Claims
- 1. An article having a communication window comprising:
a substrate having a major surface, the major surface having a first portion to block out at least one predetermined wavelength of an electromagnetic spectrum and a second portion outlined by an imaginary boundary defined as an aperture, a frequency selective surface pattern within the aperture, the pattern defined by arrangement of at least one area that passes the at least one predetermined wavelength of the electromagnetic spectrum, defined as a passing area, and at least one area that blocks out the at least one predetermined wavelength of the electromagnetic spectrum, defined as a blocking area, wherein the frequency selective surface pattern comprises: a plurality of spaced arcuate break lines each break line having at least one passing area and at least one of the break lines having a different curvature than another one of the break lines, the break lines nested within one another with the break line having the largest curvature as the outermost break line of the plurality of break lines and the break line having the smallest curvature as the innermost break line of the plurality of arcuate break lines, wherein the plurality of break lines are arranged by decreasing curvature in a direction away from the outermost break line toward the innermost break line; and an area between adjacent arcuate break lines of the plurality of arcuate break lines forming the blocking area.
- 2. The article according to claim 1, wherein the plurality of spaced arcuate break lines is a first plurality of spaced arcuate break lines, the passing area is a first plurality of passing areas and the blocking area is a first plurality of blocking areas and wherein the frequency selective surface further comprises:
a second plurality of spaced arcuate break lines, each break line of the second plurality of spaced arcuate break lines having at least one passing area forming a second plurality of passing areas and at least one of the second plurality of break lines having a different curvature than another one of the second plurality of break lines, the break lines of the second plurality of break lines nested within one another with the break line having the largest curvature as the outermost break line of the second plurality of break lines and the break line having the smallest curvature as the innermost break line of the second plurality of arcuate break lines, wherein the second plurality of break lines are arranged by decreasing curvature in a direction away from the outermost break line toward the innermost break line of the second plurality of break lines, and areas between adjacent arcuate break lines of the second plurality of arcuate break lines forming a second plurality of blocking areas.
- 3. The article according to claim 2 wherein the outermost break lines of the first and second plurality of break lines face one another and at least one of the first or second plurality of blocking areas is continuous from a first location on the imaginary boundary and in contact with the portion of the major surface to block out the at least one predetermined wavelength of the electromagnetic spectrum to a second location on the imaginary boundary and in contact with the portion of the surface to block out the at least one predetermined wavelength of the electromagnetic spectrum with the first location spaced from the second location.
- 4. The article according to claim 3, wherein the portion of the major surface of the substrate to block out at least one predetermined wavelength of the electromagnetic spectrum and the first and second plurality of blocking areas are a coating over the major surface of the substrate.
- 5. The article according to claim 4 wherein the coating comprises a metal film, with the first and second plurality of passing areas being voids in the metal film.
- 6. The article according to claim 5 further including a dividing break line having a passing area extending through the aperture, wherein the first plurality of arcuate break lines is positioned on one side of the dividing break line with the break line of the first plurality of arcuate break lines with the largest radius of curvature adjacent the dividing break line and the second plurality of arcuate break lines is positioned on the other side of the dividing break line with the break line of the second plurality of arcuate break lines with the largest radius of curvature adjacent the dividing break line and the coating between the adjacent break lines of the first and second plurality of arcuate break lines has a continuous transition from within to without the aperture.
- 7. The article according to claim 6, wherein the at least one passing area of along the arcuate break lines of the first and second plurality of arcuate break lines extends along the length of the arcuate break lines
- 8. The article according to claim 6, wherein the at least one passing area of along the arcuate break lines of the first and second plurality of arcuate break lines is a plurality of passing areas separated by blocking areas along the length of the arcuate break lines
- 9. The article according to claim 6, wherein the metal film of the coating is a silver film and the coating is selected from a solar control coating, electrically heatable coating and combinations thereof, and the passing areas extend at least through the metal film of the coating.
- 10. The article according to claim 6, wherein the arcuate break lines of at least one of the first and second plurality of arcuate break lines are equally spaced from one another.
- 11. The article according to claim 6, wherein the minimum distance between adjacent arcuate break lines of at least one of the first and second plurality of arcuate break lines decreases as the distance from the dividing break line decreases.
- 12. The article according to claim 6, wherein the minimum distance between adjacent arcuate break lines of at least one of the first and second plurality of arcuate break lines increases as the distance from the dividing break line decreases.
- 13. The article according to claim 9, wherein the article is a transparency for use on an enclosure of the type selected from a residential home, a commercial building, a space vehicle, an air vehicle, a land vehicle, an over the water vehicle, an under the water vehicle, a refrigerator door having a window, an oven door having a window, a microwave door having a window, and combinations thereof.
- 14. The article according to claim 13, wherein the article is a transparency for an automobile selected from a windshield, a side window, a back window, a moon roof and combinations thereof, and the coating includes the metal film and at least one dielectric film.
- 15. The article according to claim 14, wherein the article is an automotive windshield.
- 16. The article according to claim 15, wherein the substrate is a first glass sheet and the coating is on a major surface of the first glass sheet and the aperture is in a predetermined location in the coating and further including a second glass sheet having a major surface and a plastic interlayer between the major surface of the first sheet and the major surface of the second sheet, securing the first and second sheet together.
- 17. The article according to claim 16, wherein the coating includes a dielectric film above and below the silver film.
- 18. The article according to claim 17, wherein the silver film is a first silver film and further including a second silver film with a dielectric film between the first and second silver films, under the first silver film and over the second silver film.
- 19. The article according to claim 16, wherein the passing areas along the arcuate break lines are spaced passing areas separated by blocking areas.
- 20. The article according to claim 16 further including a pair of spaced bus bars between the sheets and in electrical contact with the coating and a first lead contacting one of the bus bars and extending out from a peripheral edge of the windshield and a second lead contacting the other bus bar and extending out from the peripheral edge of the windshield to provide external electrical contact to the bus bars.
- 21. The article according to claim 20, wherein the blocking area between the break lines is oriented in the direction of current flow between the bus bars.
- 22. The article according to claim 21, wherein the communication window has a rectangular shape having a length of 150 mm and a height of 100 mm, the dividing break line is between and spaced from short sides of the communication window and extends from one side to the other side of the communication window and the frequency selective surface is selected from one of the groups:
Group 1. the break line of the first and second plurality of break lines farthest from the dividing break line has a radius of curvature of 35 mm, and the break line of the first and second plurality of break lines closest to the dividing break line has a radius of curvature of 125 mm; a minimum distance between the dividing break line and the break line of the first and second plurality of break lines closest to the dividing break line is 1 mm; a minimum distance between adjacent break lines of the first and second plurality of break lines farthest from the dividing break line is 1.7 mm with a change in the minimum distance between adjacent break lines of the first and second plurality of break lines as they approach the dividing line based on a Gaussian distribution, and the passing area of the first and second plurality of break lines and the dividing line have a width of 100 microns; Group 2. the break line of the first and second plurality of break lines farthest from the dividing break line has a radius of curvature of 280 mm, and the break line of the first and second plurality of break lines closest to the dividing break line has a radius of curvature of 1250 mm; a minimum distance between the dividing break line and the break line of the first and second plurality of break lines closest to the dividing break line is 1 mm; a minimum distance between adjacent break lines of the first and second plurality of break lines farthest from the dividing break line is 2.4 mm with a change in the minimum distance between adjacent break lines of the first and second plurality of break lines as they approach the dividing line based on a Gaussian distribution, and the passing area of the first and second plurality of break lines and the dividing line have a width of 100 microns, and Group 3. the break line of the first and second plurality of break lines farthest from the dividing break line has a radius of curvature of 35 mm, and the break line of the first and second plurality of break lines closest to the dividing break line has a radius of curvature of 125 mm; a minimum distance between the dividing break line and the break line of the first and second plurality of break lines closest to the dividing break line is 1 mm; a minimum distance between adjacent break lines of the first and second plurality of break lines farthest from the dividing break line is 1.5 mm with a change in the minimum distance between adjacent break lines of the first and second plurality of break lines as they approach the dividing line based on a Gaussian distribution, and the passing area of the first and second plurality of break lines and the dividing line have a width of 100 microns.
- 23. The article according to claim 21, further including:
a first plurality of deletion lines in the coating spaced from one another and extending from one bus bar defined as a first bus bar toward the aperture; a second plurality of deletion lines in the coating spaced from one another and extending from the other bus bar defined as a second bus bar toward the aperture with the first and second plurality of deletion lines generally aligned with one another; wherein selected ones of the first plurality of deletion lines and selected ones of the second plurality of deletion lines have a path around one side of the aperture defined as the first side and are in contact with one another to provide continuous spaced current paths from the first bus bar to the second bus bar around the first side of the aperture and selected ones of the first plurality of deletion lines and selected ones of the second plurality of deletion lines have a path around opposite side of the aperture defined as the second side and are in contact with one another to provide continuous spaced current paths from the first bus bar to the second bus bar around the second side of the aperture.
- 24. The article according to claim 16, wherein an outer major surface of one of the glass sheets includes a hydrophobic coating.
- 25. The article according to claim 16, wherein an outer major surface of one of the glass sheets has a photocatalytic coating.
- 26. The article according to claim 16, wherein the plastic sheet is selected from polyvinyl butyral, polyvinyl chloride, polyethylene and combinations thereof.
- 27. The article according to claim 26, wherein at least one of the glass sheets or the plastic sheet has a portion in cross section having a wedged shape.
- 29. The article according to claim 19, wherein each of the passing areas has a perimeter and a blocking area within and spaced from the perimeter such that the blocking area within the perimeter is surrounded by a passing area.
- 30. An article having a communication window comprising:
a substrate having a major surface, the major surface having a portion to block out at least one predetermined wavelength of an electromagnetic spectrum and a portion of the major surface outlined by an imaginary boundary defined as an aperture, the aperture having a frequency selective surface pattern defined by an area that passes the at least one predetermined wavelength of the electromagnetic spectrum, defined as a passing area, and an area that blocks out the at least one predetermined wavelength of the electromagnetic spectrum, defined as a blocking area, wherein the frequency selective surface pattern comprises: a plurality of columns, each column having a plurality of passing areas separated by blocking areas, each passing area having a perimeter with a blocking area within the perimeter, and each of the columns are separated by a blocking area.
- 31. The article according to claim 30, wherein the blocking area between columns is continuous from a first location on the imaginary boundary and in contact with the portion of the major surface to block out the at least one predetermined wavelength of the electromagnetic spectrum to a second location on the imaginary boundary and in contact with the portion of the surface to block out the at least one predetermined wavelength of the electromagnetic spectrum, with the first location spaced from the second location.
- 32. The article according to claim 30, wherein at least one column includes at least two subcolumns, each subcolumn having a plurality of passing areas separated by blocking areas, with the blocking areas and passing areas of adjacent subcolumns in contact with one another and the blocking areas within the perimeter of the passing areas spaced from one another.
- 33. The article according to claim 30, wherein the article is a transparency for use on an enclosure of the type selected from a residential home, a commercial building, a space vehicle, an air vehicle, a land vehicle, an over the water vehicle, an under the water vehicle, a refrigerator door having a window, an oven door having a window, a microwave door having a window, and combinations thereof.
- 34. The article according to claim 33 wherein the article is a transparency for an automobile selected from a windshield, a side window, a back window, a moon roof, and combinations thereof, and the coating includes a metal film and at least one dielectric film.
- 35. The article according to claim 34 wherein the article is an automotive windshield.
- 36. The article according to claim 35 wherein the metal film of the coating is a silver film and the coating is selected from a solar control coating, an electrically heatable coating, and combinations thereof, and the passing areas extend at least through the metal film of the coating.
- 37. The article according to claim 36 wherein the substrate is a first glass sheet and the coating is on a major surface of the first glass sheet and the communication window is in a predetermined location in the coating and further including a second glass sheet having a major surface and a plastic interlayer between the major surface of the first sheet and the major surface of the second sheet, securing the first and second sheet together.
- 38. The article according to claim 37 wherein the coating blocks out at least one predetermined wavelength of the electromagnetic spectrum, the blocking area between columns and passing areas is continuous from a first location on the imaginary boundary and in contact with the coating outside the imaginary boundary to a second location on the imaginary boundary and in contact with the coating outside the imaginary boundary, with the first location spaced from the second location.
- 39. The article according to claim 38, wherein the coating includes a dielectric film above and below the silver film.
- 40. The article according to claim 39, wherein the silver film is a first silver film and further including a second silver film with a dielectric film between the first and second silver films, under the first silver film and over the second silver film.
- 41. The article according to claim 40 further including a pair of spaced bus bars between the sheets and in electrical contact with the coating, a first lead contacting one of the bus bars and extending out from a peripheral edge of the windshield and a second lead contacting the other bus bar and extending out from the peripheral edge of the windshield to provide external electrical contact to the bus bars.
- 42. The article according to claim 42, wherein the blocking area between the columns is oriented in the direction of current flow between the bus bars.
- 43. The article according to claim 42 further including:
a first plurality of deletion lines in the coating spaced from one another and extending from one bus bar defined as a first bus bar toward the communication window; a second plurality of deletion lines in the coating spaced from one another and extending from the other bus bar defined as a second bus bar toward the communication window, with the first and second plurality of deletion lines generally aligned with one another; wherein selected ones of the first plurality of deletion lines and selected ones of the second plurality of deletion lines have a path around one side of the communication window defined as the first side and are in contact with one another to provide continuous spaced current paths from the first bus bar to the second bus bar around the first side of the communication window and selected ones of the first plurality of deletion lines and selected ones of the second plurality of deletion lines have a path around opposite side of the communication window defined as the second side and are in contact with one another to provide continuous spaced current paths from the first bus bar to the second bus bar around the second side of the communication window.
- 43. The article according to claim 44, wherein an outer major surface of one of the glass sheets includes a hydrophobic coating.
- 44. The article according to claim 42, wherein an outer major surfaces of one of the glass sheets includes a photocatalytic coating.
- 45. The article according to claim 42, wherein at least one of the glass sheets or the plastic interlayer has a portion in cross section having a wedged shape.
- 46. The article according to claim 41, wherein the communication window has a rectangular shape having a length of 150 mm, and a height of 100 mm, and the frequency selective surface is selected from one of the following groups:
Group 1: the columns are spaced 1 mm apart, the columns have a width of 1 mm, the blocking areas within the columns are spaced from each other and the blocking area between the columns a distance of 100 microns; Group 2: the columns are spaced 2 mm apart, the columns have a width of 1 mm, the blocking areas within the columns are spaced from each other and the blocking area between the columns a distance of 100 microns; and Group 3: the columns are spaced 2 mm apart, the columns have a width of 2 mm, and each column has two subcolumns having the blocking areas surrounded by passing areas, the blocking areas are spaced from adjacent blocking areas a distance of 100 microns.
RELATED APPLICATIONS
[0001] The interlayer composite disclosed in U.S. patent application Ser. No. 10/201,863 filed Jul. 24, 2002, in the names of Bruce Bartrug, Allen R. Hawk, Robert N. Pinchok and James H. Schwartz for “Edge Sealing Of A Laminated Transparency”; the bus bar arrangement disclosed in U.S. patent application Ser. No. 10/201,864 filed Jul. 24, 2002, in the name of Allen R. Hawk for “Eliminating Hot Spots At End Portions Of Bus Bars Of A Heatable Transparency Having An Electrically Conductive Member”; the heatable article disclosed in U.S. patent application Ser. No. 10/264,106 filed on Oct. 3, 2002, in the name of Charles S. Voeltzel for “Heatable Article Having a Configured Heating Member” can, and the techniques to impede edge corrosion of a laminated coated article disclosed in U.S. patent application Ser. No. 10/353,566 filed Jan. 29, 2003, in the names of Glenn E. Freeman, Robert C. Lewetag and James P. Thiel for “A Coated Article Having A Sealed Layered Edge To Impede Corrosion Of A Coating Of The Edge And Method Of Making Same”, can be used in the practice of this invention. The applications identified above in their entirety are hereby incorporated by reference.