Conductive shock tube

Information

  • Patent Grant
  • 11021415
  • Patent Number
    11,021,415
  • Date Filed
    Thursday, September 28, 2017
    7 years ago
  • Date Issued
    Tuesday, June 1, 2021
    3 years ago
Abstract
A shock tube for propagating and initiating a signal to an explosive charge which includes at least first and second elongate flexible conductors on a body of the detonator to enable two-way communication between the explosive charge and a blasting machine thereby to confirm the status of the detonator prior to sending a fire signal.
Description
BACKGROUND OF THE INVENTION

This invention relates to a conductive shock tube.


A conventional shock tube is capable of enabling communication in one direction only i.e. a fire signal that is transmitted from a blasting machine, via the shock tube, to an explosive charge. Communication from a detonator to the blasting machine is not possible. Thus, the status of the detonator prior to sending the fire signal cannot be confirmed, prior to detonation, using the shock tube. Additionally a shock tube cannot convey information, other than the fire signal, to a detonator.


An aim of the current invention is to address, at least partially, the aforementioned situation.


SUMMARY OF INVENTION

The invention provides a shock tube for propagating an initiating signal to an explosive charge, the shock tube including a body that is connectable to a blasting machine and at least first and second elongate flexible conductors on or in the body which enable two-way communication between the explosive charge and the blasting machine.


Each conductor may be in the form of a coating or a deposit made from a stretchable electrically conducting material. The material may be an organic/polymeric conductive material, a metal oxide-based material, or may be made from a mixture of an organic/polymeric conductive material and a metal oxide-based material.


Each conductor may be printed using a suitable technique on or in the body. Each conductor may be printed in a pattern which is suitable to flexing or stretching deformation of the shock tube, without breaking the conductor.


Each conductor may be printed on a respective layer of material that surrounds an energy propagating core of the shock tube. Preferably, a first conductor is printed on a first layer of material that surrounds the energy propagating core and a second conductor is printed on a second layer of material which surrounds the first layer of material.


The first and the second conductors may culminate in a suitable connecting member which is connectable to a connector located in or on a detonator.


The invention also provides a connector for connecting a shock tube of the aforementioned kind to the explosive charge which, preferably, is a detonator.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is further described by way of example with reference to the accompanying drawings wherein;



FIG. 1 is a cross-sectional view of a conductive shock tube according to the invention; and



FIG. 2 is a schematic representation of a connecting member for connecting first and second conductors of the shock tube of FIG. 1 to a detonator.





DESCRIPTION OF PREFERRED EMBODIMENT


FIG. 1 of the accompanying drawings illustrates a shock tube 10 which includes an elongate tubular body 12 which defines a bore 18 housing a core 20 made from or containing an energy propagating material 20A.


The energy propagating material 20A is surrounded by a first protective layer 22 and a second protective layer 24. Each layer 22, 24 consists of a suitable material having appropriate electrical insulating, waterproof and abrasion-resistant properties.


A first elongate flexible conductor 26 and a second elongate flexible conductor 28, each in the form of a conductive coating, are printed on the first and the second layers respectively. Each of the conductors 26 and 28 completely surrounds the respective layer 22, 24. This is by way of example only and is non-limiting.


The first and second conductors 26 and 28, at an end 30 of the shock tube which, in use, is to be connected to a detonator 32, culminate in a connecting member 34 which is connectable to a connector 36 of the detonator—see FIG. 2. The connecting member 34 includes a cap 38 which is fitted onto the end 30, a support structure 40, and contacts in the form of a first conductive pin 42 and a second conductive pin 44 which extend to one side of the support structure (to the left in FIG. 2). Each pin 42, 44 is embedded in or penetrates the first conductor 26 and second conductor 28 respectively.


A first contact or conductive nub 46 and a second contact or conductive nub 48 are connected to the first and second pins 42 and 44 respectively which extend through the support structure 40. The connector 36, on the detonator, has annular conductive surfaces 50 and 52 which respectively oppose the conductive nubs 46 and 48.


The cap 38 is attached to the end 30 in any suitable way e.g. by means of a crimping member 54. The cap 38 includes an external thread 56.


The connector 36 includes a formation 58 which is complementary to the cap 38 and has an internal thread 60 which is threadedly engageable with the thread 56. In use, the formation 58 and the cap 38 are threadedly secured to each other to hold the nubs 46, 48 and the surfaces 50 and 52 respectively in electrical contact with one another.


Electrical leads 64 and 66 extend from the surfaces 50 and 52 to electronic components (not shown), in the detonator 32.


As an alternative to the tubular conductors 26 and 28, the first and second conductors may each be printed in a wavy or spiral pattern on respective tubular substrates or layers e.g. the layers 22, 24. These patterns allow for flexing and stretching of the shock tube, without leading to breaking of the conductors.


The first and second layers 22, 24 could each be coated with the material which forms the first and second conductors, using techniques that do not require alteration of existing shock tube manufacturing techniques.


The conductors 26 and 28 are made from an organic/polymeric conductive material, or a metal oxide-based material, or a mixture of the organic/polymeric conductive material and a metal oxide-based material. This type of material can be “stretched” to a substantial degree without breaking.


In the drawings the conductors 26, 28 are shown enlarged. This is for illustrative purposes only. In practice the conductors are thin, particularly if formed by means of a printing technique, and the shock tube 10 would have a diametrical dimension substantially equal to that of a conventional shock tube.

Claims
  • 1. A shock tube for propagating an initiating signal from a blasting machine to an explosive charge, the shock tube comprising: a core of an energy propagating material,a first protective layer which surrounds the core,a second protective layer which surrounds the first protective layer,a first elongate flexible conductor between the first protective layer and the second protective layer, anda second elongate flexible conductor on an outer side of the second protective layer,wherein the first and second elongate flexible conductors enable two-way communication between the explosive charge and the blasting machine.
  • 2. The shock tube according to claim 1, wherein each of the first and second elongate flexible conductors is made from a stretchable electrically conducting material.
  • 3. The shock tube according to claim 2, wherein the stretchable electrically conducting material is selected from an organic/polymeric conductive material, a metal oxide-based material or a mixture of an organic/polymeric conductive material and a metal oxide-based material.
  • 4. The shock tube according to claim 1, further comprising a cap attached to an end of the core and two contacts on the cap which are respectively electrically connected to the first and second elongate flexible conductors.
  • 5. The shock tube according to claim 1, wherein the first elongate flexible conductor is tubular, and the second elongate flexible conductor is tubular.
  • 6. The shock tube according to claim 1, wherein the first elongate flexible conductor is in a wavy or spiral pattern, and the second elongate flexible conductor is in a wavy or spiral pattern.
  • 7. The shock tube according to claim 1, wherein the shock tube has a diametrical dimension equal to that of a conventional shock tube.
  • 8. The shock tube according to claim 1, wherein at least one of the first and second elongate flexible conductors is provided as a coating or deposit.
  • 9. The shock tube according to claim 1, wherein each of the first and second elongate flexible conductors is provided as a coating or deposit.
Priority Claims (1)
Number Date Country Kind
2016/06882 Oct 2016 ZA national
PCT Information
Filing Document Filing Date Country Kind
PCT/ZA2017/050073 9/28/2017 WO 00
Publishing Document Publishing Date Country Kind
WO2018/068067 4/12/2018 WO A
US Referenced Citations (28)
Number Name Date Kind
1631756 Olin Jun 1927 A
4024817 Calder, Jr. May 1977 A
4403143 Walker Sep 1983 A
4777878 Johnson Oct 1988 A
4886126 Yates, Jr. Dec 1989 A
5010821 Blain Apr 1991 A
5070789 True et al. Dec 1991 A
5191936 Edwards Mar 1993 A
5436791 Turano Jul 1995 A
5505134 Brooks Apr 1996 A
5551520 Bethel Sep 1996 A
6179064 Vaynshteyn Jan 2001 B1
6523449 Fayard Feb 2003 B2
6598682 Johnson Jul 2003 B2
6604584 Lerche Aug 2003 B2
6719061 Muller Apr 2004 B2
6752083 Lerche Jun 2004 B1
6837310 Martin Jan 2005 B2
7007756 Lerche Mar 2006 B2
7146912 Bokvist Dec 2006 B2
7172023 Barker Feb 2007 B2
7303017 Barker Dec 2007 B2
7980309 Crawford Jul 2011 B2
9065201 Borgfeld Jun 2015 B2
9611726 Sangare Apr 2017 B2
10386168 Preiss Aug 2019 B1
20040003743 Brooks Jan 2004 A1
20060196665 LaGrange Sep 2006 A1
Foreign Referenced Citations (2)
Number Date Country
9415169 Jul 1994 WO
2013044275 Mar 2013 WO
Non-Patent Literature Citations (1)
Entry
International Search Report and Written Opinion for Application No. PCT/ZA2017/050073 dated Mar. 14, 2018 (8 pages).
Related Publications (1)
Number Date Country
20200271430 A1 Aug 2020 US