This invention relates generally to paper or paperboard materials having useful conductivity and electromagnetic absorptive properties. Furthermore, the materials may have additional useful properties such as compressibility, biodegradability, and fire retardance.
Currently, electronic devices need to be shielded from various forms of electrical interference to work, safely, properly, and comply with FCC regulations. Products used for shielding are pure metal sheets or box cases, metal tapes, woven metal screens, metal coated plastics, plastics/elastomers containing conductive/absorptive fibers or particles, metallized nonwoven or textile sheets, and textiles with conductive/absorptive fibers. In addition, cables are shielded by incorporating highly permeable, sintered devices onto their ends to absorb electromagnetic energy.
The disadvantages of these products include the high cost, weight, thickness and limited formability of pure metal sheets and screens; the high cost and low conductivity of conductive/absorptive plastics; and the high cost, uniformity, and masking requirements of metal coated plastics. Furthermore, these traditional electromagnetic interference (EMI)/radio frequency interference (RFI) shielding products experience decreasing effectiveness at frequencies above 1.5 GHz.
The invention described here provides a shielding material comprising a conductive/absorptive paper or paperboard product.
The present invention provides a paper with a high level of conductivity (low level of resistance) and electromagnetic absorptive properties that in various embodiments can serve a number of useful purposes including shielding against EMI/RFI, protecting against electrostatic discharge, and producing electric resistance heating. The materials may have additional useful properties such as compressibility, biodegradability, and fire retardance.
FIG, 1 illustrates a cross section view of a typical fibrous web;
The resistance of the resulting paper sheet would depend on the amount and location of conductive/absorptive material in the sheet. Resistance of this type of product is typically known as “sheet resistance” and is measured in units of “ohms per square.” For convenience here, the term “resistance” will be used. A resistance of less than about one ohm per square would be useful for electromagnetic interference (EMI), or radio frequency interference (RFI), shielding applications. A resistance of about 10-200 ohms per square would be useful for electrostatic discharge (ESD) applications. A resistance of about 1-500 ohms per square would be useful for resistance heating applications. For these particular types of applications, the ranges given here are examples, and resistance values outside the particular ranges may still be useful. For example, resistances between 1-10 ohms per square may still be useful for EMI/RFI shielding, and a resistance outside the range of 10-200 ohms per square may still be useful for BSD applications.
Potential uses for the embodiment of
The conductive/absorptive sheet may also be used as is (not part of a decorative laminate) inside of cases on all types of equipment needing shielding tor EMI or RFI, for example, in computer housings. The sheet could also be used as a gasket material for EMI shielding applications. The sheet could also be used for architectural shielding applications such as wall coverings. Further, the sheet could be saturated in or encased in a flexible insulating substance such as a styrene butadiene or urethane-acrylic latex and connected to a portable power supply for resistance heating,
The sheet resistance may depend on the amount of conductive materials therein. A resistance of less than about one ohm per square would be useful for electromagnetic interference (EMI) shielding applications. A resistance of about 10-200 ohms per square would be useful for electrostatic discharge (ESD) applications. A resistance of about 1-500 ohms per square would be useful for resistance heating applications. These ranges are typical examples and as noted earlier, are not meant to be limiting.
Potential uses for the embodiment of
Layer 146 may be almost, pure conductive/absorptive fiber (>90%)
having less than 10% wood fibers mixed in. The application method for the conductive/absorptive layer 146 may include a secondary headbox on the fourdrinier, a slot (curtain) coater or other wet laid system. The resulting paper sheet made from this process has a base layer 141 composed of a mixture of conductive/absorptive fibers and wood pulp. The base layer 141 may optionally have wet strength resin added, such as the resin types described above. The forming of the base layer 141 may be by the same wet laid systems mentioned above. The final sheet may additionally have a second layer 146 on one side which is composed almost entirely of conductive/absorptive fibers. Basis weight ranges and resistance ranges may be similar to those given for above embodiments.
To explain further, one possible example of the embodiment of
Potential uses of this embodiment are the same as for the first embodiment.
Potential uses of this embodiment are the same as for the first embodiment.
As an example, conductive/absorptive material such as fibers or particles may be added to the slurry in an earlier stage of the slurry preparation, or before or in the headbox, or shortly after leaving the headbox. Addition at these locations provides good mixing throughout, the slurry. Standard papermaking practice is to try to achieve uniform distribution of solids in the slurry, leading to good “formation” of the paper product. If the conductive/absorptive materials have different physical or chemical properties from the usual paper fibers, additives may be used to achieve desired results, such as keeping all materials uniformly in suspension. The point at which conductive/absorptive fibers are added may influence their orientation in the web.
Conductive/absorptive materials may be added when the web being formed has just left the headbox, and is fairly fluid, for example in the first distance 430. Material added at this point, whether liquid or solid, may be less likely to distribute evenly because the slurry of fibers is becoming set. Therefore migration of the conductive/absorptive materials across the web or into the web may be somewhat limited.
Conductive/absorptive materials may be added when the web being formed is further away from the headbox, and less fluid, for example in the second distance 431. Materials added at this point may be expected to remain closer to the surface of the web. Possible application methods for conductive/absorptive materials include, for example, a curtain coater 440, or a spray coater 450, or a secondary headbox (not shown).
Conductive/absorptive materials, besides being added to the web at the “wet end” of the paper machine, for example in locations 430, 431, may also be added at other locations toward the dry end of the paper machine. Typically one or more drying sections such as 461, 462, and 463 may be used to dry the paper. Addition of conductive absorptive materials could occur within or between these drying sections. This could be done using application methods which include but are not limited to a curtain coater, a spray coater, or a size press (not shown).
The conductive/absorptive sheet disclosed herein has several advantages over other conductive/absorptive materials. It may be produced at lower cost due to low cost, base materials and reduced need for expensive conductive/absorptive additives. It may be made with high conductivity and high uniformity. The sheet is more flexible than metal sheets or screens. There is no secondary processing required, eliminating the need for plating, painting, or masking compared to both metals and plastics. Also, in a certain embodiment, the conductive/absorptive sheet is thermoformable.
Additional Embodiments
Besides the embodiments described so far, certain materials may be selected for making the conductive/adsorptive products in order to give additional desired properties.
Certain materials used for EMI shielding are not biodegradable or environmentally friendly. With the increasingly short lifetime of many electrical devices, most of them end up in landfills. With use of appropriate materials as described below, EMI shielding materials may be made completely biodegradable and environmentally friendly.
Fire resistant or lire retardant properties are often desired or necessary for materials used in electromagnetic shielding. A material that is fire retardant will prevent the propagation of fire/flame once a heat source is removed. Except for the pure metal forms of shielding (boxes, tapes, spring gaskets, etc), many shielding products used are not fire retardant/resistant or must have special additives to be fire retardant.
Electromagnetic absorptive properties are also very desirable in many suppression, devices found on electric cables and power cords. These devices, such as device 500 in
In another example, magnetically permeable materials, such as ferrites and other iron based powders, are added to elastomer sheets, or coated on polymer sheets to function as microwave absorbers. These materials are then attached to various surfaces to absorb microwaves or radar, for example as cavity resonance absorbers for circuit boards, etc. The elastomers used to make these products are not fire retardant, so that in some instances, additional lire retardant substances are added to make the products fire retardant.
Compressibility is sometimes desired for EMI shielding applications. Gaskets are often used at joints in a structure such as a computer case. These gaskets are typically compressible, foam cores covered with a conductive fabric or foil. They are adhered to the surfaces with pressure sensitive adhesive strips.
Embodiments are described below which provide among other benefits biodegradability, fire retardance, absorptive properties, compressibility, and ease of shaping into functional components. It should be understood, that most of the additional features incorporated into these embodiments can be combined with each other, or with the embodiments previously described. For example, biodegradability and compressibility may both be incorporated into a product. Likewise formability and fire retardance may be incorporated together. Other combinations are also possible.
Biodegradability
Referring to the embodiments already described, a biodegradable and environmentally friendly product may be achieved using carbon fibers or particles tor the conductive/absorptive fibers and/or particles. The conductive/absorptive carbon fibers are preferably from 2 mm to 20 mm in length, and carbon particles are preferably from 1 to 20 microns in diameter. The carbon fibers or particles may comprise from 10% to 50% of the total dry fiber component by weight. The remaining fiber component (90% to 50%) may be wood-based paper making fibers 102, 104 of any softwood or hardwood species and/or cotton. Softwood species are preferred. The resulting pulp, particle and water mixture may be made into a dry sheet via web forming processing known to those skilled in the art. One possible forming process is a wet laid process such as a fourdrinier based paper machine. Depending on end use intended, a biodegradable binder such as natural rubber may be added to the pulp mixture to impart strength when the final paper sheet is rewet. The final sheet may have a basis weight of 30 gsm to 1200 gsm.
In an embodiment similar to
Potential uses for the embodiment include heat forming or shaping and die cutting into forms to lit into product cases, circuit board covers, or around various electric and electronic components for EMI and/or RFI shielding purposes.
In another embodiment, similar to that shown in
Layer 146 may be almost pure conductive/absorptive carbon fiber or
particles (>90%) having less than 10% wood fibers mixed in. The application method for the conductive/absorptive layer 146 may include a secondary headbox on the fourdrinier, a slot (curtain) coater or other wet laid system. T he resulting paper sheet made from this process has a base layer 141 composed of a mixture of conductive/absorptive fibers and wood pulp. The base layer 141 may optionally have a biodegradable binder added, such as natural rubber for strength. The forming of the base layer 141 may be by the same wet laid systems mentioned above. The final sheet may additionally have a second layer 146 on one side which is composed almost entirely of conductive/absorptive carbon fibers or particles. Basis weight ranges and resistance ranges may be similar to those given for above embodiments.
As was illustrated in
Fire Retardance
To impart fire retardance to the sheet products previously described
herein, addition may be made of a fire retardant material or mixture of materials included without limitation metal hydroxides (for example aluminium trihydrate, calcium sulfate dehydrate, magnesium hydroxide, and talc), antimony compounds such as antimony trioxide, boron compounds such as borax and zinc borate; metal compounds including those based on zinc, molybdenum, and titanium, and phosphorus compounds (such an ammonium polyphosphate). The fire retardant material or mixture of materials may comprise 5 to 50% of the dry weight of the pulp mixture. Charged chemicals may optionally be added to improve the retention of the fire retardants with the fibers, in an additional embodiment, a sheet either with or without internal fire retardant materials could have fire retardant materials (such as those listed, above, and other water soluble fire retardants such as boric acid or ammonium bromide) added via a liquid spray, size press, or coalers (such as a slot coater, rod coater, roll coater. etc.) Additionally, these fire retardants may be added after manufacturing the sheet on a paper machine, via an off-machine saturator, coater, or size press. These fire retardants applied to the sheet may add 1 to 50% additional dry weight to the sheet.
The fire retardant sheet may be formed in more than one layer. To explain further, one possible example similar to the structure of
Various latex binders may be added to the pulp mixture to impart strength and durability to the final sheet. Any type of latex may be used for the purpose including natural rubbers, styrene butadiene, acrylic, etc. The latex may be added in several ways known to those skilled in the art. These include addition of the latex to the pulp slurry (wet end addition), addition via a size press or coater on the paper machine during sheet manufacture, or addition after manufacture on a coater, size press, or saturator. When the latex is added post wet end, fire retardant fillers and/or borates may be mixed in with the latex prior to its addition to the sheet.
Compressibility
In another embodiment, unexpended microspheres, such as Akzo Nobel's Expancel Microspheres, may be added to the sheet structures already described, for example by mixing the microspheres into the slurry being made into a sheet material. Conductive fibers and/or particles would comprise from 10% to 50% of the total dry fiber component by weight. The microspheres would comprise 2 to 40% of the dry mixture. The remaining fiber component (10% to 88%) would be normal wood based paper making fibers of any softwood or hardwood species, although softwood species are preferred, or cotton fibers, Upon expansion, typically achieved through controlled application of heat, the microspheres would have a diameter from 5 to 50 microns each and would lend compressibility to the sheet. Compressibility is useful, for example in gasket applications.
In one embodiment, the microspheres may be used in a multi-layer sheet, such as those described previously. It may be advantageous to provide the majority or all of the microspheres in one of the layers.
Use of Ferrite Materials
Electric cables and power cords can act as antennas if not properly shielded and can induce unwanted radio frequency interference into the electronic components they are connected to. To prevent this, magnetically permeable materials, such as ferrites and other iron based powders, are sintered into a functional device that fits over these cables and suppresses the unwanted interference. For example, as shown in
A ferrite containing sheet may be created by the invention to provide the same functionality as existing sintered ferrite devices, without the need for a plastic housing, and reducing the inventory of sizes needed for the different applications. The material may be converted into a tape 530 and secured to a cable 520 with an adhesive backing, glue, or other appropriate mechanism. For example, by wrapping such a tape 530 around a cable 520, a suppressor device 540 may be created. By using a tape design, the inside diameter of the suppression material device 540 will perfectly fit the outside diameter of the cable 520, and the overall outside diameter of the device can be varied by the number of tape wraps around the cable. Therefore two of the geometry variables that cause the large inventory of sintered parts are eliminated.
Another use of a ferrite containing flexible sheet is for a microwave absorber in various applications such as radar absorbing and cavity resonance absorbing materials. These materials could also be converted into a tape and secured to the appropriate surfaces with an adhesive backing, glue, or other appropriate mechanism.
To create the desired absorptive sheet, magnetically permeable materials comprised of various carbon, ferrite and/or iron based powders, maybe added to a wood pulp and water mixture. The powder fillers could be added to the pulp and water slurry prior to the sheet forming process, or they could be added via a secondary apparatus to a base of fibers during the forming process (such as on the fourdrinier).
The sheet may have a basis weight of 100 gsm to 3000 gsm. The highly permeable powders may comprise 40-80% by weight of the mixture and may have an average particle size between 1-70 microns. The resulting sheet may then be slit to the appropriate width for each application. An adhesive backing may also be added to the material, to make a tape.
Methods of making and using the absorptive fibrous web in accordance with the invention should be readily apparent from the mere description of the product structure and its varied appearances as provided herein. No further discussion or illustration of such methods, therefore, is deemed necessary.
While preferred embodiments of the invention have been described and illustrated, it should be apparent that many modifications to the embodiments and implementations of the invention can be made without departing from the spirit or scope of the invention. Although the preferred embodiments illustrated herein have been described in connection with one and two-layer sheets, and with particular types of conductive/absorptive and non-conductive materials, these embodiments may easily be implemented in accordance with the invention in sheets having more than two layers, and comprising other conductive/absorptive and nonconductive materials.
It is to be understood therefore that, the invention is not limited to the particular embodiments disclosed (or apparent from the disclosure) herein, but only limited by the claims appended hereto.
This application claims the benefit of priority under 35 U.S.C. §119(e) of U.S. provisional application serial number 60/746568, filed on May 5, 2006, and U.S. provisional application serial number 60/870,480, filed on Dec. 18, 2006, both of which are hereby incorporated by reference in their entireties.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US07/67780 | 4/30/2007 | WO | 00 | 10/20/2008 |
Number | Date | Country | |
---|---|---|---|
60746568 | May 2006 | US |