This application claims priority of Chinese Application No. 201220724073.1, filed on Dec. 25, 2012.
1. Field of the Invention
The invention relates to an electronic device, more particularly to a conductive plate and an electronic device having the same.
2. Description of the Related Art
Generally, batteries for a conventional electronic device are directly connected in series between a pair of conductive terminals to obtain a desired voltage. However, due to dust accumulation on electrodes of the batteries, or elastic fatigue of the conductive terminals, the power provided by the batteries may become unstable.
Therefore, the object of the present invention is to provide a conductive plate that can overcome the aforesaid drawbacks of the prior art.
Accordingly, a conductive plate of the present invention is adapted for use in an electronic device, the electronic device including a casing that is formed with a battery slot, first and second batteries that are arranged in a stack and that are disposed in the battery slot, positive and negative power output terminals that are disposed in a wall of the battery slot, the first battery having a first electrode end that is connected electrically to a first electrode end of the second battery, second electrode ends of the first and second batteries being connected electrically and respectively to the positive and negative power output terminals, the conductive plate comprising:
a conductive body adapted to be clamped removably by the first electrode ends of the first and second batteries.
Other features and advantages of the present invention will become apparent in the following detailed description of the preferred embodiment with reference to the accompanying drawings, of which:
As shown in
The conductive plate 5 includes a conductive body 52 that is clamped removably between the first electrode ends 32, 41 of the first and second batteries 3, 4, and a mounting portion 51 that extends from the conductive body 52 and that is adapted to be connected movably to the casing 2. The conductive body 52 has a first surface 521 that faces the first battery 3, a second surface 522 that is opposite to the first surface 521 and that faces the second battery 4, a first through groove 523 that extends through the first and second surfaces 521, 522, a pair of spaced-apart resilient first tongue 524 that are disposed in the first through groove 523, a resilient second tongue 525 that is disposed in the first through groove 523 between the first tongues 524, a second through groove 526 that extends through the first and second surfaces 521, 522 and that is spaced apart from the first through groove 523, a pair of spaced-apart resilient third tongues 527 that are disposed in the second through groove 526, and a resilient fourth tongue 528 that is disposed in the second through groove 526 between the third tongues 527. Each of the first tongues 524 has a free end 71 and a fixed end opposite to the free end 71 and connected fixedly to an edge surrounding the first through groove 523. The second tongue 525 has a free end 71 and a fixed end opposite to the free end 71 and connected fixedly to the edge surrounding the first through groove 523. Each of the third tongues 527 has a free end 71 and a fixed end opposite to the free end 71 and connected fixedly to an edge surrounding the second through groove 526. The fourth tongue 528 has a free end 71 and a fixed end opposite to the free end 71 and connected fixedly to the edge surrounding the second through groove 526. Each of the first tongues 524 and the third tongues 527 defines a part of the first surface 521, each of the second tongue 525 and the fourth tongue 528 defines a part of the second surface 522.
In this embodiment, the conductive plate 5 is connected to the casing 2 by the mounting portion 51. However, the mounting portion 51 may be omitted in other embodiments of the present invention.
The conductive body 52 is made of conductive materials, preferably materials that are not easy to oxidize, such as gold, silver, and nickel, and more preferably a gold-plated metal that has a superior conductivity and a relatively low cost. The mounting portion 51 may be made of the same material of the conductive body 52 and molded with the conductive body 52 as one piece, and may be made of a flexible plastic or a flexible metal.
The conductive body 52 further has four first contacts 61 that are disposed respectively on the first tongues 524 and the third tongues 527, and two second contacts 62 that are disposed respectively on the second tongue 525 and the fourth tongue 528. The numbers of the first and second contacts 61, 62 may vary for different demands. For example, the conductive body 52 of the conductive plate 5 may have only one first contact 61 or only one second contact 62. Moreover, the conductive body 52 of the conductive plate 5 may not be formed with first and second through grooves 523, 526 and the tongues 524, 525, 527, 528, and the first and second contacts 61, 62 may be formed directly on the conductive body 52.
In this embodiment, the conductive body 52 has two through grooves 523, 526 and six tongues 524, 525, 527, 528. However, the numbers of the through grooves 523, 526 and the tongues 524, 525, 527, 528 may vary. The configuration of the through grooves 523, 526 and the tongues 524, 525, 527, 528 enhance the flexibility of the conductive plate 5 to enhance contact between the first contacts 61 and the first battery 3 and contact between the second contacts 62 and the second battery 4.
In this embodiment, the first and second batteries 3, 4 are connected in series, the first contacts 61 are connected to the positive terminal of the first battery 3, and the second contacts 62 are connected to the negative terminal of the second battery 4. However, the first and second batteries 3, 4 may be connected in parallel, e.g., the first and second contacts 61, 62 are connected respectively to the positive terminals of the first and second batteries 3, 4, or connected respectively to the negative terminals of the first and second batteries 3, 4.
In this embodiment, the through grooves 523, 526 are rectangular, the first and second tongues 524, 525 are rectangular and extend in opposite directions, and the third and fourth tongues 527, 528 are rectangular and extend in opposite directions.
While in this embodiment, the electronic device has only two batteries 3, 4 disposed in the battery slot 21, more than two batteries may be employed in other embodiments of this invention with a conductive plate 5 being disposed between each adjacent pair of the batteries.
Referring to
Referring to
Referring to
Referring to
The advantages of this invention are as follows:
1. The conductive body 52 of the conductive plate 5 is disposed between the first and second batteries 3, 4, and each of the first and second contacts 61, 62 has a point contact with one of the first electrode ends 32, 41 of the first and second batteries 3, 4. Therefore, dust accumulation on the first electrode ends 32, 41 of the first and second batteries 3, 4 would not easily affect the electrical connection between the conductive plate 5 and the first and second batteries 3, 4.
2. During installment of the batteries 3, 4, the conductive body 52 is easily positioned between the first and second batteries 3, 4 by pivoting the mounting portion 51.
3. The configuration of the through grooves 523, 526 and the tongues 524, 525, 527, 528 enhance the flexibility of the conductive plate 5, thereby further enhancing the contacts between the first contacts 61 and the first battery 3 and between the second contacts 62 and the second battery 4.
While the present invention has been described in connection with what is considered the most practical and preferred embodiment, it is understood that this invention is not limited to the disclosed embodiment but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation so as to encompass all such modifications and equivalent arrangements.
Number | Date | Country | Kind |
---|---|---|---|
201220724073.1 | Dec 2012 | CN | national |