In the drawings:
Looking now more closely at
Manufacture of the pump body and the control valve module are simpler because of the invention. Conventional machining processes can form the facing recess 104 and the cylindrical chamber 42, as well as the upper edge 34′. Precision machining is unnecessary because the recess 102 and facing recess 104 are adequate to center the stator assembly 36. Conventional machining and grinding are adequate to obtain the necessary tolerances for the upper edge 34′ on the control valve module 14′.
Formation of the conduit arrangement 100 can be accomplished by drilling at an oblique angle from the upper edge 34′ to a point where the high-pressure annulus 106 is to be formed at an intersection with the cylindrical chamber 42, and also drilling at an oblique angle from the lower edge 35′ to the same point. Applying a single ECM process at the intersection will form the high-pressure annulus 106.
It can be seen that the conduit arrangement 100 according to the invention enables a simpler and less costly manufacturing process. It eliminates the need for drilling and reaming a close tolerance cross passage, and then plugging the passage. It also eliminates one ECM process. It further eliminates a precision grinding process, otherwise required in the large recess 33. It has been found that with a new conduit arrangement 100 according to the invention, hydraulic performance is improved, strength of the junction of the nozzle nut with the pump body is increased, and electrical connections to the stator assembly can be made more easily and securely during assembly.
While the invention has been specifically described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation, and the scope of the appended claims should be construed as broadly as the prior art will permit.
| Filing Document | Filing Date | Country | Kind | 371c Date |
|---|---|---|---|---|
| PCT/US03/20641 | 6/30/2003 | WO | 00 | 5/15/2007 |