(a) Field of the Invention
The present invention relates to a conductive terminal, and more particularly to a conductive terminal which includes two conductive members, with each conductive member being provided with a groove which is concaved in from an edge of the host conductive member, and the two conductive members being combined with a hot melt fixing member, so that the two conductive members form contact limit to constitute an overheat protection structure for a path. In overheating, the hot melt fixing member is damaged that the two conductive members are opened by an elastic force to form open circuit.
(b) Description of the Prior Art
To avoid current overload, short circuit or overheating to a circuit, a wire fuse or circuit breaker will be usually disposed on the circuit, such that the wire fuse will have melt fracture by high temperature when the temperature of the circuit is too high or metallic spring leaves of the circuit breaker will trip when the current of the circuit is too large, so that the circuit can form open circuit and power off, thereby keeping the safe use of electricity.
Regarding to a related prior art of the wire fuse structure, there is a Taiwanese invention patent publication No. 1371053, “Thermal Fuse Connection Structure.” The thermal fuse includes primarily two terminals which are connected together to form a path, and a hot melt metal which is combined on the two terminals. Under the condition of current overload, circuit overheat or too high the ambient temperature, the hot melt metal will have melt fracture by heat, and the two terminals will not be connected together to form an open circuit state.
However, in the prior art, the hot melt metal is a conductive material. Therefore, when the hot melt metal shows melt fracture, if part of the hot melt metal is adhered on the two terminals, the adhered hot melt metal may easily cause miscontact between the two terminals, so that the circuit cannot power off completely. In addition, the hot melt metal that shows melt fracture can be ejected by the two terminals that are opened to form open circuit, and the hot melt metal showing melt fracture may collide with other object to form miscontact and result in short circuit, which is still dangerous in use.
A Taiwanese new utility model patent No. M477079, “Overheat Failure Safety Structure, a Socket and a Plug with the Overheat Failure Safety Structure,” employs an insulative stopper to connect two conductive members to form a path. When the circuit is overheated, the insulative stopper will have melt fracture, which allows the two conductive members to be opened by an elastic force and thus to form open circuit. The stopper is provided with a first insulative part and an opposite second insulative part, and utilizes a connection part to connect the first insulative part with the second insulative part, forming a U-shaped appearance to have an open end at which the two conductive members are tightly clipped.
By a practical test, it is found that in the U-shaped stopper, as the arm of force is longer at the location where the first insulative part and the second insulative part are more away from the connection part, the clamping force there will be weaker, which easily causes a partial ill contact to the two conductive members. It means that a better clamping force is easily available at the location where the two conductive members are close to the connection part of the U-shaped stopper; whereas, a better clamping force is not easily available at the location where the two conductive members are away from the connection part of the U-shaped stopper. Therefore, it is necessary to further improve the clamping between the U-shaped stopper and the two conductive members, so that the two conductive members can be more tightly contacted.
Accordingly, to solve the abovementioned issues, the present invention discloses a conductive terminal which is used in association with a hot melt fixing member. The conductive terminal includes two conductive members, each conductive member is provided with a groove, the groove is concaved in from an edge of the host conductive member and is opposite to the other groove. A gap is maintained between the two conductive members by an elastic force between the two conductive members. The hot melt fixing member is put in the grooves of the conductive members and is combined on the conductive members to overcome the elastic force, enabling the two conductive members to form contact limit. The hot melt fixing member is damaged when overheat, so that the two conductive members can be opened by the elastic force to form open circuit.
In addition, the groove is in a width of 0.1˜1.3 cm.
Furthermore, the width of groove is 0.8 cm.
Moreover, the extended length for the part of the hot melt fixing member put into the grooves is not larger than the depth of the grooves.
The present invention is provided with following effects that:
1. The hot melt fixing member is put into the grooves of the conductive members to tightly clip and fix the conductive members. This method will have sufficient rigidity of connection to combine and position the two conductive members of the circuit to be protected.
2. The hot melt fixing member is put into the grooves of the conductive members and preferably, the extended length of the part of the hot melt fixing member put into the grooves is not larger than the depth of the grooves. Therefore, when the part of the hot melt fixing member put into the grooves is damaged by heat, it can assure that two sides of the hot melt fixing member are subjected to the elastic force between the conductive members uniformly and are ejected, so that the two conductive members can be opened actually and the circuit can power off.
3. The grooves on the conductive members are concaved in from the edges of the host conductive members, facilitating a user to put the hot melt fixing member into the grooves directly. In addition, by the grooves on the two conductive members, the connection member of the hot melt fixing member can be deeply disposed in the grooves, so that after the hot melt fixing member has been assembled, the two stoppers will not be too far away from the connection member, which avoids resulting in a too long arm of force and enables the two conductive members to be clamped more uniformly.
To enable a further understanding of the said objectives and the technological methods of the invention herein, the brief description of the drawings below is followed by the detailed description of the preferred embodiments.
Referring to
Referring to
Referring to
Referring to
The abovementioned hot melt fixing member 2 is preferably made of an insulative material. Referring to
Referring to
By putting the connection member 21 of the hot melt fixing member 2 into the first groove 41 and the second groove 61 of the live wire pin 4 and the live wire 6, and using the stoppers 22 of the hot melt fixing member 2 to restrain the live wire pin 4 and the live wire 6, the live wire pin 4 and the live wire 6 can contact with each other to form a path. In addition, by putting the connection member 21 of the hot melt fixing member 2 into the first groove 51 and the second groove 71 of the neutral wire pin 5 and the neutral wire 7, and using the stoppers 22 of the hot melt fixing member 2 to restrain the neutral wire pin 5 and the neutral wire 7, the neutral wire pin 5 and the neutral wire 7 can contact with each other to form a path. The connection member 21 will be melted when overheat, allowing the live wire pin 4 and the live wire 6 to open, and the neutral wire pin 5 and the neutral wire 7 to open by an elastic force between the live wire pin 4 and the live wire 6, as well as an elastic force between the neutral wire pin 5 and the neutral wire 7, thereby forming open circuit.
Referring to
whereas, the neutral wire pin 5A extends along a direction perpendicular to the direction along which the neutral wire 7A extends. This means that the first groove and the second groove fit with the type of the live wire pin and the live wire, as well as the type of the neutral wire pin and the neutral wire.
Referring to
The live wire terminal 9 is disposed in the insulative body 8 and corresponds to the live wire insertion hole 81. The neutral wire terminal 10 is disposed in the insulative body 8 and corresponds to the neutral wire insertion hole 82. The live wire terminal 9 and the neutral wire terminal 10 are provided with a first groove 91(101) which is concaved in from an edge of the live wire terminal 9 and the neutral wire terminal 10. The live wire 20 corresponds to the live wire terminal 9, and the neutral wire 30 corresponds to the neutral wire terminal 10. The live wire 20 and the neutral wire 30 are provided with a second groove 201(301) corresponding to the first groove 91(101), and the second groove 201(301) is concaved in from an edge of the live wire 20 and the neutral wire 30.
By putting the connection member 21 of the hot melt fixing member 2 into the first groove 91 and the second groove 201 of the live wire terminal 9 and the live wire 20, and using the stoppers 22 of the hot melt fixing member 2 to restrain the live wire terminal 9 and the live wire 20, the live wire terminal 9 and the live wire 20 can contact with each other to form a path. In addition, by putting the connection member 21 of the hot melt fixing member 2 into the first groove 101 and the second groove 301 of the neutral wire terminal 10 and the neutral wire 30, and using the stoppers 22 of the hot melt fixing member 2 to restrain the neutral wire terminal 10 and the neutral wire 30, the neutral wire terminal 10 and the neutral wire 30 can contact with each other to form a path. The connection member 21 will be melted when overheat, allowing the live wire terminal 9 and the live wire 20 to open, and the neutral wire terminal 10 and the neutral wire 30 to open by an elastic force between the live wire terminal 9 and the live wire 20, as well as an elastic force between the neutral wire terminal 10 and the neutral wire 30, thereby forming open circuit.
It is to be understood that the above description and drawings are only used for illustrating some embodiments of the present invention, not intended to limit the scope thereof. Any variation and deviation from the above description and drawings should be included in the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
104205284 | Apr 2015 | TW | national |