This disclosure relates generally to determining fluid properties using a conductivity probe. In particular, this disclosure relates to systems and methods for determining fluid properties in real-time or substantially real-time for monitoring and control of, for instance, various industrial, oil and gas exploration, and mining operations.
Conductivity probes or systems are sometimes used to measure the conductivity of water contained in oil/water/gas multiphase flows. The water conductivity measurement may then be used to infer changes in water salinity or to track changes in calibration of the water mass-attenuation coefficient provided to a multiphase flow meter (MPFM), such as a gamma-ray fraction meter.
Additionally, in oil and gas exploration and production, fracturing in shale environments may utilize a MPFM to provide monitoring of the fracturing process during various types of fracturing operations, such as a Frac Plug Drill-Out (FPDO) and flowback operations.
Moreover, a MPFM engineer is usually not present for the whole duration of the operation when fracturing fluids delivery and flowback services are operating. The engineer may be present for the rig-up or during the first few hours of flow and may also manage other tools at the job site. A typical FPDO operation, however, lasts for few days while a typical subsequent flowback operation lasts for 3 days to 3 months. One of the main challenges today in the MPFM data post-processing is the lack of interpolation capability to ensure a continuous adjustment of changes of water properties. The event-centered changes of water-attenuations may generate undesirable step changes to the flow-rate computations, which create challenges to accuracy in, for example, estimating flow rates, and misunderstandings by operators. Accordingly, it would be desirable to provide the MPFM post-processing analysis with continuously measured brine salinity data.
Referring again to the known system 100 of
Some examples disclosed herein include systems and methods for monitoring and controlling conventional and unconventional wells, pipes, or streams during oil and gas exploration and production.
Some examples disclosed herein include systems and methods for monitoring and controlling operations in other industries, such as mining, monitoring and analysis of industrial waste streams, and evaluation and control of water quality in aquifers and surface waters.
Some examples disclosed herein include systems and methods for using a conductivity probe in applications with multiphase fluids in the presence of solids, such as measuring the water conductivity variation, improving the detection of solids and/or slugs, and identifying reservoir properties, such as connected fracture chemistry/geometry in unconventional shale well FPDO and flowback operations.
An example apparatus disclosed herein includes a flow meter and a fluid conduit to provide a flow path for a fluid relative to the flow meter. The example apparatus includes a conductivity probe coupled to the fluid conduit to generate brine conductivity data of the fluid during flow of the fluid through the fluid conduit. The example apparatus includes a processor to modify fluid flow data generated by the flow meter based on the brine conductivity data.
An example method disclosed herein includes accessing, by executing an instruction with a processor, brine conductivity data generated by a conductivity probe during flow of a multiphase fluid through a fluid conduit; accessing, by executing an instruction with the processor, fluid flow data generated by a flow meter for the multiphase fluid during the flow of the multiphase fluid through the fluid conduit; applying, by executing an instruction with the processor, a correction to the fluid flow data to generate corrected fluid flow data; and determining, by, executing an instruction with the processor, one or more of a holdup or a flow rate of a phase of the multiphase fluid based on the corrected fluid flow data.
Another example apparatus disclosed herein includes means for generating fluid flow data during flow of a fluid through a conduit; means for generating brine conductivity data for the fluid during the flow of the fluid through the conduit; and means for correcting the fluid flow data based on the brine conductivity data.
Certain embodiments of the disclosure will hereafter be described with reference to the drawings, wherein like reference numerals denote like elements. It should be understood, however, that the accompanying drawings illustrate only the various implementations described herein and are not meant to limit the scope of various technologies described herein. The drawings show and describe various embodiments of the current disclosure.
The figures are not to scale. Instead, the thickness of the layers or regions may be enlarged in the drawings. In general, the same reference numbers will be used throughout the drawing(s) and accompanying written description to refer to the same or like parts.
In the following description, numerous details are set forth to provide an understanding of the present disclosure. It will be understood by those skilled in the art, however, that the embodiments of the present disclosure may be practiced without these details and that numerous variations or modifications from the described embodiments may be possible.
In the specification and appended claims: the terms “connect,” “connection,” “connected,” “in connection with,” and “connecting” are used to mean “in direct connection with” or “in connection with via one or more elements;” and the term “set” is used to mean “one element” or “more than one element”. Further, the terms “couple,” “coupling,” “coupled,” “coupled together,” and “coupled with” are used to mean “directly coupled together” or “coupled together via one or more elements”. As used herein, the terms “up” and “down,” “upper” and “lower,” “upwardly” and downwardly,” “upstream” and “downstream,” “above” and “below,” and other like terms indicating relative positions above or below a given point or element are used in this description to more clearly describe some embodiments of the disclosure.
This present disclosures includes the use of a conductivity probe to perform real-time or substantially real-time measurement of the conductivity of water contained in a single-phase or multiphase fluid in changing environment(s) in oil and gas field operations. The conductivity probe can be used in, for instance, producing wells, injector wells, or in wells being drilled, fractured, or in the process of being abandoned. Example systems and methods disclosed herein may be used either alone or in conjunction with other devices such as (but not limited to) pressure and temperature gauges, multiphase or single phase flow meters, instrumented separators, sand measurement devices located upstream and/or downstream of the conductivity probe, ion-selective electrodes, and pH sensors. Example systems and methods disclosed herein may also be used with an automated or manual sampling system.
Example systems and methods disclosed herein may be used in other applications, such as monitoring and controlling operations in other industries, such as mining, monitoring and analysis of industrial waste streams, and evaluation and control of water quality in aquifers and surface waters. For example purposes, however, the systems and methods disclosed herein will be discussed in the context of fracturing operations used in oil and gas exploration and production.
Example systems and methods disclosed herein provide for monitoring, controlling, and characterizing fluid from fracking operations using a MPFM in conjunction with a conductivity probe. Example systems and methods disclosed herein may be used alone or in conjunction with other devices such as (but not limited to) pressure and temperature gauges, multiphase or single phase flow meters, instrumented separators, sand measurement devices located upstream and/or downstream of the conductivity probe, ion-selective electrodes, and pH sensors. Example systems and method disclosed herein can also be used with an automated sampling system and/or a manual sampling system.
In examples disclosed herein, the fluid being characterized can be monophasic or multiphasic (i.e., where the phases can be any of the combinations of water, oil, gas, solids (including undissolved salts), mud and slurries, steam, or cement). In examples in which the fluid is multiphasic, the multiphase fluid can have forms such as segregated flow, emulsion, foam, and doped with tracers. In some examples, the multiphase fluid includes drilling muds, cement slurries, aerated muds, stable or unstable foams with variable rheologies.
Example conductivity probes disclosed herein may be deployed in different multiphase flow regime conditions, including varying gas volume fractions, water cuts, or water-in-liquid ratios. For purposes of this disclosure, it will be assumed that there are correlations between conductivity of water and its salinity. Such correlations may be determined from measurements, or inferred from empirical models or interpolation lookup tables, such as those disclosed in U.S. Pat. No. 6,831,470 or U.S. Pat. No. 9,528,869, both assigned to the present applicant.
In examples disclosed herein, flowback modeling can be performed based on a Mangrove™ and Kinetix™ software for multistage completion and stimulation design that is adapted to a well's specific geological, geochemical, and geo-mechanical conditions. The actual well flow can be continuously monitored using MPFM technology, such as Vx Spectra™ MPFMs available from Schlumberger, to accurately capture the rapid transient changes of produced fluids and sand content during FPDO and flowback operations, such as during the early flow in the life of the well. Real-time or substantially real-time transmission of the dynamic fluid and solids rate information to a coil tubing (CT) unit enables well operators to guide and manage injection, return rate, and pressure and to optimize inflow-outflow balance conditions. Accurate fluid and solid flow rate measurements provided by the MPFM in combination with a conductivity probe during FPDO and flowback operations, enables guided active control of CT injection parameters and the wellhead choke to keep wells in a defined, secure operating envelope to protect fracture connectivity and promote productivity.
In examples disclosed herein, the conductivity probe may be used during FPDO operations to simplify and enhance the quality of individual-phase flow-rate measurements with the MPFM (e.g., a Vx Spectra™ MPFM). Monitoring (e.g., at a high data-sampling frequency) pressure and flow rates in real-time or substantially real-time (e.g., during flow of the fluid through the MPFM) by using the MPFM may further identify changes in well performance. Another example use of the systems and methods disclosed herein is to monitor changes of salinity (i.e., water chemistry) of the produced water that are indicative of the progress of FPDO and flowback operations.
In order to monitor the flow rates of multiphase fluids more accurately and to substantially reduce or eliminate the need for post-processing of MPFM data acquired during FPDO and flowback operations, examples disclosed herein provide for automatic and continuous or substantially continuous tracking of brine salinity changes. In some disclosed examples, the MPFM monitors (e.g., at a high data-sampling frequency) pressure and flow rates in substantially real-time to further determine changes in well performance. In some disclosed examples, tracking changes in brine salinity change using a conductivity probe enables detection of the presence of sand slugs (e.g. to monitor well cleanup).
As represented by arrows 208, 210 in
The example data processor 216 of
The example data processor 216 of
In some examples, the probe data analyzer 218 determines a slope of changes in salinity versus time, which may be indicative of reservoir properties, such as changes in fracture chemistry/geometry and can be used to generate data outputs such as identification of fracturing stages. Thus, as compared to the known example of
In some examples, computational corrections of flow rates measured by single phase flow meters or multiphase flow meters (e.g., the MPFM(s) 202, 302, 402, 502 of
While an example manner of implementing the example systems 200, 300, 400, 500 are illustrated in
The expected changes of salinity that may be identified using the example conductivity probe(s) 204, 304, 404, 504 of
In some examples, samples of injected water may be collected at the coil tubing from a tank before being pumped in the well. The samples are used as an initial reference and the water of the samples is not the water that is present in the well that will be displaced by the injected water at the end of the coil. The sample fluid can be different from the displacement fluid used at the end of the hydraulic fracturing job (e.g., fluid in the wellbore at shut-in), leading to near instantaneous changes in salinity (higher or lower) once the FPDO begins. Furthermore, these changes to the fluid chemistry of the circulating fluid mixture can occur in a stepwise manner as each plug is drilled out due to the same phenomenon (e.g., changes in circulating fluid chemistry due to mixing with trapped plug to plug wellbore fluid).
When the hydraulic fracturing operations for each stage are completed, the completion fluid within that stage begins to interact with the formation and changes chemistry. Typically, this results in an increase in salinity, but the opposite has also been observed. This change in chemistry is time dependent (linear change in concentration vs t1/2), as it is the result of the stimulation fluids mixing with the connate water within the stimulated zone (and in some cases, is also the result of dissolution of salts), as discussed herein. Because of this phenomenon it is expected that there will be subtle variations in the chemistry of each stage. These variations result in varying changes in salinity of the circulating fluid during FPDO as each subsequent stage is drilled out. The addition of a conductivity probe inline as in the example conductivity probe system 200 of
The variation in produced water chemistry continues for a period of weeks to months depending on the salinity differences between the stimulation fluid and connate water and formation parameters (e.g. permeability, porosity, etc.). As a result of the highly reproducible square root of time dependence, most of the salinity changes occur early in the production period, which is when a MPFM is typically deployed. Continuous or substantially continuous monitoring of salinity changes via a conductivity probe as disclosed herein (e.g., the conductivity probe 204, 304, 404, 504 of
As production continues into the latter part of the production period, the aforementioned changes in the water chemistry can deviate due to changes in the fracture geometry. In known systems (e.g., the known system 100 of
The example conductivity probe(s) 204, 304, 404, 504 of
Another example application in which the example conductivity probe(s) 204, 304, 404, 504 of
In coil tubing milling applications, water is used as a drilling and/or power fluid with or without additives to drill through plugs in multistage frac wells. The geological formations may contribute some fluids of various compositions including water that can be of a varying salinity. The variations in salinity may be because the water is naturally doped with some salts or because of an artificial intervention that has changed the initial salinity of the in situ water. The variations in salinity may be because the presence of the water is the result of a prior operation involving injection of water with a different salinity, where the salinity may have changed as a function of time during injection or while the water was present in the formation, the induced fractures, or the wellbore. The injection of water may have been in the same well and/or drain or from a different drain or combination thereof, or a different well. By collecting measurements of the injected water conductivity and of the produced water conductivity via the example conductivity probe(s) 204, 304, 404, 504 of
Another example application in which the example conductivity probe(s) 204, 304, 404, 504 of
Flowback Analysis of Illustrative Wells
As treatment fluid interacts with freshly cleaved rock surfaces during the process of hydraulic fracturing, the equilibrium condition within the rock is disrupted. A combination of factors such as high pressure, favorable wettability, clay reactivity, and high osmotic potentials can lead to substantial imbibition of fracturing fluid into the reservoir. The imbibition of this relatively fresh water results in a disruption to the local chemical equilibrium. As the connate water becomes diluted, some solid state minerals dissolve and enrich the connate water with the associated ions, such as Ca+2 and CO3−2 ions. In a simultaneous process, the dilution of the connate water also results in a change in the absorbed cations on clay surfaces. This is due to a process known as the valence dilution effect, which is an effect driven by the preference for multivalent cations over monovalent cations for charge balance at the clay surface. In cases where the fracturing fluid is laden with salt, either due to water re-use or clay reactivity considerations, the clay-connate water equilibrium can be further disrupted.
Finally, the dilution of the connate water is counteracted by the vast quantities of salt found within the nearby rock. This results in a gradual increase in the overall salt concentration in the near fracture region. This effect is manifested in the gradual increase in flowback water salinity over time, typically exhibiting a linear increase with the square root of time (i.e. diffusion limited).
As shown in the graph 600 of
In operation, the slope change in the chloride concentrations observed in
MPFM Field Operations With Usage of a Conductivity Probe
An example field operation involving a MPFM (e.g., the MPFM(s) 202, 302, 402, 502 of
A sample of injected water can be collected (e.g., prior to the operation). A data processor (e.g., the data processor 216 of
In the example field operation, a pressure test is performed with CT (coil tubing) water. The CT is run in hole. Even if no fluid is pumped, there will be return of water in the flowline due to the injection of, for instance, the steel CT in the well. During circulation, a slug of heavy hydrocarbon (e.g., having density close to 1000 kg/m3) may be observed. The oil slug may last few minutes and can include 100% (or substantially 100%) grease (e.g., the slug may be a lubricant related to the CT or completion operations that is displaced out of the well). The period in which the slug is substantially entirely grease is usually followed by 100% (or substantially 100%) water for 30 minutes or more.
In the example field operation, the variations of the brine conductivity can trigger collection of samples of water (e.g., manual or automated sampling using a sampler). Such samples provide indications of statuses of the circulation and displacement of the fluids inside the wellbore. The triggering mechanism may be based on a particular (e.g., predefined) threshold level of uncertainty that is deemed acceptable for the computation of the water, oil, gas, and solid rates.
In the example operation, the net fluid volume produced by the formation/fracture is provided in real-time to the CT control unit. The net fluid volume can be calculated from the difference of the total produced fluid measured by the MPFM at surface and corrected to the current brine salinity as tracked by the conductivity probe(s) 204, 304, 404, 504, and to the bottom-hole pressure and temperature conditions and the injected volumes in the CT. In some examples, an operator keeps the FPDO at balance at bottom-hole conditions (no inflow, no outflow) or under a controlled imbalance condition (pre-defined or optimized on the fly).
In the example field operation, the substantially real-time tracking of the brine salinity changes by the conductivity probe(s) 204, 304, 404, 504 of
In the example operation, sand production may be substantially accurately quantified based on sand mass rate. Sand events may last from, for instance, 30 seconds to 10 minutes. Fracking jobs, however, should not be operated in conditions of continuous sand production. An example threshold of sand detection may be 0.5% in mass. In some examples, the threshold may be to detect 1-kg of sand production in a minute. For example, it has been observed during testing with a conductivity probe that the salinity measurement was largely unaffected with the presence of suspended sand in water. Thus, certain quantities of sand produced would not significantly impact the computation of volumes of fluids produced. In some examples, it may be valuable to estimate water cut and/or gas/oil ratio (GOR) if sand and/or or change of salinity are observed.
In the example operation, water density measurements may be monitored to provide a more accurate computation of bottom hole pressure conditions using a pipe pressure simulation model. A change of salinity may also be the expression of a change of density. Upon detection of the salinity change (e.g., based on data obtained from the conductivity probe(s) 204, 304, 404, 504), a look-up table can be used to correct, for example, the density of the water phase for calculations of bottom-hole pressure.
In the example operation, the aforementioned field information may be streamed in real-time or substantially real-time to associated software components (e.g., implemented by one or more data processors such as the data processor 216 of
Correction of MPFM Gamma-Ray Measurement by Conductivity Probe
As represented in
The example MPFM(s) 202, 302, 402, 502 of
The emitter and the detector of the example MPFM(s) 202, 302, 402, 502 of
in which d is the diameter of the portion of the fluid conduit 215, 311 through which the radiation is directed, N(E) is the amount of transmitted photons (the count rates or the quantity of photons detected by the detector), and No(E) is the empty pipe count rates (the quantity of photons emitted from the emitter that would have reached the detector with no fluid in the measurement section of the fluid conduit 215, 311).
The analyzed fluid can have multiple phases. For example, the fluid can be a multiphase fluid having an oil phase, a water liquid phase, a gas phase, and solids (sand) phase. The attenuation of gamma-ray or x-ray electromagnetic radiation by a multiphase fluid is a linear combination of the attenuations caused by each of its phases weighted by their proportions in the fluid. In the case of a fluid having some combination of gas, oil, water and solids, this can be written as:
λm(E)=λg(E)αg+λo(E)αo+λw+λs(E)αs (2)
where λg(E), λo(E), λw(E) and λs(E) are attenuation coefficients for gas, oil, water, and solids for radiation of a given energy level E, and αg, αo, αw and αs are respective fractional portions of each phase within the analyzed fluid traversed by gamma-ray or x-ray radiation beam (also referred to as phase holdups or phase fractions). This gives as many equations as the number of distinct energy levels in the electromagnetic radiation from the emitter of the example MPFM(s) 202, 302, 402, 502 (further considering that the all phase holdups sum up to unity). For a system including a MPFM (e.g., the example conductivity probe systems 200, 300, 400, 500 of
The 4×4 attenuation matrix A above (i.e. the matrix including the phase-specific attenuation coefficients for three appropriately chosen energy levels) can be obtained from full-pipe measurements on each phase, hereafter called the in-situ references, or theoretical coefficients can be used. This attenuation matrix may then be mathematically inverted directly or indirectly (giving an apparent inversion matrix A-1) to calculate the phase holdups:
Note that matrix A contains linear attenuation coefficients of all the individual phases λi (Ej) (i=‘o’, ‘g’, ‘w’, ‘s’; j=1, 2, 3). If there are changes in the fluids properties from the values of the in-situ references, such as a change in the water salinity sal (in weight percentage), this will cause a change in the brine mass attenuation coefficient μw(Ej) as follows (where μH2O and μsalt-species are mass attenuation coefficients of pure water and the salt species in water, such as sodium chloride NaCl),
μw(Ej)=(1sal)×μH2O(Ej)+sal×μsalt-species(Ej) (5a)
Δμw(Ej)=(μsalt-species(Ej)μH2O(Ej))Δsal (5b)
and, thus, there will be a change in the brine linear attenuation coefficient λw (Ej):
λw(Ej)=ρw(sal;p,T)×μw(Ej) (6a)
Δλw(Ej)=ρw(sal;p,T)×Δμw(Ej)+Δρw(sal;p,T)×μw(Ej) (6b)
where pw(sal; p, T) is the density of the brine water, which is also pressure p and temperature dependent. The detection of salinity change may enable an update of brine density that is used in the computation of MPFM mixture density and individual flow rates (e.g., by the data processor(s) 216), and of the bottom hole pressure in the workflow for modeling of the fractured well.
As implied by equation (4), there will be errors in the calculations of the individual phase holdups αi(i=‘o’, ‘g’, ‘w’, ‘s’) if there is no update in the brine linear attenuation coefficient λw(Ej). This may result in errors in the individual phase volumetric (or mass) flow rates which are directly proportional to the respective individual phase holdups.
The example conductivity probe(s) 204, 304, 404, 504 of
In some examples, the conductivity probes of
In the conductivity probe systems 200, 300, 400, 500 of
The example methods of
In the example methods of
The self-consistency of the brine-water dielectric-model, used for both calibrating the probe and interpreting the probe-measured complex-permittivity ratio, yields a robust water-salinity (and conductivity) estimate. Potential in-situ calibration and/or validation of the MPFM (e.g., the MPFM(s) 202, 302, 402, 502 of
Referring to
The example method 700 of
The example method 700 of
The example method 700 of
The example method 700 of
(block 712).
The example method 700 of
In some examples, dc-conductivity σdc may also be calculated.
The example method 700 of
The example method 800 of
The example method 800 of
The example method 800 of
Ed=ρzo (12)
Es=FuncEs(Γsc,Γoc;ρsc,ρoc,ρzo) (13)
Ef=FuncEf(Γsc,Γoc;ρsc,ρoc,ρzo) (14)
The example method 800 includes storing the RF-board error correction factors (Ed, Es, Ef) for the particular temperature TRF at, for example, a memory in communication with the data processor(s) 216 of
The RF-board error correction factors (Ed, Es, Ef) can be used to calculate the corrected reflection coefficient Γ as discussed in connection with equation (8) and
The example method 900 of
ε=ε′jε″=func(s(σdc),T;p)f;salt-species (15)
The example method 900 of
The example method 900 of
The example method 900 of
The example method 900 of
The example method 900 includes storing the probe's calibration data (Γref, εref) and the fluids-calibration coefficients (A, B) at, for example, a memory in communication with the data processor(s) 216 of
The fluids-calibration coefficients (A, B) can be used to calculate the flow-mixture complex permittivity as discussed in connection with equation (10) and
The flowcharts of
As mentioned above, the example processes of
“Including” and “comprising” (and all forms and tenses thereof) are used herein to be open ended terms. Thus, whenever a claim employs any form of “include” or “comprise” (e.g., comprises, includes, comprising, including, having, etc.) as a preamble or within a claim recitation of any kind, it is to be understood that additional elements, terms, etc. may be present without falling outside the scope of the corresponding claim or recitation. As used herein, when the phrase “at least” is used as the transition term in, for example, a preamble of a claim, it is open-ended in the same manner as the term “comprising” and “including” are open ended. The term “and/or” when used, for example, in a form such as A, B, and/or C refers to any combination or subset of A, B, C such as (1) A alone, (2) B alone, (3) C alone, (4) A with B, (5) A with C, and (6) B with C.
The processor platform 1000 of the illustrated example includes a processor 1012. The processor 1012 of the illustrated example is hardware. For example, the processor 1012 can be implemented by one or more integrated circuits, logic circuits, microprocessors, GPUs, DSPs, or controllers from any desired family or manufacturer. The hardware processor may be a semiconductor based (e.g., silicon based) device. In this example, the processor implements the probe data analyzer 218 and the MPFM data analyzer 220.
The processor 1012 of the illustrated example includes a local memory 1013 (e.g., a cache). The processor 1012 of the illustrated example is in communication with a main memory including a volatile memory 1014 and a non-volatile memory 1016 via a bus 1018. The volatile memory 1014 may be implemented by Synchronous Dynamic Random Access Memory (SDRAM), Dynamic Random Access Memory (DRAM), RAMBUS® Dynamic Random Access Memory (RDRAM®) and/or any other type of random access memory device. The non-volatile memory 1016 may be implemented by flash memory and/or any other desired type of memory device. Access to the main memory 1014, 1016 is controlled by a memory controller.
The processor platform 1000 of the illustrated example also includes an interface circuit 1020. The interface circuit 1020 may be implemented by any type of interface standard, such as an Ethernet interface, a universal serial bus (USB), a Bluetooth® interface, a near field communication (NFC) interface, and/or a PCI express interface.
In the illustrated example, one or more input devices 1022 are connected to the interface circuit 1020. The input device(s) 1022 permit(s) a user to enter data and/or commands into the processor 1012. The input device(s) can be implemented by, for example, an audio sensor, a microphone, a camera (still or video), a keyboard, a button, a mouse, a touchscreen, a track-pad, a trackball, isopoint and/or a voice recognition system.
One or more output devices 1024 are also connected to the interface circuit 1020 of the illustrated example. The output devices 1024 can be implemented, for example, by display devices (e.g., a light emitting diode (LED), an organic light emitting diode (OLED), a liquid crystal display (LCD), a cathode ray tube display (CRT), an in-place switching (IPS) display, a touchscreen, etc.), a tactile output device, a printer and/or speaker. The interface circuit 1020 of the illustrated example, thus, typically includes a graphics driver card, a graphics driver chip and/or a graphics driver processor.
The interface circuit 1020 of the illustrated example also includes a communication device such as a transmitter, a receiver, a transceiver, a modem, a residential gateway, a wireless access point, and/or a network interface to facilitate exchange of data with external machines (e.g., computing devices of any kind) via a network 1026. The communication can be via, for example, an Ethernet connection, a digital subscriber line (DSL) connection, a telephone line connection, a coaxial cable system, a satellite system, a line-of-site wireless system, a cellular telephone system, etc.
The processor platform 1000 of the illustrated example also includes one or more mass storage devices 1028 for storing software and/or data. Examples of such mass storage devices 1028 include floppy disk drives, hard drive disks, compact disk drives, Blu-ray disk drives, redundant array of independent disks (RAID) systems, and digital versatile disk (DVD) drives.
Coded instructions 1032 of
From the foregoing, it will be appreciated that the above-disclosed apparatus, systems and methods provide for monitoring of conductivity and salinity of water in a multiphase fluid via a conductivity probe. In examples disclosed herein, the conductivity data is used to correct and/or adjust fluid flow data generated based on measurements collected by a fluid flow meter (e.g., a multiphase flow meter) to provide for improved accuracy in, for example, fluid phase holdups and flow rates determined based on the flow meter data, to detect solids in the fluid, etc. Some examples disclosed herein identify changes in reservoir properties based on salinity-vs-time data collected via the conductivity probe. In examples disclosed herein, the need for manual sampling and/or post-processing analysis to account for changes in water salinity in connection with data collected by the flow meter is substantially eliminated. Examples disclosed herein provide for efficient monitoring of water conductivity properties and automatic adjustment of fluid flow data based on the monitoring.
Although the preceding description has been described herein with reference to particular means, materials and embodiments, it is not intended to be limited to the particulars disclosed herein; rather, it extends to all functionally equivalent structures, methods, and uses, such as are within the scope of the appended claims.
This patent claims the benefit of U.S. Provisional Patent Application No. 62/466,607, which was filed on Mar. 3, 2017. U.S. Provisional Patent Application No. 62/466,607 is hereby incorporated by reference in its entirety. Priority to U.S. Provisional Patent Application No. 62/466,607 is hereby claimed.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/020590 | 3/2/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/160927 | 9/7/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5594179 | Marsh | Jan 1997 | A |
6831470 | Xie et al. | Dec 2004 | B2 |
9528869 | Xie et al. | Dec 2016 | B2 |
20090088985 | Wee | Apr 2009 | A1 |
20100196244 | Grauer | Aug 2010 | A1 |
20130153210 | Menard | Jun 2013 | A1 |
20130327154 | Xie et al. | Dec 2013 | A1 |
20140020462 | Irani et al. | Jan 2014 | A1 |
20160011032 | Hogendoorn | Jan 2016 | A1 |
20160011033 | Chen et al. | Jan 2016 | A1 |
20160024909 | Han | Jan 2016 | A1 |
20160169720 | Xie et al. | Jun 2016 | A1 |
20160169726 | Xie et al. | Jun 2016 | A1 |
20180016897 | Willberg | Jan 2018 | A1 |
20190186246 | Reed | Jun 2019 | A1 |
20200033174 | Nogueira | Jan 2020 | A1 |
Number | Date | Country |
---|---|---|
2300794 | Nov 2000 | CA |
101738226 | Jun 2010 | CN |
101786056 | Jul 2010 | CN |
104374441 | Feb 2015 | CN |
106496528 | Mar 2017 | CN |
102006037739 | Feb 2007 | DE |
2251433 | Nov 2010 | EP |
2529538 | Feb 2016 | GB |
2015019081 | Feb 2015 | WO |
2015142610 | Sep 2015 | WO |
WO-2016142541 | Sep 2016 | WO |
Entry |
---|
English translation of CN 106496528, Mar. 2017 (Year: 2017). |
International Preliminary Report on Patentability issued in the related PCT Application PCT/US2018/020590, dated Sep. 12, 2019 (10 pages). |
International Search Report and Written Opinion issued in the related PCT Application PCT/US2018/020590, dated Jun. 8, 2018 (13 pages). |
First Office Action of Chinese Patent Application No. 2021101801881630 dated Oct. 21, 2021, 23 pages with English translation. |
Second Office Action of Chinese Patent Application No. 2021101801881630 dated Aug. 3, 2022, 21 pages with English translation. |
Number | Date | Country | |
---|---|---|---|
20200003599 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
62466607 | Mar 2017 | US |