The subject matter disclosed herein relates generally to the field of couplings and, more particularly, to conductive elastomeric flexible couplings for a pneumatic duct system.
Thermal-resistance joints and couplings facilitate thermal expansions and mechanical motions in high-temperature pneumatic systems and the like. In the aircraft industry, as well as other industries, a pneumatic duct system is employed for carrying a heated substance under pressure. For example, compressed air bled from an aircraft engine is under high temperatures and, thus, pressures. As such, a coupling used in such a duct system must afford a highly efficient and dependable static and dynamic sealing protection and flexibility that is not subject to fatigue or wear failures under such conditions. The flexible coupling must be configured to also meet a conductivity requirement (e.g., electrical resistance from end-to-end of the coupling of no greater than 0.50 megaohms).
Toward that end, conductive wire mesh has been used to produce such a coupling. More specifically, the mesh is integrated into the coupling, which may require large convolutions. The mesh is equally spaced around a circumference of the flexible coupling and may or may not be visible. The mesh is typically made of, for example, an elastomeric composite and Monel wires. The coupling may be silicone-reinforced with a fabric such as aramid (particularly, Nomex®) or reinforced with fiberglass or ceramic fibers.
According to a non-limiting exemplary embodiment of the invention, a conductive elastomeric flexible coupling for a pneumatic duct system is provided. The coupling includes a tube section. An electrically conductive coating (e.g., paint or ink) is applied to at least an exterior surface of the tube section. The coating acts as an electrically conductive compliant material configured to conduct electrical charges transferred from a substance carried by and flowing through the duct system and accommodate large deflections.
In aspects of the embodiment of the coupling, the coating includes paint or ink. Also, the tube section extends between a pair of end portions of the coupling and defines a tube boot in a substantially central region of the tube section. In a version of the aspects, the tube boot is made of reinforced-silicone. Furthermore, each of the end portions of the coupling takes a form of a bead, an annular flange, or stop. In a version, a pair of clamps are respectively located proximate the end portions between the tube boot and end portions. In addition, the coupling includes further at least one convolution that extends radially outward from the tube section and enables large axial deflections. In a version, two pairs of spaced convolutions are located proximate the duct boot between the duct boot and corresponding end portions of the coupling. In another version, the convolutions are hollow corrugations surrounding the tube section. Moreover, the coupling is composed of a reinforced-silicone-rubber compound. In a version, the paint or ink is made of a conductive silicone compound.
Also according to a non-limiting exemplary embodiment of the invention, a method of fabricating a conductive elastomeric flexible coupling for a pneumatic duct system that includes a tube section is provided. The method includes dipping the tube section into an electrically conductive coating or brushing or spraying the coating onto the tube section to apply the coating to at least an exterior surface of the tube section, allowing the coating to adhere to the tube section, allowing the coating to dry, and allowing the coating to cure. The coating acts as an electrically conductive compliant material configured to conduct electrical charges transferred from a substance carried by and flowing through the duct system and accommodate large deflections.
In aspects of the embodiment of the method, the coating includes paint or ink. Also, the drying is at room temperature, and the curing is for about five to about ten minutes at temperatures ranging from about 50° C. to about 175° C. Furthermore, the paint or ink is burnished with a towel after the drying.
The conductive elastomeric flexible coupling according to the invention simply bleeds static charge from the pneumatic duct system joined using the coupling. Also, the coupling can be applied to any application requiring a conductive elastomeric member, and the coupling meets conductivity requirements. Furthermore, use of the conductive coating (i.e., paint or ink) limits or prevents reassembly of the coupling to meet electrical bonding requirements (i.e., test failure, disassembly, silicone-flash removal, cleaning, re-installment, and re-testing). In addition, incorporating the conductive coating into the coupling is relatively easy, and applying the conductive coating to complex features, such as convolutions that give the coupling a large range of flexibility, is relatively simple. Moreover, fabricating the conductive coating into the coupling is relatively less costly.
The subject matter that is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawing in which:
The figures show a non-limiting exemplary embodiment of a conductive elastomeric flexible joint or coupling 10 according to the invention configured to be implemented with a pneumatic duct system (
It should be readily appreciated that the coupling 10 may be implemented also with other suitable substance-carrying systems. Also, the coupling 10 can be installed on any suitable portion of the duct system. Furthermore, the coupling 10 can be installed to and rotate with respect to the duct sections 14 in any suitable manner. In addition, the hot substance carried by and flowing through the duct sections 14 can be any suitable substance, in general, and fluid, in particular. Moreover, the air can flow at any suitable velocity, and the coupling 10 can operate at any suitable temperature limit.
As shown in
The tube section 16 also carries at least one convolution 24 that extends radially outward from the tube section 16 and enables large axial deflections. In an aspect, two pairs of spaced convolutions 24 are located proximate the duct boot 20 between the duct boot 20 and corresponding end portions 18 of the coupling 10. The convolutions 24 may be hollow corrugations surrounding the tube section 16. Each convolution 24 is shown in
The coupling 10 may be composed of aramid or glass or ceramic fabric-reinforced silicone rubber or similar resilient material that is unaffected by the hot air to be handled by the coupling 10 and retains its characteristics of flexibility and resiliency throughout a wide range of temperatures. The coupling 10 may be composed also of materials having characteristics of low wear and high flexibility throughout a range of temperatures. In areas such as the convolutions 24 and stop 18, a fabric chord is typically inserted into the lay-up. The chord assists in maintaining shape of the convolutions 24 under pressure. The chord also, at the stop 18, prevents the coupling 10 from separating from the straight portions 12 when the hose clamp 22 is tightened.
It should be readily appreciated that the coupling 10 can have any suitable shape, size, and structure and structural relationship with the duct sections 14. Also, each of the tube section 16, end portions 18, duct boot 20, hose clamps 22, and convolutions 24 can have any suitable shape, size, and structure and structural relationship with a remainder of the coupling 10. Furthermore, the coupling 10 can carry the air at any suitable pressures and temperatures. In addition, the coupling 10 can carry any suitable number of convolutions 24. Moreover, the coupling 10 may be composed of any suitable material.
The coupling 10 includes also an electrically conductive coating 28 that is applied to at least an exterior surface of the coupling 10 configured to provide an electrically conductive path. The coating 28 acts as an electrically conductive compliant material configured to conduct electrical charges transferred from a substance carried by and flowing through the duct system and accommodate large deflections. The coating 28 also maintains electrical conductivity as the coupling 10 extends and contracts. The coupling 10 and coating 28 are configured to operate at a specified temperature.
More specifically, the coating 28 is paint or ink 28 and applied to at least a portion of an exterior surface of the tube section 16 and end portions 18. In an aspect, the paint or ink 28 is applied to substantially an entirety of the exterior surface of the coupling 10, including the tube boot 20, and at least portions of an interior surface of the coupling 10 that are to be in direct contact with an outer surface of the respective straight duct portions 12 of the duct system. Alternatively, the outer surface of the straight duct portions 12 in contact with the coupling 10 can be coated with a conductor. For example, in the context of aluminum ducts specifically, the outer surface of the straight duct portions 12 can be coated with MIL-C-5541. Also in an aspect, the paint or ink 28 is made of silicone.
The coupling 10 can be dipped into the paint or ink 28, or the paint or ink 28 can be brushed or sprayed onto the coupling 10. In either case, the paint or ink 28 adheres to the coupling 10, including the silicone of the tube boot 20. In an aspect, the paint or ink 28 is allowed to dry at room temperature followed by curing at temperatures ranging from 50° C. to 175° C. In a version of this aspect, the curing is for five to ten minutes at 175° C. In the case of the coupling 10 being dipped into the paint or ink 28, the paint or ink 28 can be burnished with a towel after the drying. In this way, fabrication of the coupling 10 is simplified, and cost thereof is reduced.
The paint or ink 28 is very adherent, flexible, and tactile and can be marked using permanent ink. The paint or ink 28 also allows for a multitude of ground paths across the coupling 10. With use of the paint or ink 28, a resistance of a circumference of the coupling 10 is measured to be about five-thousand ohms (compared to a maximum requirement of about five-hundred-thousand ohms).
It should be readily appreciated that the paint or ink 28 can be applied to any suitable areas of the coupling 10 in any suitable amount. Also, the paint or ink 28 can be made of any suitable electrically conductive material. Furthermore, the paint or ink 28 can be applied to the coupling 10 in any suitable manner. In addition, the paint or ink 28 can be allowed to dry and cure at any suitable temperature for any suitable amount of time. Moreover, in the case of the coupling 10 being dipped into the paint or ink 28, the paint or ink 28 can be burnished in any suitable manner.
In operation, the coupling 10 is installed on the straight duct portions 12 of the respective duct sections 14 of the duct system. The hot air is carried by and flows through the duct sections 14. The heat appearing on the tube section 16 is transferred or conducted to and through the convolutions 24 and dissipated into surrounding atmosphere. By employing the extended heat path via the convolution(s) 24, the tube boot 20 is protected from high temperature within the tube section 16. The hot air carried by the tube section 16 is prevented from escaping.
The coupling 10 is simple, practical, and dependable and adapted to be employed in the high-pressure, high-temperature duct system. The coupling 10 also absorbs thermal expansion and large displacements of the duct system. The coupling 10 also is light, suitably resilient, and capable of providing efficient sealing under simultaneous dynamic- and static-load conditions.
The coupling 10 simply bleeds static charge from the duct sections 14 joined to each other using the coupling 10. Also, the coupling 10 can be applied to any application requiring a conductive elastomeric member, and the coupling 10 meets conductivity requirements. Furthermore, use of the conductive coating (i.e., paint or ink) 28 limits or prevents reassembly of the coupling 10 to meet electrical bonding requirements (i.e., test failure, disassembly, silicone-flash removal, cleaning, re-installment, and re-testing). In addition, incorporating the conductive coating 28 into the coupling 10 is relatively easy, and applying the conductive coating 28 to complex features, such as convolutions 24 that give the coupling 10 a large range of flexibility, is relatively simple. Moreover, fabricating the conductive coating 28 into the coupling 10 is relatively less costly.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily appreciated that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions, or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various non-limiting embodiments of the invention have been described, it is to be readily appreciated that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3249685 | Heflin, Jr. | May 1966 | A |
3593751 | Herling | Jul 1971 | A |
3838713 | Tubbs | Oct 1974 | A |
3943273 | de Putter | Mar 1976 | A |
4032708 | Medney | Jun 1977 | A |
4120325 | de Putter | Oct 1978 | A |
4508370 | Schroeder | Apr 1985 | A |
4819970 | Umehara | Apr 1989 | A |
4971121 | Guertin | Nov 1990 | A |
4971727 | Takahashi et al. | Nov 1990 | A |
5081326 | Usui | Jan 1992 | A |
5382359 | Brandt | Jan 1995 | A |
5469892 | Noone | Nov 1995 | A |
5791696 | Miyajima | Aug 1998 | A |
5829483 | Tukahara | Nov 1998 | A |
6310284 | Ikeda | Oct 2001 | B1 |
6442012 | Koike | Aug 2002 | B2 |
6854769 | Lutzer | Feb 2005 | B2 |
7398798 | Ostan | Jul 2008 | B2 |
7452004 | Hayakawa | Nov 2008 | B2 |
8230885 | Krauss | Jul 2012 | B2 |
8590576 | Hagist | Nov 2013 | B2 |
20030099799 | Koike | May 2003 | A1 |
20040201217 | Mobley | Oct 2004 | A1 |
20060125233 | Cantrell | Jun 2006 | A1 |
20080102660 | Wittwer | May 2008 | A1 |
20090084600 | Severance | Apr 2009 | A1 |
20120131928 | Damgaard et al. | May 2012 | A1 |
Number | Date | Country |
---|---|---|
WO-8900263 | Jan 1989 | WO |
Entry |
---|
European Search Report for Application No. 16152377.4-1754 dated Jun. 13, 2016; 8 Pages. |
Number | Date | Country | |
---|---|---|---|
20160215917 A1 | Jul 2016 | US |