This document claims the benefit of the filing date of U.S. Provisional Patent Application No. 61/584,136, entitled “Conductive Energy Weapon Ammunition and Related Methods” to Steven Abboud et al. which was filed on Jan. 6, 2012, the disclosure of which is hereby incorporated entirely herein by reference.
1. Technical Field
Aspects of this document relate generally to ammunition for a conductive energy device (CED), also known as a conductive energy weapon (CEW).
2. Background Art
Conductive energy weapons are weapons that fire projectiles to administer an electrical shock to a target.
Implementations of ammunition for a conductive energy weapon may include: a receptacle having a cavity therein, the cavity accessible through each of a first opening in a first face of the receptacle, a second opening in the first face of the receptacle, a third opening in a second face of the receptacle and a fourth opening in a third face of the receptacle; a propellant unit included within the cavity proximate the first opening; a projectile included within the cavity proximate the second opening, and; a housing coupled to the receptacle, the housing configured to couple to the conductive energy weapon.
Implementations of ammunition for a conductive energy weapon may include one, all, or any of the following:
The first face may be substantially perpendicular to the second face.
The second face may be substantially parallel with the third face.
The ammunition may further include a first plug forming a substantially airtight seal with the receptacle proximate the third opening and a second plug forming a substantially airtight seal with the receptacle proximate the fourth opening.
The housing may be configured to cover substantially all of the receptacle except the first face.
The propellant unit may be configured to release a propellant into the cavity, in a direction substantially opposite a direction of flight of the projectile, in response to a trigger pull of the conductive energy weapon.
The ammunition may further include two electrical conductors on opposing sides of the receptacle.
The ammunition may further include an openable member coupled to the housing and substantially covering the first face, the openable member configured to expose the first face, in response to one of an explosion of an explosive proximate the first opening and an acceleration of the projectile.
Implementations of ammunition for a conductive energy weapon may include: a receptacle having a cavity therein, the cavity accessible through a first opening in a first face of the receptacle and a second opening in the first face of the receptacle; a propellant unit included within the cavity; a projectile included within the cavity, and; a housing coupled to the receptacle and configured to couple to the conductive energy weapon; wherein the propellant unit is configured to release a propellant into the cavity, in a direction substantially opposite a direction of flight of the projectile, in response to a trigger pull of the conductive energy weapon, and; wherein the cavity is configured to direct the released propellant in the direction of flight of the projectile.
Implementations of ammunition for a conductive energy weapon may include one, all, or any of the following:
The propellant may include a gas.
The cavity may be configured to cause the propellant to make two about ninety-degree turns on a flow path from the propellant unit to the projectile.
The cavity may be further accessible through a third opening on a second face of the receptacle, the second face substantially perpendicular to the first face.
The propellant unit may include a compressed fluid container, and the ammunition may further include an explosive positioned proximate a first end of the compressed fluid container and a mechanical pierce proximate a second end of the compressed fluid container, and the mechanical pierce may be configured to pierce the compressed fluid container in response to motion of the compressed fluid container in response to an explosion of the explosive.
The ammunition may further include a seal configured to form a substantially airtight seal with the receptacle at one of the second opening and a sidewall of the cavity proximate the second opening.
The ammunition may further include two electrical conductors on opposing sides of the receptacle.
The ammunition may further include an openable member coupled to the housing and substantially covering the first opening and the second opening, the openable member configured to expose the first opening and the second opening in response to one of an explosion of an explosive proximate the first opening and an acceleration of the projectile.
Implementations of ammunition for a conductive energy weapon may utilize implementations of a method of use of ammunition of a conductive energy weapon. Implementations of the method may include coupling an ammunition into a cavity of a muzzle of the conductive energy weapon. The ammunition may include housing configured to couple to the conductive energy weapon; a first receptacle and a second receptacle to the housing, the first receptacle having a cavity therein accessible through a first opening on a first face of the first receptacle, the second receptacle having a cavity therein accessible through a first opening on a first face of the second receptacle; a propellant unit included within the cavity of the first receptacle and a propellant unit included within the cavity of the second receptacle; and a first projectile included within the cavity of the first receptacle and a second projectile included within the cavity of the second receptacle; and discharging one of the first projectile and the second projectile in response to a trigger pull of the conductive energy weapon.
Implementations of a method of use of ammunition of a conductive energy weapon may include one, all, or any of the following:
The method may further include discharging both the first projectile and the second projectile in response to a single trigger pull of the conductive energy weapon.
The method may further include discharging the first projectile in response to a first trigger pull of the conductive energy weapon and discharging the second projectile in response to a second trigger pull of the conductive energy weapon.
The first projectile may be a different type of projectile than the second projectile.
The foregoing and other aspects, features, and advantages will be apparent to those artisans of ordinary skill in the art from the DESCRIPTION and DRAWINGS, and from the CLAIMS.
Implementations will hereinafter be described in conjunction with the appended drawings, where like designations denote like elements, and:
This disclosure, its aspects and implementations, are not limited to the specific components, assembly procedures or method elements disclosed herein. Many additional components, assembly procedures and/or method elements known in the art consistent with the intended conductive energy weapon ammunition and related methods will become apparent for use with particular implementations from this disclosure. Accordingly, for example, although particular implementations are disclosed, such implementations and implementing components may comprise any shape, size, style, type, model, version, measurement, concentration, material, quantity, method element, step, and/or the like as is known in the art for such conductive energy weapon ammunition and related methods, and implementing components and methods, consistent with the intended operation and methods.
Referring now to
The receptacle 4 in implementations is shaped to fit snugly inside the housing 12. In implementations the receptacle 4 and/or housing 12 may be configured so that a snap-fit or other type of fit is formed between them. In implementations the receptacle 4 may be fixed to the housing 12 such as, by non-limiting example, a friction fit, glue, a melting process, a permanent snap-fit, prongs, threads, and the like.
The cavity 6 may be any size, any configuration and any regular or irregular closed or open shape(s). In implementations the cavity 6 may be integrally formed into the receptacle 4 upon formation of the receptacle 4, such as during a molding process and/or may be formed by one or more machining processes after forming the receptacle 4. While in this document implementations of receptacles that have one cavity 6 for projectiles are illustrated, in various implementations, more than one cavity 6 for various projectiles may be included in other implementations. Also, where multiple projectiles and multiple cavities 6 are utilized, multiple propellant units with their corresponding cavities and components may be included in the receptacle 4 as well.
The projectile 8 may include any type of projectile including, but not limited to: a pepper ball; a paint ball; pepper powder; a rubber bullet; a dart or electrode; a non-electrified dart; and the like. The projectile 8 may include one or more projectiles and may include any combination of the aforementioned projectiles.
In implementations the openable member 10 is configured to cover substantially the entire first face 22 of the receptacle 4 and, accordingly, the first opening 18 and second opening 20. In implementations the openable member 10 could be configured to only partially cover the first face 22, such as to cover only either the first opening 18 or second opening 20. In implementations the openable member 10 may be configured to cover either or both of the first opening 18 and second opening 20 but may be configured to substantially not cover the first face 22 such as, by non-limiting example, in implementations wherein an openable member 10 is situated within the cavity 6 at the level of or just below the first opening 18 or second opening 20, or both. In implementations an openable member 10 may be omitted such that the first face 22, first opening 18 and second opening 20 are exposed.
In implementations the openable member 10 includes two doors separated by a frangible section there between, each door being hinged or snap-fit to the housing 12. In such an implementation an explosion of the explosive 38 and/or the acceleration or discharge of the projectile 8 may cause the frangible section to break and the two doors to hinge open or otherwise break away from the housing 12 such as to allow the projectile 8 to discharge along a desired direction of flight. In implementations the entire openable member 10 may be fabricated from a frangible material such that an explosion of the explosive 38 and/or the discharge or acceleration of the projectile 8 causes the openable member 10 to rupture, thus allowing the projectile 8 to discharge along a desired direction of flight. In implementations the openable member 10 may be fabricated of a non-frangible material or may be otherwise designed to not rupture but instead to swing upon (such as upon a hinge) or break away from the housing 12 in response to an explosion of the explosive 38 or the acceleration or discharge of the projectile 8 such that the projectile 8 is allowed to fly in a desired direction of flight. By non-limiting example, the openable member 10 may be loosely or lightly coupled to the housing 12 such that little force is required to remove it, such that the projectile 8 and/or an explosion of the explosive 38 will remove or open the openable member 10 without largely reducing the momentum of the discharged projectile 8.
The housing 12 is configured to couple to a conductive energy weapon. In implementations the housing 12 is configured to at least partially cover the second face 26 and third face 30. In implementations the housing 12 is configured to form a substantially air-tight seal with the receptacle 4 at the third opening 24 and fourth opening 28, though in other implementations the housing 12 does not form a substantially air-tight seal with the receptacle 4. In implementations the housing 12 is configured to cover substantially all of the receptacle 4 except the first face 22. In implementations substantially all of the housing 12 is configured to fit inside a cavity of a muzzle (cartridge receiving portion) of a conductive energy weapon though, in other implementations, only a lower portion (shown in
The electrical conductors 14 are configured to electrically couple the leads 17 of the explosive 38 with a power source (such as, by non-limiting example, a battery, shock generator, or any other source of electrical power) contained in the conductive energy weapon, so that pulling the trigger of the conductive energy weapon may result in providing electricity to the leads 17 that explodes the explosive 38. In implementations the electrical conductors 14 include metal strips extending downwards along the inside of the housing 12 from top to bottom. In
The seal (wadding) 16 in implementations couples to the housing 12 in a way that it covers the first opening 18. In implementations the seal 16 may be omitted from the ammunition 2. By non-limiting example, in implementations the propellant unit 32 may form a substantially air-tight seal with the sidewalls of the cavity 6 such that no seal 16 is required. In implementations a substantially air-tight seal may not be required for the ammunition 2 to function as desired. By non-limiting example, in implementations the propellant unit 32 may have threads whereby it is held into place, so that the force of a fluid exiting the pierced propellant unit 32 will not cause the propellant unit 32 to exit the cavity 6 through the first opening 18 and, in implementations, any fluid or pressure escaping from the cavity 6 upwards past the propellant unit 32 through the first opening 18 will not substantially affect the performance of the ammunition 2, including its ability to discharge the projectile 8 with sufficient velocity at a desired target.
The seal 16 may be coupled to the housing 12 by various mechanisms such as, by non-limiting example: a friction fit, glue, a snap-in or snap-on mechanism, threads, and the like. In implementations the leads 17 exit the cavity 6 and pass between the receptacle 4 and seal 16 to reach the electrical conductors 14. In implementations the leads 17 could be incorporated into the seal 16 itself and/or in implementations the seal 16, leads 17 and explosive 38 could be incorporated into a single unit.
In implementations the first opening 18, second opening 20, third opening 24 and fourth opening 28 all have substantially circular shapes. In other implementations they may have other shapes such as square, rectangular, triangular, oval, and any other regular or irregular closed shape. Similarly, they may have other sizes than those depicted in the drawings and may be placed in other locations and on other faces of the receptacle 4. In implementations the third opening 24 and/or the fourth opening 28 may be omitted from the receptacle 4 such that the receptacle 4 only has two openings or three openings allowing access to the cavity 6. In other implementations more than four openings may be included, each allowing access to the cavity 6. In implementations the second opening 20 could be included not in the first face 22 but instead on the second face 26, third face 30, a bottom face, or some other face of the receptacle 4.
In implementations the first face 22, second face 26 and third face 30 are each substantially flat, though in implementations either or some or all of them may have some curvature or irregularity to their surface/shape. In implementations the first face 22 is substantially perpendicular to both the second face 26 and third face 30 though in other implementations the first face 22 may not be substantially perpendicular with either the second face 26 or the third face 30. In implementations the second face 26 and third face 30 are substantially parallel with one another though in implementations the second face 26 and third face 30 need not be substantially parallel with one another.
The propellant unit 32 includes a mechanism for propelling the projectile 8 towards a target. By non-limiting example, in implementations the propellant unit 32 includes a compressed fluid container containing a gas, such as nitrogen, or some other gas or fluid. In implementations the propellant unit 32 may include a combustible material that rapidly forms a gas, the rapidly forming gas being used as a propellant for the projectile 8. In such an implementation the explosive 38 may be utilized to ignite the combustible material or the explosive 38 may be omitted and the leads 17 may be used to ignite the combustible material or to ignite a fuse or other element which in turn ignites the combustible material. In implementations wherein the propellant unit 32 includes a compressed fluid container the fluid may be a liquid or a gas. In implementations the ammunition 2 may be configured to selectively open a punctured portion of the compressed fluid container to the cavity 6 such that the same compressed fluid container could be used for more than one discharge of a projectile 8. In such implementations an explosive 38 may be omitted and some other device incorporated into the ammunition 2 may be used to selectively open and close the punctured portion. For example, the propellant unit 32 may have threads and may be configured to screw into threads of the receptacle 4 such that the screwing process brings the propellant unit 32 in contact with a mechanical pierce to puncture the propellant unit 32 but the screwing also brings the propellant unit 32 in contact with a seal that prevents fluid from escaping the propellant unit 32 into the cavity 6 until a trigger pull of the conductive energy device causes some mechanism or element of the ammunition 2 to selectively remove or break the seal so as to let some of the compressed fluid escape into the cavity 6 to discharge a projectile 8.
The second end 36 of the propellant unit 32 in implementations is configured to be rupturable by a mechanical pierce. By non-limiting example, in implementations the bottom or sidewall of the propellant unit 32 proximate the second end 36 has a thickness that is such that a mechanical pierce will be able to puncture a hole in the propellant unit 32 after the explosive 38 causes the propellant unit 32 to move towards the mechanical pierce.
The explosive 38 in implementations may include any mechanism, composition, and the like configured to impart motion to the propellant unit 32 so as to move it towards the bottom of the ammunition 2 (and, accordingly, to a mechanical pierce or other piercing mechanism configured to pierce the propellant unit 32). In implementations the explosive 38 includes a miniature explosive device known as a squib.
The leads 17 electrically couple the explosive 38 to the electrical conductors 14. In implementations the leads 17 couple to the electrical conductors 14 proximate the top of the ammunition 2 (the top being the end closest to the openable member 10). By non-limiting example, referring to
The direction of flight of the projectile 8, in implementations, is generally aligned with and substantially parallel to a longest length of a muzzle of the conductive energy weapon. In implementations the direction of flight of the projectile 8 is in a direction that is substantially perpendicular to the first face 22 of the receptacle 4.
A flow path of the propellant in implementations may include a path from the second end 36 of the propellant unit 32, through the cavity 6, to the projectile 8. The propellant may follow this path to reach the projectile 8 to accelerate and discharge the projectile 8 from the receptacle 4 during a firing operation when a trigger, button or other activation mechanism of the conductive energy weapon is engaged.
Referring now to
Implementations of an ammunition 2 or 3 may include one or more or all elements of devices disclosed in the following U.S. patent references, particularly those relating to darts and components related to dart delivery the disclosures of each of which are entirely incorporated herein by reference: U.S. Pat. No. 7,944,676 to Smith et al., issued May 17, 2011, entitled “Systems and methods for collecting use of force information”; U.S. Pat. No. 8,045,316 to Nerheim, issued Oct. 25, 2011, entitled “Systems and methods for predicting remaining battery capacity”; U.S. Pat. No. 8,320,098 to Klug et al., issued Nov. 27, 2012, entitled “Electronic weaponry with manifold for electrode launch matching”; U.S. Pat. No. 7,600,337 to Nerheim et al., issued Oct. 13, 2009, entitled “Systems and methods for describing a deployment unit for an electronic weapon”; U.S. Pat. No. 7,637,411 to Baldwin, issued Mar. 9, 2010, entitled “Systems and methods for electrode drag compensation”; U.S. Pat. No. 7,859,818 to Kroll et al., issued Dec. 28, 2010, entitled “Electronic control device with wireless projectiles”; U.S. Pat. No. 7,075,770 to Smith, issued Jul. 11, 2006, entitled “Less lethal weapons and methods for halting locomotion”, and; U.S. Pat. No. 7,305,787 to Stratbucker, issued Dec. 11, 2007, entitled “Systems and methods for incapacitating using biofeedback”.
In implementations the propellant of a propellant unit 32 or 33 may include a gas and a liquid. In implementations the propellant of a propellant unit 32 or 33 may include a gel. In implementations the propellant of a propellant unit 32 or 33 may itself include a deterrent or inhibiting material, such as mace, pepper spray, pepper gel, or another liquid, gel and/or gas element that is used to deter, inhibit or immobilize a target. By way of non-limiting example, in implementations the projectile 8 of an ammunition 2 or 3 may include a common electrode dart or darts to transmit an immobilizing electric current to a target and the propellant used to accelerate the dart to the target may itself contain pepper spray, mace, pepper gel, or the like to further inhibit, deter or immobilize the target. In these implementations, the maximum range of the dart may be about 15 to about 21 feet, while the maximum range of the deterrent in the propellant may be shorter. Implementations of gas/liquid propellants containing a deterrent may also be used with any of the other ammunition types disclosed herein, including pepper balls, where the pepper ball may have a range of about 30 feed while the deterrent may have a range of about 15 feet. The portion of the gas that may be used in the propellant may be carbon dioxide, argon, or any other gaseous propellant disclosed herein. The liquid portion of the propellant that may be used in various implementations may be liquid forms of pepper spray, mace, pepper gel, either alone, or in combination with any other desired liquid for use as a carrier/preservative, etc. Implementations of propellant units that utilize both liquid and gas may be referred to as hydro-pneumatic canisters. The length or other dimension of the propellant unit may be increased, decreased, or otherwise altered as desired to aid in directing the movement of the gas and the liquid through the receptacle.
In places where the description above refers to particular implementations of conductive energy weapon ammunition and related methods, and implementing components, sub-components, methods and sub-methods, it should be readily apparent that a number of modifications may be made without departing from the spirit thereof and that these implementations, implementing components, sub-components, methods and sub-methods may be applied to other implementations of conductive energy weapon ammunition and related methods.
Number | Name | Date | Kind |
---|---|---|---|
3803463 | Cover | Apr 1974 | A |
5078117 | Cover | Jan 1992 | A |
5786546 | Simson | Jul 1998 | A |
5996503 | Woodall et al. | Dec 1999 | A |
7075770 | Smith | Jul 2006 | B1 |
7305787 | Stratbucker | Dec 2007 | B1 |
7600337 | Nerheim et al. | Oct 2009 | B2 |
7676972 | Smith et al. | Mar 2010 | B2 |
7859818 | Kroll et al. | Dec 2010 | B2 |
7944676 | Smith et al. | May 2011 | B2 |
8045316 | Nerheim | Oct 2011 | B2 |
8320098 | Klug et al. | Nov 2012 | B2 |
20060187610 | Su | Aug 2006 | A1 |
20080276822 | Lubbers et al. | Nov 2008 | A1 |
20100146835 | McNulty, Jr. | Jun 2010 | A1 |
20100315755 | Gavin | Dec 2010 | A1 |
Entry |
---|
Raysun X-1 Product Description by Defenders Network, Inc., accessed at least as early as Dec. 21, 2012, available at http://www.defend-net.com/raysun/index.options.html. |
Raysun XI Multi-Mode Police Weapon Product Description by Defenders Network, Inc., accessed at least as early as Dec. 21, 2012, available at http://www.defend-net.com/raysun/index.options.html. |
Raysun XI Multi-Mode Police Weapon Catalog Page by Defenders Network, Inc., accessed at least as early as Dec. 21, 2012, available at http://www.defend-net.com/raysun/Images/Raysun%20X1%020print.pdf. |
Raysun XI Non-Lethal Police Weapon Operations Manual by Defenders Network, Inc., published at least as early as 2009, available at http://www.defend-net.com/raysun/Images/Raysun%20Instr.%20outside.pdf. |
Raysun X-I Product Advertisement on May 1, 2009 internet archive of www.JiunAn.com website, available at http://web.archive.org/web/20090501084907/http://www.jiunan.com.tw/en/defense/stungun-x1.html. |
Number | Date | Country | |
---|---|---|---|
61584136 | Jan 2012 | US |