CONDUCTIVE TERMINAL AND MATING ASSEMBLY INCLUDING THE CONDUCTIVE TERMINAL

Abstract
A conductive terminal to be mated with a mating terminal includes: a base; and a mating end at a front of the base for mating with the mating terminal, the mating end including a first mating portion for contacting with the mating terminal and a second mating portion arranged in front of the first mating portion for contacting with the mating terminal, wherein the first mating portion includes a first protrusion, the second mating portion includes a second protrusion, the first protrusion and the second protrusion protrude toward same side of the conductive terminal, the contacting direction and manner between the first protrusion and the mating terminal are different from the contacting direction and manner between the second protrusion and the mating terminal.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention relates generally to a conductive terminal and a mating assembly with the conductive terminal, and more particularly to a conductive terminal and a mating assembly with multiple contact point.


2. Description of Related Arts

China patent No. 104167620 discloses a mating assembly, which includes a conductive terminal and a flat mating terminal mated with the conductive terminal, the conductive terminal includes a first contact portion and a second contact portion, the first contact portion and the second contact portion elastically contact and mate the mating terminal along the same direction. When the conductive terminal and the mating terminal are inserted into each other, it is difficult to ensure that the first contact portion and the second contact portion of the conductive terminal are in conductive contact with the mating terminal, this seriously affects the integrity of the signal transmission.


An improved conductive terminal and a mating assembly is desired.


SUMMARY OF THE INVENTION

A main object of the present invention is to provide a conductive terminal and a mating assembly with the conductive terminal, the conductive terminal can be matched with the mating terminal to achieve a reliable fit for multi-point contact.


To achieve the above-mentioned object, a conductive terminal to be mated with a mating terminal comprises: a base; and a mating end at a front of the base for mating with the mating terminal, the mating end including a first mating portion for contacting with the mating terminal and a second mating portion arranged in front of the first mating portion for contacting with the mating terminal, wherein the first mating portion includes a first protrusion, the second mating portion includes a second protrusion, the first protrusion and the second protrusion protrude toward same side of the conductive terminal, the contacting direction and manner between the first protrusion and the mating terminal are different from the contacting direction and manner between the second protrusion and the mating terminal.


To achieve the above-mentioned object, a mating assembly comprises a mating terminal and a conductive terminal mated with the mating terminal, the conductive terminal comprising a base and a mating end at a front of the base for mating with the mating terminal, the mating end including: a first mating portion contacted with the mating terminal and a second mating portion arranged in front of the first mating portion and contacted with the mating terminal, wherein the first mating portion includes a first protrusion, the second mating portion includes a second protrusion, the first protrusion and the second protrusion protrude toward same side of the conductive terminal, and the contacting direction and manner between the first protrusion and the mating terminal are different from the contacting direction and manner between the second protrusion and the mating terminal.


Compared to the prior art, the first protrusion and the second protrusion protrude toward the same side of the terminal, the contacting direction and the contacting manner of the first protrusion and the mating terminal are different from the contacting direction and contacting manner of the second protrusion and the mating terminal, so that the conductive terminal can be matched with the mating terminal to achieve a reliable fit for multi-point contact.





BRIEF DESCRIPTION OF THE DRAWING


FIG. 1 is a perspective view of the first embodiment of a mating assembly of in accordance with the present invention in an unmated state;



FIG. 2 is a perspective view the mating assembly in a mated state in FIG. 1;



FIG. 3 is another perspective view of the mating assembly in FIG. 2;



FIG. 4 is an enlarged view of the mating assembly in FIG. 1;



FIG. 5 is an enlarged view of the mating assembly in FIG. 2;



FIG. 6 is an enlarged view of the mating assembly in FIG. 3;



FIG. 7 is a perspective view of the second embodiment of a mating assembly of in accordance with the present invention in an unmated state; and



FIG. 8 is an enlarged view of the mating assembly in FIG. 7.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to FIGS. 1-6, a mating assembly 100 of the first embodiment of the present invention, the mating assembly 100 comprises a conductive terminal 10 and a mating terminal 20 mated with the conductive terminal 10. The conductive terminal 10 is an elastic terminal, and the mating terminal 20 is substantially has a flat structure.


The conductive terminal 10 includes a base 11 and a mating end 13 located at the front of the base 11 and mated with the mating terminal 20. The mating end 13 includes a first mating portion 130 mated with the mating terminal 20 and a second mating portion 140 arranged in front of the first mating portion 130 and mated with the mating terminal 20. The first matching portion 130 includes a first protrusion 131, and the second mating portion 140 includes a second protrusion 141. The first protrusion 131 and the second protrusion 141 protrude toward the same side of the conductive terminal 10. The first protrusion 131 is a structure formed by stamping, and the first protrusion 131 includes a pair of stamping surfaces 133 formed by stamping. The second protrusion 141 is a structure formed by bending.


The mating terminal 20 includes a flat mating contact portion 21. The mating contact portion 21 includes a first surface 201 facing the conductive terminal. The mating contact portion 21 includes a first mating contact portion 230 and a second mating contact portion 240 connected to the first mating contact portion 230. The first mating contact portion 230 includes a slot 231 extending along the front-to-rear direction and between two arms (not labeled) in the transverse direction perpendicular to the front-to-rear direction. The slot 231 includes two opposite side walls 233. The slot 231 extends forward through the front end of the mating terminal 20 so as to receive the first protrusion 131 in the slot 231 from the front end.


After the conductive terminal 10 is mated with the mating terminal 20. The second protrusion 141 is in contact with the second mating contact portion 240, and the first protrusion 131 is in contact with the first mating contact portion 230. The first protrusion 131 and the second protrusion 141 are engaged with the mating contact portion 21 of the mating terminal 20 in different ways. Specifically, in this embodiment, the first protrusion 131 is inelastically contacted with the mating terminal 20, and the second protrusion 141 is elastically abutted and contacted with the first surface 201 of the mating terminal 20. In addition, the mating direction of the first protrusion 131 and the mating terminal 20 is different from the mating direction of the second protrusion 141 and the mating terminal 20, In this embodiment, the second protrusion 141 is in contact with the first surface 201 of the mating terminal 20 along the first direction, the first direction is the direction in which the first protrusion 131 and the second protrusion 141 protrude. The first protrusion 131 is in contact with the mating terminal 20 in a second direction perpendicular to the first direction and perpendicular to the front-to-rear direction. In this embodiment, the size of the first protrusion 131 in the second direction is greater than the size of the slot 231 in the second direction. The two side walls 233 of the slot 231 can clamp the stamping surface 133, to form an effective contact.


In the present invention, the conductive terminals 10 and the mating terminals 20 are mostly designed in pairs, and are designed for differential signal transmission. The design of this structure can be used for backplane connectors and other related connector products with high-speed signal transmission specifications. Of course, it can also be used for other non-differential pair terminal interconnections.


Referring to FIGS. 7-8, a mating assembly 100′ of the second embodiment of the present invention, compared with the first embodiment, In this embodiment, the second mating portion 140′ of the conductive terminal 10′ includes a slot 40 extending in the front-to-rear direction, the slot 40 divides the second mating portion 140′ into a pair of elastic mating arms. The slot 40 reduces the flexural strength of the second mating portion 140′ and facilitates the contact and mating of the first mating portion 130′ with the mating terminal 20


The mating assembly of the present invention adds a contact point on the basis of the traditional structural design, which effectively solves the impact of the capacitive effect of single-point contact on impedance matching during high-speed signal transmission, improves the impedance matching after mating, and improves the insertion loss. The mating direction and the mating manner of the first protrusion and the mating terminal of the mating assembly of the present invention are different from the mating direction and mating manner of the second protrusion and the mating terminal, to ensure that the first mating portion and the second mating portion can reliably contact and mate with the mating terminal. Therefore, the conductive terminal and the mating terminal can achieve a reliable mate of multiple contact points.


The above is only some of the embodiments of the present invention, but not all or the only embodiments. Any equivalent changes to the technical solutions of the present invention by those skilled in the art by reading the description of the present invention are covered by the claims of the present invention.

Claims
  • 1. A conductive terminal to be mated with a mating terminal, the conductive terminal comprising: a base; anda mating end at a front of the base for mating with the mating terminal, the mating end including: a first mating portion for contacting with the mating terminal; anda second mating portion arranged in front of the first mating portion for contacting with the mating terminal, whereinthe first mating portion includes a first protrusion, the second mating portion includes a second protrusion, the first protrusion and the second protrusion protrude toward same side of the conductive terminal, the contacting direction and manner between the first protrusion and the mating terminal are different from the contacting direction and manner between the second protrusion and the mating terminal.
  • 2. The conductive terminal as claimed in claim 1, wherein the second protrusion is in contact with the mating terminal in a first direction, and the first protrusion is in contact with the mating terminal in a second direction perpendicular to the first direction and perpendicular to a front-to-rear direction.
  • 3. The conductive terminal as claimed in claim 1, wherein the first protrusion is formed by stamping, and the second protrusion is formed by bending.
  • 4. The conductive terminal as claimed in claim 3, wherein the first protrusion includes a pair of stamping surfaces formed by stamping, the stamping surface is clamped to mate with the mating terminal, and the second protrusion is elastically abutted to mate with the mating terminal.
  • 5. The conductive terminal as claimed in claim 4, wherein the mating terminal includes a flat mating contact portion, the mating contact part includes a first mating contact portion and a second mating contact portion connected to the first mating contact portion, the first mating contact portion includes a slot along the front and back direction, and the slot includes two opposite side walls, the mating manner of the stamping surfaces and the side walls are clamping mate, and the mating manner of the second protrusion and the first mating portion is elastic abutting mate.
  • 6. The conductive terminal as claimed in claim 2, wherein the second protrusion protrudes in a direction perpendicular to the first direction and perpendicular to the front-to-rear direction at the second mating portion
  • 7. The conductive terminal as claimed in claim 2, wherein the mating portion includes a slot extending in the front-to-rear direction, and the slot divides the second mating portion into a pair of elastic mating arms.
  • 8. A mating assembly comprising: a mating terminal; anda conductive terminal mated with a mating terminal, the conductive terminal comprising: a base; anda mating end at a front of the base for mating with the mating terminal, the mating end including: a first mating portion contacted with the mating terminal; anda second mating portion arranged in front of the first mating portion and contacted with the mating terminal, whereinthe first mating portion includes a first protrusion, the second mating portion includes a second protrusion, the first protrusion and the second protrusion protrude toward same side of the conductive terminal, and the contacting direction and manner between the first protrusion and the mating terminal are different from the contacting direction and manner between the second protrusion and the mating terminal.
  • 9. The mating assembly as claimed in claim 8, wherein the first protrusion is formed by stamping, and the second protrusion is formed by bending.
  • 10. The mating assembly as claimed in claim 9, wherein the mating terminal includes a flat mating contact portion, and the mating contact portion includes a first surface facing the conductive terminal, the mating contact portion includes a first mating contact portion and a second mating contact portion connected to the first mating contact portion, the first mating contact portion includes a slot along the front-to-rear direction, and the slot includes two opposite side walls, the first protrusion includes a pair of stamping surfaces formed by stamping, the stamping surfaces are clamped and contacted with the side walls, and the second protrusion is elastically abutted and contacted with the first surface.
  • 11. An mating assembling comprising: a conductive terminal defining a first contacting part with a first bulged portion at a rear region and a second bulged portion at a front region thereof wherein the first bulged portion an the second bulged portion are raised in a same vertical direction and offset from each other in both a front-to-back direction and a transverse direction both of which are not only perpendicular to each other and but also to the vertical direction; anda mating terminal defining a second contacting part with two arms spaced from each other with an elongated slot therebetween in the transverse direction; wherein during mating, the two arms abut against the second bulged portion in the vertical direction and commonly sandwich the first bulged portion therebetween in the transverse direction.
  • 12. The mating assembly as claimed in claim 11, wherein the second bulged portion forms therein a slot extending in the front-to-back direction along a centerline.
  • 13. The mating assembly as claimed in claim 12, wherein the second contacting part is flat.
Priority Claims (1)
Number Date Country Kind
202010185074.2 Mar 2020 CN national