 dated Sep. 16, 2019 (13 pages). |
International Search Report and Written Opinion from International Patent Application No. PCT/IB2019/055623 dated Sep. 26, 2019 (17 pages). |
International Search Report and Written Opinion from International Patent Application No. PCT/IB2019/055624 dated Sep. 26, 2019 (17 pages). |
International Search Report and Written Opinion from International Patent Application No. PCT/IB2019/055625 dated Sep. 26, 2019 (19 pages). |
International Search Report and Written Opinion from International Patent Application No. PCT/IB2019/055626 dated Sep. 16, 2019 (17 pages). |
International Search Report and Written Opinion from International Patent Application No. PCT/IB2019/057690 dated Dec. 16, 2019 (17 pages). |
International Search Report and Written Opinion from International Patent Application No. PCT/IB2019/057692 dated Jan. 7, 2020 (16 pages). |
International Search Report and Written Opinion from International Patent Application No. PCT/IB2019/055571 dated Sep. 16, 2019 (20 pages). |
International Search Report and Written Opinion from International Patent Application No. PCT/CN2020/080597 dated Jun. 30, 2020(11 pages). |
Non-Final Office Action from U.S. Appl. No. 16/803,706 dated Apr. 17, 2020. |
Non-Final Office Action from U.S. Appl. No. 16/796,693 dated Apr. 28, 2020. |
Non-Final Office Action from U.S. Appl. No. 16/796,708 dated May 29, 2020. |
Non-Final Office Action from U.S. Appl. No. 16/993,598 dated Oct. 14, 2020. |
Final Office Action from U.S. Appl. No. 16/796,693 dated Oct. 27, 2020. |
Toma et al. “Description of SDR video coding technology proposal by Panasonic”, Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 10th Meeting: San Diego, US, JVET-J0020-v1and v2 (Apr. 2018). |
Notice of Allowance from U.S. Appl. No. 16/796,693 dated Feb. 10, 2021. |
Notice of Allowance from U.S. Appl. No. 17/011,068 dated Mar. 1, 2021. |
Notice of Allowance from U.S. Appl. No. 17/018,200 dated Mar. 1, 2021. |
Final Office Action from U.S. Appl. No. 17/019,753 dated Mar. 8, 2021. |
Final Office Action from U.S. Appl. No. 17/019,675 dated Mar. 19, 2021. |
Notice of Allowance from U.S. Appl. No. 16/998,296 dated Mar. 23, 2021. |
Notice of Allowance from U.S. Appl. No. 16/998,258 dated Mar. 24, 2021. |
Non-Final Office Action from U.S. Appl. No. 17/011,058 dated Apr. 13, 2021. |
Final Office Action from U.S. Appl. No. 17/071,139 dated Apr. 16, 2021. |
Non-Final Office Action from U.S. Appl. No. 17/229,019 dated Jun. 25, 2021. |
Chen et al. “Algorithm Description for Versatile Video Coding and Terst Model 3 (VTM 3),” Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 12th Meeting, Macao, CN, Oct. 3-12, 2018, document JVET-L1002, 2018. |
Chien et al. “CE4-Related: Modification on History-Based Mode Vector Prediction,” Joint Video Exploration Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 12th Meeting, Macao, CN, Oct. 3-12, 2018, document JVET-L0401, 2018. |
“History, based” Library USPTO Search Query, Mar. 3, 2022. |
Examination Report from Patent Application GB2020091.1 dated Mar. 21, 2022. |
Extended European Search Report from European Patent Application No. 20737921.5 dated Feb. 22, 2022 (9 pages). |
Notice of Allowance from U.S. Appl. No. 17/019,675 dated Mar. 11, 2022. |
Sullivan et al. “Meeting Report of the 11th Meeting of the Joint Video Experts Team (JVET), Ljubljana, SI, Jul. 10-18, 2018,” Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 11th Meeting: Ljubljana, SI, Jul. 10-18, 2018, document JVET-K1000, 2018. |
Zhang et al. “CE4-related: History-based Motion Vector Prediction”, Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, Document JVET-K0104-v1, Meeting Report of the 11th meeting of the Joint Video Experts Team (JVET), Ljubljana, SI, Jul. 10-18, 2018. |
“VVC and Inter” Library USPTO Search Query, Mar. 7, 2022. |
Notice of Eligibility of Grant from Singapore Patent Application No. 11202011714R dated Jul. 25, 2022 (10 pages). |
Notice of Allowance from U.S. Appl. No. 17/019,675 dated Jun. 16, 2022. |
Non-Final Office Action from U.S. Appl. No. 17/019,753 dated Jul. 22, 2021. |
Non-Final Office Action from U.S. Appl. No. 16/796,708 dated Aug. 11, 2021. |
Final Office Action from U.S. Appl. No. 17/011,058 dated Aug. 6, 2021. |
Non-Final Office Action from U.S. Appl. No. 17/005,634 dated Nov. 13, 2020. |
Bandyopadhyay, Saurav, “Cross-Check of JVET-M0436:AHG2: Regarding HMVO Table Size,” Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 13th Meeting: Marrakech, MA Jan. 9-18, 2019, document JVET-M0562, Jan. 2019. |
Bordes et al. “Description of SDR, HDR and 360° video coding technology proposal by Qualcomm and Technicolor—medium complexity version”, JVET Meeting, JVET-J0022 (Apr. 2018). |
Bross et al. “Versatile Video Coding (Draft 2)”, JVET 11th Meeting, JVET-K1001-v5 (Jul. 2018). |
Chen et al. “Description of SDR, HDR and 360° video coding technology proposal by Qualcomm and Technicolor—low and high complexity versions”, Joint Video Exploration Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11,10th Meeting: San Diego, US, JVET-J0021 (Apr. 2018). |
Chen et al. “CE4.3.1: Shared merging candidate list”, JVET 13th Meeting, JVET-M0170-v1 (Jan. 2019). |
Chen et al. “Symmetrical mode for bi-prediction” JVET Meeting, JVET-J0063 (Apr. 2018). |
Chen et al. “Internet Video Coding Test Model (ITM) v 2.0” “Information Technology—Coding of audio-visual objects—Internet Video Coding”, Geneva; XP030019221 (May 2012). |
Chen et al. “Algorithm description of Joint Exploration Test Model 7 (JEM7),” JVET-G1001, (Jul. 2017). |
Esenlik et al. “Description of Core Experiment 9 (CE9): Decoder Side Motion Vector Derivation” JVET-J1029-r4, (Apr. 2018). |
Han et al. “A dynamic motion vector referencing scheme for video coding” IEEE International Conference on Image Processing (ICIP), (Sep. 2016). |
Information Technology—High efficiency coding and media delivery in heterogeneous environments—Part 2: “High Efficiency Video Coding” ISO/IEC JTC 1/SC 29/WG 11 N 17661, ISO/IEC DIS 23008-2_201x(4th Ed.) (Apr. 2018). |
ITU-T H.265 “High efficiency video coding” Series H: Audiovisual and Multimedia Systems Infrastructure of audiovisual services—Coding of moving video, Telecommunication Standardization Sector of ITU, Available at address: https://www.itu.int/rec/T-REC-H.265 (Nov. 2019). |
Lee et al. “Non-CE4:HMVP Unification between the Merge and MVP List,” Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 14th Meeting, Geneva, CH, Mar. 19-27, 2019, document JVET-N0373, Mar. 2019. |
Li et al. JVET-D0117r1 “Multi-Type-Tree” Joint Video Exploration Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 4th Meeting: Chengdu, CN, Oct. 15-21, 2016. |
Lin et al. “CE3: Summary report on motion prediction for texture coding” JCT-3V Meeting, JCT3V-G0023 (Jan. 2014). |
Luthra et al., “Overview of the H.264/AVC video coding standard”, Proceedings of SPIE vol. 5203 Applications of Digital Image Processing XXVI., 2003. |
Ma et al. “Eleventh Five-Year Plan” teaching materials for ordinary colleges and universities, Principle and Application of S7-200 PLC and Digital Speed Control Systems, Jul. 31, 2009. |
Rapaka et al. “On intra block copy merge vector handling” JCT-VC Meeting, JCTVC-V0049 (Oct. 2015). |
Robert et al. “High precision FRUC with additional candidates” JVET Meeting JVET-D0046 (Oct. 2016). |
Sjoberg et al. “Description of SDR and HDR video coding technology proposal by Ericsson and Nokia” JVET Meeting, JVET-J0012-v1 (Apr. 2018). |
Solovyev et al. “CE-4.6: Simplification for Merge List Derivation in Triangular Prediction Mode,” Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 14th Meeting: Geneva, CH, Mar. 19-27, 2019, document JVET-N0454, Mar. 2019. |
Sprljan et al. “TE3 subtest 3: Local intensity compensation (LIC) for inter prediction”, JCT-VC of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 3rd Meeting: Guangzhou, CN, JCTVC-C233 (Oct. 2010). |
Sullivan et al., “Overview of the High Efficiency Video Coding (HEVC) Standard”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, No. 12, Dec. 2012. |
Toma et al. “Description of SDR video coding technology proposal by Panasonic”, Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 10th Meeting: San Diego, US, JVET-J0020-v1 (Apr. 2018). |
“Versatile Video Coding (VVC)”, JVET, JEM-7.0, Available at address: https://jvet.hhi.fraunhofer.de/svn/svn_HMJEMSoftware/tags/ HM-16.6-JEM-7.0. Accessed on Feb. 11, 2020. |
Wang et al. “Spec text for the agreed starting point on slicing and tiling”, JVET 12th Meeting, JVET-L0686-v2 (Oct. 2018). |
Xu et al. “Intra block copy improvement on top of Tencent's CfP response” JVET Meeting, JVET-J0050-r2 (Apr. 2018). |
Yang et al. “Description of Core Experiment 4 (CE4): Inter prediction and motion vector coding” JVET-K1024 (Jul. 2018). |
Yang et al. Description of Core Experiment 4 (CE4); Interprediction and Motion Vector Coding, JVET Meeting, The Joint Video Exploration Team of ISO/IEC JTC1/SC29/WG11 and ITU-TSG. 16 No Meeting San Diego, Apr. 20, 2018, Document JVET-J1024, Apr. 20, 2018. |
Zhang et al. “CE2-related: Early awareness of accessing temporal blocks in sub-block merge list construction”, JVET-M0273 (Jan. 2019). |
Zhang et al. “CE4: History-based Motion Vector Prediction(Test 4.4.7)”, Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 12th meeting: Macao, CN, Oct. 3-12, 2018, Document JVET-L0266-v1 and v2, Oct. 12, 2018. |
Zhang et al. “CE4-related: History-based Motion Vector Prediction”, Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, Document JVET-K0104-v5, Meeting Report of the 11th meeting of the Joint Video Experts Team (JVET), Ljubljana, SI, Jul. 10-18, 2018. |
Zhang et al. “CE4-related: Restrictions on History-based Motion Vector Prediction”, JVET-M0272 (Jan. 2019). |
Zhang et al., “History-Based Motion Vector Prediction in Versatile Video Coding”, 2019 Data Compression Conference (DCC), IEEE, pp. 43-52, XP033548557 (Mar. 2019). |
Zhang et al. “CE4-4.4: Merge List Construction for Triangular Prediction Mode,” Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 14th Meeting: Geneva, CH, Mar. 19-27, 2019, document JVET-N0269, Mar. 2019. |
Zhang et al. “CE10-related: Merge List Construction Process for Triangular Protection Mode,” Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 13th Meeting: Marrakech, MA, Jan. 9-18, 2019, document JVET-M0271, Jan. 2019. |
Zhu et al. “Simplified HMVP,” Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 13th Meeting: Marrakech, MA, Jan. 9-18, 2019, Document JVET-M0473, Jan. 2019. |
International Search Report and Written Opinion from International Patent Application No. PCT/IB2019/055549 dated Aug. 20, 2019 (16 pages). |
International Search Report and Written Opinion from International Patent Application No. PCT/IB2019/055575 dated Aug. 20, 2019 (12 pages). |
International Search Report and Written Opinion from International Patent Application No. PCT/IB2019/055576 dated Sep. 16, 2019 (15 pages). |
International Search Report and Written Opinion from International Patent Application No. PCT/IB2019/055582 dated Sep. 20, 2019 (18 pages). |
International Search Report and Written Opinion from International Patent Application No. PCT/CN2020/071332 dated Apr. 9, 2020(9 pages). |
International Search Report and Written Opinion from International Patent Application No. PCT/CN2020/071656 dated Apr. 3, 2020(12 pages). |
International Search Report and Written Opinion from International Patent Application No. PCT/CN2020/072387 dated Apr. 20, 2020(10 pages). |
International Search Report and Written Opinion from International Patent Application No. PCT/CN2020/072391 dated Mar. 6, 2020 (11 pages). |
International Search Report and Written Opinion from International Patent Application No. PCT/IB2019/055554 dated Aug. 20, 2019 (16 pages). |
International Search Report and Written Opinion from International Patent Application No. PCT/IB2019/055556 dated Aug. 29, 2019 (15 pages). |
International Search Report and Written Opinion from International Patent Application No. PCT/IB2019/055581 dated Aug. 29, 2019 (25 pages). |
International Search Report and Written Opinion from International Patent Application No. PCT/IB2019/055586 dated Sep. 16, 2019 (16 pages). |
International Search Report and Written Opinion from International Patent Application No. PCT/IB2019/055587 dated Sep. 16, 2019 (23 pages). |
Nevdyaev, Telecommunication Technologies, English-Russian Explanatory Dictionary and Reference Book, Communications and Business, Moscow, 2002, p. 44 & p. 431. |
Jiang et al. “A Fast Candidate Selection Method for Merge Mode Based on Adaptive Threshold,” Journal of Optoelectronics: Laser, Sep. 2016, 27(9):980-986. |
Joshi et al. “Screen Content Coding Test Model 3 (SCM 3),” Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 19th Meeting Stasbourg, FR, Oct. 17-24, 2014, document JCTVC-S1014, 2014, pp. 1-12. |
Zhao et al. “CE4: Methods of Reducing Number of Pruning Checks of History Based Motion Vector Prediction (Test 4.1.1),” Joint Video Experts Team (JVET)of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 1113th Meeting: Marrakech, MA, Jan. 9-18, 2019, document JVET-M0124, 2019. |
Office Action from Canadian Patent Application No. 3,101,730 dated Aug. 10, 2023 (4 pages). |
Non-Final Office Action from U.S. Appl. No. 17/374,160 dated Jul. 3, 2023. |
Non-Final Office Action from U.S. Appl. No. 17/374,311 dated Aug. 7, 2023. |
Non-Final Office Action from U.S. Appl. No. 17/374,208 dated Aug. 21, 2023. |
Akula et al. “Description of SDR, HDR and 360° video coding technology proposal considering mobile application scenario by Samsung, Huawei, GoPro, and HiSilicon” Joint Video Exploration Team (JVET)of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 1110th Meeting: San Diego, US, Apr. 10-20, 2018, document JVET-J0024, 2018. |
Sjoberg et al. “Description of SDR and HDR Video Coding Technology Proposal by Ericsson and Nokia” Joint Video Exploration Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 10th Meeting, San Diego, CA, USA, Apr. 10-20, 2018, document JVET-J0012 v2, 2018. |
Zhang et al. “CE4-related: History-based Motion Vector Prediction”, Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, Document JVET-K0104-v2, Meeting Report of the 11th meeting of the Joint Video Experts Team (JVET), Ljubljana, SI, Jul. 10-18, 2018. |
Extended European Search Report from European Patent Application No. 19739405.9 dated Feb. 1, 2023 (7 pages). |
Number | Date | Country | |
---|---|---|---|
20210360278 A1 | Nov 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16998258 | Aug 2020 | US |
Child | 17369132 | US | |
Parent | PCT/IB2019/055593 | Jul 2019 | US |
Child | 16998258 | US |