1. Technical Field
The present invention relates to antennae in general, and, in particular, to a conductor having two frequency-selective surfaces.
2. Description of Related Art
Antenna systems capable of providing independent operations in different directions have been widely utilized in microwave relay systems for long haul point-to-point applications (largely replaced by buried fiber optic cable in conventional systems), and, more recently, sectorized antenna systems for mobile telephony, or cellular telephones. Antenna systems capable of providing independent operations in different directions are typically large and mechanically complex, and are constructed of parabolic reflectors (as in microwave relay stations) or multiple metallic structures (as in cell antennas). Similarly, planar antennas have been utilized on the skin of aircraft and in massive phased array structures for electronic beam steering. Planar arrays have not been used in applications where independent operations are required in different directions.
Any arrangement of surfaces that provide high impedance for surface currents is referred to as a high impedance surface (HIS). If an electric field antenna is placed in close proximity to a HIS that includes a frequency-selective surface (FSS) in close proximity with a perfect electrical conductor (PEC), the energy reflected from the HIS will return in phase with the energy radiating away from the HIS, thereby amplifying the antenna signals. Such arrangement allows efficient, low-profile planar antennas and arrays to be constructed using pattern and etch techniques like those developed for printed circuit boards.
In accordance with a preferred embodiment of the present invention, an antenna reflector system includes a first frequency-selective surface (FSS), a second FSS, and a perfect electrical conductor. While FSS structures vary, and can take many forms, in the implementation shown, both the first FSS and the second FSS have multiple holes (i.e., mesh like). The perfect electrical conductor is located between the first FSS and the second FSS.
All features and advantages of the present invention will become apparent in the following detailed written description.
The invention itself, as well as a preferred mode of use, further objects, and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:
With reference now to the drawings, and in particular to
With reference now to
In an alternative embodiment, separate arrays of antennas can be located above first HIS 200 and second HIS 205, and each antenna array may have different steering and/or multiple-input multiple-output (MIMO) criteria. In yet another embodiment, the operating frequencies of antenna patterns 210 and 215 are sufficiently separated to enable the intervening conducting plane (i.e., PEC 110) to be removed, thereby reducing the number of metallization layers and reducing overall antenna system cost.
With reference now to
As shown in
As has been described, the present invention provides an antenna reflector system having a frequency-selective surface. The present invention enables one or more antennas to be integrated into a coordinated antenna system, thereby providing significant size and cost advantages over conventional back-to-back antenna arrangements, such as horns or parabolic reflectors. The present invention enables the fabrication of low-cost, etched printed wiring board antenna reflectors useful in multiple applications, such as relay stations and sectorized antenna systems. The present invention provides excellent isolation (typically associated with back to back parabolic reflectors) at a fraction of the cost of conventional antenna reflector systems.
While the invention has been particularly shown and described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention.
The present application claims priority under 35 U.S.C. § 119(e)(1) to provisional application No. 60/908,712 filed on Mar. 29, 2007, the contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60908712 | Mar 2007 | US |