Fluid dispensers which are mounted to a countertop, and which can be filled from the top are often used in many bathrooms, especially commercial bathrooms. Such fluid dispensers include a dispensing outlet formed on a spout above the countertop and a reservoir mounted below the countertop. In order to fill the reservoir, a dispensing portion or a top portion of the dispenser is opened and fluid is poured through a conduit, such as a shank into the reservoir. The fluid is typically liquid soap or liquid soap designed to turn into foam. The problem when filling such dispensers is that as the liquid drops into the reservoir from the shank, it splutters and foams up filling the reservoir with foam, preventing the reservoir from filling a sufficient amount of liquid soap. This is especially pronounced when the liquid soap is liquid soap for being converted to foam during pumping and dispensing. Thus, a top filled fluid dispenser that may minimize the amount of foaming is desired.
In an example embodiment a dispenser is provided including a reservoir, a shank extending from the reservoir, a funnel within the reservoir having a funnel portion and a conduit, the conduit extending within the reservoir and along a major length of the reservoir. A dispensing spout extends above the funnel. The reservoir if filled from the funnel. In another example embodiment, the conduit extends within about ⅛ to about 2 inches from a base of the reservoir. In yet another example embodiment, the conduit extends within about 1/16 to about 3 inches from a base of the reservoir. In a further example embodiment, the conduit extends to the base of the reservoir and includes opening proximate the base. In yet a further example embodiment, the funnel conduit includes a radially extending projection for providing a stop when the funnel is lifted. In one example embodiment, the projection is integrally formed with the funnel conduit. In another example embodiment, the projection is a grommet coupled to the funnel conduit. In a further example embodiment, the shank penetrates a counter top, the dispensing spout is above the countertop and the reservoir is below the counter top. In yet a further example embodiment, the dispenser also includes a vent opening formed through the funnel conduit for venting air or other gases from the reservoir. In another example embodiment, the vent opening is formed at a location at or proximate an upper end of the reservoir.
In yet another example embodiment a dispenser is provided including a reservoir, a shank extending from the reservoir, where the shank defines a funnel portion and a conduit. The conduit extends within the reservoir and along a major length of the reservoir. A dispensing spout extends above the funnel. The reservoir if filled from the funnel. In a further example embodiment, the conduit extends within about ⅛ to about 2 inches from a base of the reservoir. In yet a further example embodiment, the conduit extends within about 1/16 to about 3 inches from a base of the reservoir. In one example embodiment, the conduit extends to the base of the reservoir and includes opening proximate the base. In another example embodiment, the funnel conduit includes a radially extending projection for providing a stop when the funnel is lifted. In yet another example embodiment, the projection is integrally formed with the funnel conduit. In one example embodiment, the projection is a grommet coupled to the funnel conduit. In another example embodiment, the shank penetrates a counter top, the dispensing spout is above the countertop and the reservoir is below the counter top. In yet a further example embodiment, the dispenser also includes a vent opening formed through the funnel conduit for venting air or other gases from the reservoir. In one example embodiment, the vent opening is formed at a location at or proximate an upper end of the reservoir. In another example embodiment, the shank includes a first portion and a second portion with one of the first and second portions extending within the other of the first and second portions. In yet another example embodiment, the shank second portion is formed integrally with a cap of the reservoir.
In a further example embodiment, a method of filling a fluid dispenser is provided and includes removing a top portion of the dispenser exposing a pathway to the reservoir, filling the fluid dispenser with a fluid and guiding the fluid along a conduit extending along a major portion of the length of the reservoir. In yet a further example embodiment, guiding the fluid includes guiding the fluid within the conduit and exiting the fluid from the conduit within a distance of 3 inches from a base of the reservoir. In one example embodiment, guiding the fluid includes guiding the fluid within the conduit and exiting the fluid from the conduit within a distance of 3 inches from a base of the reservoir. In another example embodiment, the method further includes venting air displaced by filling the fluid through the conduit. In yet another example embodiment, venting the air includes venting the air through the conduit at a location at or proximate an upper end of the reservoir. In a further example embodiment, when the fluid dispenser has been filled sufficiently with the fluid, the conduit rises relative to the reservoir.
In yet a further example embodiment, a method for operating power driven pump in a dispenser is provided including sensing a level of a the liquid in a reservoir of the dispenser, activating an indicator when the level is at or below a predetermined level, and allowing only a predetermined number of dispenses from the dispenser after the activating. In one example embodiment, the pump is submerged in the liquid and wherein after the predetermined number of dispenses the pump remains submerged in the liquid. In another example embodiment, the method also includes activating another indicator after the predetermined number of dispenses have occurred. In yet another example embodiment, activating an indicator includes illuminating a light having a first color. In a further example embodiment, activating another indicator includes illuminating a light having a second color different from the first color. In yet a further example embodiment, the indicator and the another indicator are the same device that provides for the light having the first and the second color. In one example embodiment, the indicator and the another indicator are flashing indicators.
In an example embodiment, a fluid dispenser, such as a liquid fluid dispenser, a liquid soap or a liquid foam dispenser 10 is provided, as for example shown in
The dispensing spout 33 extends above the funnel and above the countertop. A dispensing spout is coupled to the pump 35 within the funnel portion 20 such that pressing the dispensing spout skirt 31 from the top activates the pump for pumping the liquid, such as liquid soap, or liquid soap which is converted to foam, and dispensing the same through the dispensing spout. In other example embodiments, the dispensing spout may be coupled to a pump within the reservoir which may be operated by a separate motor, as for example shown in
In an embodiment where the funnel is fitted within the shank, a shank upper portion 30 has a larger diameter than the shank conduit portion 32, which penetrates the countertop. Thus, a shoulder 34 is formed between the larger and the smaller diameter portions of the shank. With this embodiment, when the funnel is in within the shank, a lip 21 extending radially from an upper end of the funnel rests against an upper edge 23 of the shank, suspending the funnel from the shank upper edge. The funnel has a sufficient length such that when it is suspended from the upper edge of the shank, a lower end 38 of the funnel conduit is spaced apart by a distance 37 of about ⅛ to about 2 inches from a base 40 of the reservoir. Similarly, in example embodiments where the shank extends proximate the bottom of the reservoir and a funnel is not used, a lower end of the shank conduit portion 32 extends to a location within about ⅛ to about 2 inches from the bottom of the reservoir. In other example embodiments the distance to the lower end of the funnel conduit (or shank conduit) from the base of the reservoir is less than ⅛ of an inch, as for example 1/16 inch. In other example embodiments, the distance may be 3 inches or less. In an example embodiment, the distance may be about 1/16 to about 3 inches. In other example embodiments, the reservoir has a length 39 as measured between a top end 41 and the base 40 of the reservoir. In example embodiment the funnel conduit 26 of the funnel extends from the top end 41 into the reservoir and extends along a majority of the length 39 within the reservoir.
In an example embodiment, the funnel or the shank may be sized such it extends to the base 40 of the reservoir, and at least an opening 42 is formed circumferentially at the bottom end 46 of the funnel conduit through the funnel conduit wall, or shank conduit through the shank conduit wall, allowing for fluid to exit through such opening. The opening may be formed at a location extending from the bottom end of the funnel or shank conduit to a distance 43 of about 1/16 to about 3 inches, and in an example embodiment, to a distance about ¼ to about ⅝ inches. In other example embodiments, the opening may be centered at a distance in the range of about 1/16 to about 3 inches, and in an example embodiment, to a distance about ¼ to about ⅛ from the base 40 of the reservoir. With these example embodiments, by extending to a proximity to the reservoir base, or by extending to the reservoir base and having at least an opening 42, the funnel or shank allows the liquid to enter through the funnel (or shank when a funnel is not used) and exit at the bottom proximate the reservoir base, thereby gliding along the funnel conduit (or the shank conduit if a separate funnel is not used) which minimizes foaming. Applicant has discovered that an inner diameter 59 of the funnel conduit, (or the shank conduit when a funnel is not used) that extends to a location that is proximate the base of the reservoir or to the base of the reservoir, in the range about 1/16 to about 3 inches, preferably in the range of up to 1 and ⅛ inch and more preferably in the range of ¼ to ⅝ inch results in sufficient or significant reduction of foaming. In an example embodiment, the inner diameter 59 is about ⅜ inch. In the example embodiment shown in
In the example embodiment shown in
In an example embodiment, the funnel portion 20 when a funnel is used, or an upper portion 30 of the shank when a funnel is not used, has a shape to further minimize foaming. Applicant has discovered that a shape including a constant diameter section 50 which tapers with a tapering section 54 to the lower diameter section 52 creates a funnel portion that minimizes foaming.
In yet a further example embodiment, where the funnel is inserted within the shank, a grommet or ring (individually or collectively “grommet”) 57, and in an example embodiment, a rubber grommet is placed around the funnel conduit proximate an upper portion of the reservoir such as the neck 58 of the reservoir. With this embodiment, even though the foaming is minimized, some foaming may occur on top of the liquid within the reservoir as the reservoir is being filled. As the reservoir fills with liquid, the foam created causes the funnel to lift. As the funnel lifts, the grommet engages a reservoir wall, such as a lower surface 68 of a cap 69 top wall 61 penetrated by the funnel conduit 26, and prevents the funnel from further rising (as for example shown in
In another example embodiment as shown in
When the funnel lifts it also allows venting of air/gases from the reservoir through an annular space 60 between the funnel conduit 26 and the shank conduit 32. In other words the air that is being displaced as the reservoir is filled is allowed to vent through the annular space 60 between the funnel conduit and the shank conduit (
In the example embodiment shown in
In the shown example embodiment, the shank lower portion 16b is integrally formed with a reservoir cap 65. In an example embodiment, when fitted into the shank lower portion 16b, the shank upper portion occupies a sufficient length of the lower portion so that it is stable relative to the lower portion. In an example embodiment, the upper portion when inserted into the lower portion, occupies at least half of the length of the lower portion. With any of the aforementioned example embodiments, the vent may be formed at a level of a neck 58 of the reservoir.
In another example embodiment, a sensor, such as an IR sensor 80, is placed on the reservoir and may be placed external of the reservoir, as for example shown in
An example dispensing operation is shown in
As can be seen, the exemplary embodiment dispensers using example embodiment conduits can be any type of liquid dispenser such as liquid soap foam dispenser which are manually operated, as for example shown in
While the present invention has been described in connection with certain exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims, and equivalents thereof.
This application is a divisional of U.S. patent application Ser. No. 15/299,407, filed Oct. 20, 2016, issued as U.S. Pat. No. 10,806,304 on Oct. 20, 2020, which claims the benefit of U.S. Provisional Patent Application Nos. 62/244,687, filed Oct. 21, 2015 and 62/378,163, filed Aug. 22, 2016 the contents of all of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1355952 | Even | Oct 1920 | A |
1362077 | Bobrick | Dec 1920 | A |
2772116 | Dobkin | Nov 1956 | A |
3251049 | Hallerberg | May 1966 | A |
3402857 | Ecklund et al. | Sep 1968 | A |
4444358 | Spohn | Apr 1984 | A |
4670010 | Dragone | Jun 1987 | A |
5397028 | Jesadanont | Mar 1995 | A |
5540362 | Azuma | Jul 1996 | A |
5603363 | Nelson | Feb 1997 | A |
5736942 | Randolph | Apr 1998 | A |
6467651 | Muderlak | Oct 2002 | B1 |
7040359 | Younkle | May 2006 | B2 |
7753087 | Rhodenbaugh et al. | Jul 2010 | B2 |
8240508 | Wegelin | Aug 2012 | B2 |
9545644 | Ramdhiansing et al. | Jan 2017 | B2 |
9681779 | Babikian | Jun 2017 | B2 |
20080185399 | Yang | Aug 2008 | A1 |
20100213208 | Bem | Aug 2010 | A1 |
20130099021 | Taylor | Apr 2013 | A1 |
20140263425 | Akdogan | Sep 2014 | A1 |
20150034680 | Babikian | Feb 2015 | A1 |
20150076176 | Ray | Mar 2015 | A1 |
20150223646 | Wegelin et al. | Aug 2015 | A1 |
20170027390 | Maercovich | Feb 2017 | A1 |
Number | Date | Country |
---|---|---|
2920392 | Feb 2015 | CA |
2009165762 | Jul 2009 | JP |
Entry |
---|
Examination report issued in related Australian Application No. 2016341969, dated Sep. 8, 2020, 5 pages. |
First Examination Report issued in related Indian Application No. 201817014207, dated Jun. 22, 2020, 7 pages. |
Examination Report issued in corresponding Australian Application No. 2016341969 dated Sep. 8, 2020, 5 pages. |
Examination Report issued in corresponding Australian Application No. 2016341969, dated Nov. 18, 2020, 4 pages. |
Office action issued in corresponding European Application No. 16791194.0, dated Nov. 11, 2020, 4 pages. |
EP Office action issued in corresponding EP Application No. 16791194.0, dated May 13, 2020, 8 pages. |
International Search Report and Written Opinion issued in PCT/US2016/057990, dated Jan. 9, 2017, 13 pages. |
Number | Date | Country | |
---|---|---|---|
20200367701 A1 | Nov 2020 | US |
Number | Date | Country | |
---|---|---|---|
62378163 | Aug 2016 | US | |
62244687 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15299407 | Oct 2016 | US |
Child | 16989610 | US |